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Central role for neurally 
dysregulated IL‑17A in dynamic 
networks of systemic and local 
inflammation in combat casualties
Ruben Zamora 1,3,4, Jonathan A. Forsberg 2, Ashti M. Shah 1, Desiree Unselt 2,5,6, Scott Grey 2,5,6, 
Felipe A. Lisboa 2,5,6, Timothy R. Billiar 1,3,4, Seth A. Schobel 2,5,6, Benjamin K. Potter 2,5, 
Eric A. Elster 2,5,7 & Yoram Vodovotz 1,3,4,7*

Dynamic Network Analysis (DyNA) and Dynamic Hypergraphs (DyHyp) were used to define protein-
level inflammatory networks at the local (wound effluent) and systemic circulation (serum) levels from 
140 active-duty, injured service members (59 with TBI and 81 non-TBI). Interleukin (IL)-17A was the 
only biomarker elevated significantly in both serum and effluent in TBI vs. non-TBI casualties, and 
the mediator with the most DyNA connections in TBI wounds. DyNA combining serum and effluent 
data to define cross-compartment correlations suggested that IL-17A bridges local and systemic 
circulation at late time points. DyHyp suggested that systemic IL-17A upregulation in TBI patients 
was associated with tumor necrosis factor-α, while IL-17A downregulation in non-TBI patients was 
associated with interferon-γ. Correlation analysis suggested differential upregulation of pathogenic 
Th17 cells, non-pathogenic Th17 cells, and memory/effector T cells. This was associated with reduced 
procalcitonin in both effluent and serum of TBI patients, in support of an antibacterial effect of Th17 
cells in TBI patients. Dysregulation of Th17 responses following TBI may drive cross-compartment 
inflammation following combat injury, counteracting wound infection at the cost of elevated systemic 
inflammation.

Twenty years of combat in Iraq and Afghanistan have left many service members with combat-related trauma, 
often combined with traumatic brain injury (TBI). This “signature injury” of war1 is a pathophysiology driven, 
in part, by dysregulated systemic inflammation. Despite an increase in injury severity and extensive systemic 
inflammation, all mainly due to blast injuries, combat-related injury survival has improved substantially due to 
upgraded combat armor and modern developments in combat casualty care. Early studies have suggested that 
measurement of the systemic and local response to injury using inflammatory biomarkers may predict combat 
wound healing outcomes2 and introduce personalized medicine into combat casualty care3.

The extensive body of literature regarding TBI and trauma (reviewed in4,5) demonstrates that the resulting 
inflammatory processes are complex, individual-specific, injury-specific and associated with morbidity and 
mortality6. The cellular and molecular mediators of the innate and adaptive immune system do not function in 
isolation, but rather through dynamic interactions to either stimulate or suppress inflammation7. Our under-
standing of how inflammation and immune dysregulation affect clinical outcomes in settings such as TBI has 
advanced, in part, through mathematical and computational modeling1,6,8.

We have sought to address the complexity of post-injury inflammation using data-driven and mechanistic 
computational modeling6,9–13. Using soluble and cellular circulating multi-omics in human trauma, these stud-
ies have defined novel inflammatory biomarkers2,13–20, endotypes13,21, and regulatory programs13,20,22. A key, 
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unanswered question centers around how systemic inflammation impacts injury-induced local inflammatory 
responses in wounds on systemic inflammation and vice versa, i.e., if inflammation in one compartment modu-
lates the response in the other23. We have begun to address this question in experimental paradigms of trauma/
hemorrhage via multiple computational approaches including hypergraph analysis, a graph-theory approach to 
modeling multi-compartment trends in inflammation24.

Here, we sought to leverage and expand this computational methodology to provide insights into the interplay 
between local and systemic inflammation following combat injury in humans. We hypothesized that trauma 
patients with TBI have a more complex dynamic, cross-compartment inflammatory network pattern than trauma 
patients without TBI and sought to identify specific mediator connections that may yield mechanistic insights 
into those differences.

Materials and methods
Patient and sample selection.  Samples used in this study were obtained from combat-wounded active-
duty service members who sustained high-energy extremity injuries and were enrolled prospectively between 
2008 and 2012 under a protocol approved by Walter Reed National Military Medical Center IRB (IRBNet 
#352354). The study was conducted as a prospective study in accordance with all relevant guidelines and regula-
tions and was approved by the Institutional Review Board from the participating institution. Written informed 
consent was obtained for all patients during enrollment. Samples of peripheral venous blood (serum) and 
wound effluent were collected at the operating room before each surgical debridement (approximately every 
3 days). Wound effluent was collected from only the most extensive wound from each patient. Injury-specific 
and demographic data, as well as 23 serum and wound effluent inflammation biomarkers assessed during each 
debridement (see below), were collected from 59 combat casualties with poly trauma that included TBI ([TBI], 
age: 24.5 ± 0.8 y.o.) and 81 casualties with injuries that did not include TBI ([non-TBI], age: 24.4 ± 0.6 y.o). TBI 
was confirmed by clinical evaluation of patient mental status after injury and confirmed with CT scans as appro-
priate.

Analysis of inflammatory mediators.  Inflammatory mediators in both the serum and effluent samples 
were assayed in batch using a multiplex analysis platform (Luminex™ 100 System, Luminex, Austin, TX). Sam-
ples were thawed, filtered using a 0.65 μm filter (Millipore, Billerica, MA), and tested using human cytokine 
Luminex kits (MPXHCYTO-60K-06 and MPXHCYTO-60K-17, Millipore Billerica, MA, USA) for the level of: 
Eotaxin (CCL11), Granulocyte–Macrophage Colony-Stimulating Factor (GM-CSF), Interferon (IFN)-α2, IFN-
γ, Interleukin (IL)-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, 
IL-17A, Interferon-γ-Inducible Protein 10 (IP-10/CXCL10), Monocyte Chemoattractant Protein-1 (MCP-1/
CCL2), Macrophage Inflammatory Protein-1α (MIP-1α, CCL3), and Tumor Necrosis Factor-α (TNF-α). Results 
were analyzed using the software BeadView (Upstate V1.0.4.23259, Millipore, Billerica, MA) and concentrations 
expressed in pg/ml and represented as mean ± SEM.

Statistical and computational analyses.  Two-way analysis of variance (ANOVA) was carried out to 
compare changes in inflammatory mediators over time (debridement intervals) and TBI status using SigmaPlot 
(Systat Software, San Jose, CA) as indicated (significance set at P < 0.05).

Dynamic network analysis (DyNA)14,25–27 was carried out to define inflammatory network interconnectivity 
as a function of both patient sub-group and time, quantified as debridement interval, wherein each debridement 
takes place approximately every 3 days. Networks were created over four consecutive debridement intervals (n1-
n2, n2-n3, n3-n4, n4-n5) using MATLAB® software as described previously14,25–27. Connections, defined as the 
number of trajectories of serum inflammatory mediators that move in parallel (black edges) or in anti-parallel 
(red edges) fashion across time intervals, were created if the Pearson correlation coefficient between any two 
nodes (inflammatory mediators) at the same time-interval was greater or equal to a threshold value of 0.95, as 
indicated. The network complexity for each time-interval was calculated using the following formula:

where N represents the number of connections for each mediator and n is the total number of mediators analyzed.
To show the number of connections for each mediator, we employed MetaboAnalyst (https://​www.​metab​

oanal​yst.​ca), a web-based tool suite developed for comprehensive metabolomic data analysis that also supports 
a wide array of functions for statistical, functional, as well as data visualization tasks28,29.

Shannon entropy was utilized as another form of quantification of network complexity. First, we calculated 
the probability of mediator connection for each mediator in each debridement interval (= number of connec-
tions/total number of possible connections) and used an online calculator (https://​calcu​lator1.​net/​maths/​shann​
on-​entro​py-​calcu​lator) to compute the Shannon entropy for each network.

Spearman’s correlation analysis was carried out to measure the strength of association of IL-17A with GM-
CSF (suggesting the presence of pathogenic Th17 cells), IL-10 (suggesting the presence of non-pathogenic Th17 
cells), and TNF-α (suggesting the presence of memory/effector T cells) using a modified version of a MATLAB® 
-based toolbox described previously17,30.

Dynamic hypergraph (DyHyp) analysis (a spatial extension of static hypergraph modeling31) was carried out 
to map inflammatory mediators that were significantly increasing or significantly decreasing (Pearson’s correla-
tion coefficient, |r|> 0.95) over three consecutive debridement intervals. The independent variable for calculating 
Pearson’s correlation coefficient was time (i.e., if the dynamic interval included debridement intervals n1, n2, n3 
then the independent variables were 0, 3 and 6) and the dependent variable was mean Luminex™ quantification 

∑
N1+N2+···+Nn

n−1

https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
https://calculator1.net/maths/shannon-entropy-calculator
https://calculator1.net/maths/shannon-entropy-calculator
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of a specific inflammatory mediator within either serum or wound effluent (reported as pg/mL). Pearson’s cor-
relation coefficient was calculated for each mediator in the serum and effluent independently across 3 dynamic 
intervals: n1-n3, n2-n4, and n3-n5.

A hypergraph is a type of nodal graph model in which edges have the special property of connecting more 
than two nodes24,32–35. Here, we define edges as inflammatory mediators and nodes to be tissue compartments 
(either serum or wound effluent). If an edge is statistically correlated with itself over three consecutive time 
periods independently in multiple tissues, an edge (mediator) is drawn connecting the two or more nodes in 
which the mediator was significantly correlated with time. If two or more mediators are correlated independently 
over time in the same compartment, or same set of compartments, then only one edge is drawn connecting the 
respective set of nodes; the given edge is labeled with the names of all the mediators that are statistically signifi-
cant in that set of compartments.

The dynamic hypergraphs described above have two quantitative properties: edge distribution and edge 
weight. Edge distribution is a count of the number of significant edges that are present in serum, wound effluent, 
or both serum and effluent. Study of such a distribution over time intervals provides insight into the spatial shifts 
in inflammation over time. Edge weight represents the strength (Pearson’s correlation) of increase or decrease 
in a cytokine value over a dynamic time interval. Here, we show only those mediators that have a weight, or 
Pearson’s correlation, greater than 0.95 or less than − 0.95.

Conference presentation.  Part of this work was presented at the 2016 Military Health System Research 
Symposium (MHSRS). Abstract # MHSRS-16-1473 - Precision Medicine as well as the 2022 International Con-
ference on Complex Acute Illness.

Results
Patient population characteristics.  Patients (n = 140, age: 24.5 ± 0.5 y.o) were segregated into two groups 
based on the presence or absence of overt, clinically diagnosed TBI. Of these, 59 TBI individuals (age: 24.5 ± 0.8 
y.o.; 98.3% males) were compared with 81 non-TBI casualties (24.4 ± 0.6 y.o; 100% males). Injury-specific and 
demographic data for TBI vs. non-TBI individuals with both serum and effluent samples available for analysis 
are shown in Table 1. TBI individuals had a higher frequency of multiple extremity wounds (P < 0.05). However, 

Table 1.   Clinical characteristics of trauma patients with extremity wounds (TBI vs. non-TBI, analyzed by Chi-
square). Significant values are in bold.

Descriptor

Traumatic brain injury P-value

No, n = 77 Yes, n = 53

Gender = Male (%) 77 (100.0) 52 (98.1) 0.850

Nicotine use = Yes (%) 35 (45.5) 24 (45.3) 0.873

Wound type (%)

 Transfemoral amputation 9 (11.7) 14 (26.4)

 Transtibial amputation 19 (24.7) 15 (28.3)

 Transhumeral amputation 0 (0.0) 1 (1.9)

 Transradial amputation 0 (0.0) 1 (1.9)

 Foot amputation 1 (1.3) 0 (0.0)

 Open fracture 30 (39.0) 12 (22.6)

 Closed fracture 1 (1.3) 0 (0.0)

 Knee disarticulation 1 (1.3) 3 (5.7)

 Shoulder disarticulation 0 (0.0) 1 (1.9)

 Soft tissue injury 16 (20.8) 6 (11.3)

Number of wounds (%)

 Single 26 (33.8) 4 (7.5) 0.001

 Multiple 51 (19.5) 49 (26.4) 0.001

Wound appearance (%)

 All debridement surgeries 240 154

 Gross purulence and necrotic tissue 13 (5.4) 12 (7.8) 0.464

 Some necrotic tissue but no purulence 93 (38.8) 52 (33.8) 0.371

 Some purulence but no necrotic tissue 4 (1.7) 4 (2.6) 0.785

 No purulence or necrotic tissue 130 (54.2) 85 (55.2) 0.923

HO wound (%) 0.284

 No 42 (54.5) 22 (41.5)

 Yes 35 (45.5) 30 (56.6)

 Unknown 0 (0.0) 1 (1.9)

Final outcome = Healed (%) 67 (87.0) 43 (81.1) 0.505
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no statistically significant differences were found in heterotopic ossification (P = 0.284) or wound healing (healed 
vs. failed, P = 0.505) between TBI and non-TBI patients (Table 1).

Wound‑localized and circulating levels of IL‑17A are higher in combat casualties with 
trauma + TBI vs. trauma patients without TBI.  We assessed the post-injury time courses of 23 immune 
mediators in both serum and wound effluent samples. Analysis by Two-Way ANOVA demonstrated signifi-
cant differences between the chronological expression of multiple serum and effluent inflammatory mediators 
between combat casualties with or without TBI (Suppl. Fig. S1 [serum] and Suppl. Fig. S2 [wound effluent]), 
including IFN-α2, IFN-γ, IL-12p40, IL-12p70, IL-17A, and IL-2 in serum; and IL-1α, IL-17A, and IL-5 in the 
wound effluent. Notably, IL-17A was the only significantly elevated biomarker in both serum (Fig.  1A) and 
wound effluent (Fig. 1B) of casualties with TBI as compared to casualties without TBI.

As TBI patients were more likely than non-TBI patients to have multiple wounds (Table 1), it is possible that 
the elevated circulating levels of IL-17A might be associated with a more extensive injury in the TBI patients 
when compared to the non-TBI patients. To address this possibility, we compared the levels of IL-17A in both 
serum and effluent of a smaller subgroup of TBI and non-TBI patients with a single wound. As shown in 
Fig. 1C,D, levels of IL-17A were higher in serum (Fig. 1C) and significantly higher in wound effluent of patients 

Figure 1.   Levels of IL-17A in serum and wound effluent samples from TBI and non-TBI trauma patients. 
Inflammatory mediators in serum and wound effluent samples of trauma patients taken during five consecutive 
debridements were measured by Luminex™ as described in “Materials and methods”. Comparison of levels 
of IL-17A in both serum (A) and wound effluent (B) samples shows significant elevation in TBI vs. non-TBI 
patients. Comparison of levels of IL-17A in serum (C) and wound effluent (D) samples of patients with 1 wound 
only as described in Results (*P < 0.05, analyzed by Two-Way ANOVA as described in “Materials and methods”).
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with TBI (Fig. 1D) as compared to non-TBI patients, suggesting that the observed upregulation of IL-17A in the 
larger cohort was likely dependent on the presence of TBI rather than on the number of wounds.

Single‑compartment dynamic network analysis demonstrates higher network complexity 
in serum vs. wound effluent as well as higher network complexity and IL‑17A connectivity 
in casualties with TBI.  We next hypothesized that the presence of TBI would be reflected in dynamic 
inflammatory networks. As an initial test of this hypothesis, DyNA14,26,36 was employed to define and compare 
the interconnections among inflammatory mediators separately in wound effluent and serum of TBI vs. non-
TBI patients over four defined debridement intervals (n1-n2, n2-n3, n3-n4, n4-n5). DyNA showed differential 
dynamic inflammation networks in serum from TBI as compared to non-TBI patients (Fig. 2A). In contrast, 
inflammatory network connectivity was absent or minimal at most defined debridement intervals in the wound 
effluent of trauma patients with or without TBI (Fig. 2B). However, at the final debridement interval (n4-n5), 
wound effluent network connectivity was slightly higher in patients with TBI (Fig. 2B). These features are quan-
tified in Fig. 2C,D. Furthermore, assessment of the degree of interaction among inflammatory mediators using 
Shannon entropy (Fig. 2E,F) mirrored the results shown in Fig. 2C,D. In both serum (Fig. 3A) and effluent 
(Fig. 3B), trauma patients with TBI exhibited higher mediator connectivity for several inflammatory mediators 
including IL-17A, IFNα2, IFNγ, IL-12p40, IL-12p70, and IL-2 (see Suppl. Table S1 for number of connections/
mediator). We focused on IL-17A connectivity because, as noted above, IL-17A was the only biomarker sig-
nificantly elevated in both serum (Fig. 1A) and wound effluent (Fig. 1B) of casualties with TBI as compared to 
casualties without TBI.

Figure 2.   Differential dynamic inflammatory networks in TBI vs. non-TBI trauma patients. Circulating 
inflammatory mediators in serum samples from 59 TBI and 81 non-TBI patients were measured, and DyNA 
(stringency level = 0.95) was performed during each of four debridement intervals (n1-n2, n2-n3, n3-n4, n4-n5) 
using MATLAB® software as described in “Materials and methods”. (A,B) Show an overview of all the networks 
and mediator connections in both patient subgroups in (A) serum and (B) effluent (the closed circles represent 
mediators with at least one connection to another mediator, while open circles represent mediators that had 
no connections to other mediators as determined by DyNA). (C (serum), D (effluent)) Shows the network 
complexity for each patient subgroup during each of the four debridement intervals calculated as described in 
“Materials and methods”. (E (serum), F (effluent)) Shows the Shannon Entropy for each network calculated as 
described in “Materials and methods”.
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Figure 3.   Dynamic Network Analysis (DyNA) of circulating inflammatory mediators TBI vs. non-TBI trauma 
patients. Circulating inflammatory mediators in serum and effluent samples from 59 TBI and 81 non-TBI 
patients were measured, and DyNA (stringency level = 0.95) was performed during each of four debridement 
intervals (n1-n2, n2-n3, n3-n4, n4-n5) using MATLAB® software as described for Fig. 2. Figure represents the 
specific number of connections/mediator and debridement interval in TBI vs. non-TBI patients shown as a 
heatmap (serum [A] and effluent [B]) using MetaboAnalyst 5.0 (https://​www.​metab​oanal​yst.​ca) and calculated 
as described in “Materials and methods”.

https://www.metaboanalyst.ca
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Based on the data available, we also segregated all patients according to the type of wound injury (Blast vs. 
Gunshot wound [GSW]) as shown in Table 2. None of the TBI patients had GSW, so we could not generate 
inflammatory networks specific for that type of injury. However, DyNA in patients who sustained injuries due 
to Blast only resulted in essentially the same inflammatory networks and network complexity for both the serum 
and the effluent of both non-TBI and TBI patients (Suppl. Fig. S3). This suggests that the differences observed 
in the inflammatory networks shown in Fig. 2A–D (all patients) were due to the presence of TBI rather than 
the injury mechanism.

Correlation analyses suggest a differential profile of IL‑17A‑producing cell subsets in wound 
vs. systemic circulation of combat casualties.  Interleukin-17A can be produced by different cell types, 
including Th17 cells, innate lymphoid cells, γδ T cells, and both CD4+ and CD8+ effector/memory T cells37–39. 
Two sub-populations of Th17 cells haven been identified: pathogenic Th17 cells, which are characterized by the 
co-expression of IL-17A and GM-CSF and are implicated in driving pathological inflammatory processes, and a 
reciprocal, non-inflammatory Th17 cell subset that co-expresses IL-17A and IL-1040. Furthermore, CD4+/CD8+ 
effector/memory T cells co-express IL-17A and TNF-α41,42. We have previously utilized Spearman rank correla-
tion analysis of IL-17A vs. GM-CSF, IL-10, or TNF-α to infer the presence of these three IL-17A-producing cell 
subsets17,21,24,43, with positive and negative correlations being interpreted as increases or decreases, respectively, 
in these Th17 cell subsets.

We therefore carried out a similar analysis in serum samples of combat casualties with trauma ± TBI to infer 
the potential presence of these cells. As shown in Fig. 4A, the presence of both pathogenic (IL-17A/GM-CSF) and 
non-pathogenic (IL-17A/IL-10) Th17 cells was inferred in the non-TBI group as compared to only pathogenic 
Th17 cells in the TBI group. In contrast, we found a significant positive correlation for IL-17A and TNF-α, sug-
gestive of memory/effector T cells, that was independent of the presence or absence of TBI. Similar correlation 
analysis in wound effluent samples resulted in significant positive correlations suggestive of pathogenic Th17 
cells, non-pathogenic Th17 cells, and memory/effector T cells in all combat casualties regardless of the presence 
of TBI (Fig. 4B). This analysis suggests that the inclusion of TBI in the injury complex may be associated with 
an unbalanced circulating Th17 response that is skewed towards a pro-inflammatory phenotype.

Cross‑compartment dynamic network analysis suggests that TBI impacts the crosstalk of 
wound‑localized and systemic inflammation following traumatic injury to counteract wound 
infection.  The overlap of IL-17A patterns between compartments in TBI patients led us to hypothesize that 
TBI impacts the crosstalk between wound-localized and systemic inflammatory responses. We therefore next 
sought to define the dynamic evolution of inflammatory networks in the wound effluent and systemic circulation 
in both patient sub-groups using DyNA as described above. This analysis showed differential dynamic inflam-
mation networks and higher mediator connectivity in patients with TBI as compared to patients without TBI 
(Fig. 5A). We then focused on the IL-17A connectivity. At the final debridement interval (n4-n5), IL-17A had 
no network connections in patients without TBI, while both wound effluent and serum IL-17A were connected 
to multiple mediators in samples from patients with trauma and TBI. While effluent IL-17A was connected to 
both effluent (e) and serum mediators (s) (eIFNα2, eIL-7, sIL-1β and sIL-3), serum IL-17A was connected to 
serum mediators only (sGM-CSF, sIFNγ, sIL-2, sIL-12p40 and sIL12p70) (Fig. 5B). This analysis suggested that, 
in patients with TBI, circulating Th17 cells may traffic to wounds and drive a pro-inflammatory program. The 
DyNA results suggested that there was an increased efflux of pathogenic Th17 cells from the systemic circulation 
to the wounds of patients with trauma and TBI at later time points following injury, as evidenced by inferred 
connections from IL-17A to GM-CSF (Fig. 5B).

Various hypotheses may relate these IL-17A-related features to wound outcomes. One hypothesis is that 
pathogenic Th17 are involved in the recruitment of neutrophils to the wound to counteract wound infection. 
An alternative hypothesis is that these cells might be detrimental to wound closure by driving self-sustaining 
local inflammation. In support of the former hypothesis, levels of procalcitonin (ProCT, which is associated with 
bacterial infection/sepsis44,45) were lower in serum (Fig. 5C) and wound effluent of patients with trauma and TBI 
(Fig. 5D) as compared to non-TBI patients. Furthermore, as noted above, there were no statistically significant 
differences in heterotopic ossification or wound healing (healed vs. failed) between TBI and non-TBI patients, 
which contradicts the alternative hypothesis.

Dynamic hypergraph analysis suggests that TBI disrupts inflammatory compartmentaliza‑
tion and promotes systemic inflammation.  We have previously employed static hypergraph analysis 

Table 2.   Number of patients segregated according to the type of wound injury (Blast vs. Gunshot wound 
[GSW]).

Wound injury Serum Effluent

Non-TBI
GSW 18 17

Blast 59 53

TBI
GSW 0 0

Blast 53 50



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6618  | https://doi.org/10.1038/s41598-023-33623-z

www.nature.com/scientificreports/

to gain insights into the spatiotemporal spread of inflammation across multiple tissues following experimental 
trauma/hemorrhage and resuscitation24. We expanded this methodology to gain an understanding of the pro-
cesses that might regulate the interaction of wound-localized and systemic inflammation in combat casualties 
and have termed this novel method Dynamic Hypergraph (DyHyp) analysis. Edge distribution, a quantitative 

Figure 4.   Correlation between levels of IL-17A/GM-CSF, IL-17A/IL-10 and IL-17A/TNFα in serum and 
wound effluent samples from TBI and non-TBI patients. Inflammatory mediators in serum and wound 
effluent samples of trauma patients taken during five consecutive debridements were measured by Luminex™ 
as described in “Materials and methods”. The plots show the Spearman’s correlations between levels of IL-17A/
GM-CSF, IL-17A/IL-10 and IL-17A/TNFα in serum (A) or wound effluent samples (B) from TBI vs. non-TBI 
patients (the shaded area represents the 95% bootstrapped confidence interval).
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Figure 5.   IL-17A connectivity in inflammatory networks and levels of ProCT in serum and wound effluent 
samples of TBI vs. non-TBI trauma patients. Circulating inflammatory mediators in serum and wound effluent 
samples combined from 59 TBI and 81 non-TBI patients were measured, and DyNA (stringency level = 0.95) 
was performed during each of four debridement intervals (n1-n2, n2-n3, n3-n4, n4-n5) using MATLAB® 
software as described in “Materials and methods” and Fig. 2. (A) Shows an overview of all the networks and 
mediator connections in both patient subgroups (the closed red and blue circles represent mediators with at 
least one connection to another mediator in serum and wound effluent, respectively, while open circles represent 
mediators that had no connections to other mediators as determined by DyNA) The total number of mediator 
connections for each debridement interval is shown below each network. (B) Shows the network complexity 
for each patient subgroup during the n4-n5 debridement interval calculated as described in “Materials and 
methods”. (C,D) Show levels of ProCT in serum and wound effluent samples from TBI and non-TBI trauma 
patients as a function of debridement number (*P < 0.05, analyzed by Two-Way ANOVA).
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feature of dynamic hypergraphs, is a count of the number of edges that are found within a single or set of tissue 
compartments. In dynamic hypergraphs, a positive correlation across time for a given inflammatory mediators 
is inferred to reflect an inflammatory response that is strengthening over time. Likewise, a negative correla-
tion across time for a given mediator suggests an inflammatory response that is attenuating over time. DyHyp 
analysis of edge distribution across debridement intervals suggested that the number of inflammatory mediators 
increased in the serum of patients with TBI during the five study events, defined by each debridement surgery. 
In contrast, the number of statistically significant inflammatory mediators in the wound effluent of TBI patients 
decreased over these same debridement intervals, suggesting that the majority of inflammatory networks are 
shifting from the local injury (effluent) assessed in this study to the systemic circulation over time (Fig. 6A). In 
non-TBI patients, the number of inflammatory mediators increasing in strength over time rose in the effluent 
samples but decreased in the serum (Fig. 6B). A Fisher’s Exact Test indicated that the positive edge distribution 
in the serum and effluent in TBI compared to non-TBI patients is independent of debridement interval (serum: 
p < 0.05; effluent p < 0.01). Based on this independence, we hypothesize that the number of inflammatory media-
tors detected in the serum and effluent in TBI patients compared to non-TBI patients could be associated with 
sustained inflammatory response stemming from the impact of central nervous system injury on post-injury 
inflammation.

We next sought to use DyHyp analysis to define potential drivers of cross-compartment spread of inflam-
mation following combat injury. Over the interval n1-n3, TNF-α increased in the effluent in TBI patients but 
was remained constant in both the serum and effluent in non-TBI patients. In the next dynamic interval, n2-n4, 
TNF-α continued to rise in the wound effluent of TBI patients and began to rise in the serum. However, in 
non-TBI patients, no such rise in TNF-α was observed in either serum or effluent. This suggests the level of 
TNF-α may be associated with a sustained neural regulatory response not present in non-TBI patients. The rise 
in TNF-α in the serum in TBI patients over n2-n4 was followed by a rise in IL-6 and IL-17A in the serum over 
the interval n3-n5. No rise in IL-6 or IL-17A is observed at any time point in the serum or effluent in non-TBI 
patients (Fig. 6C–E). We further hypothesize that the consequent changes in IL-6 and IL-17A levels may also be 
associated with a disrupted neural control in attenuating Th17 cell responses.

Unlike patients with TBI, non-TBI patients experience a decline in IL-17A levels in the serum over the inter-
val n2-n4. This fall in IL-17A in the serum occurs at the same time as a decrease in IFN-γ in both serum and 
wound effluent. Furthermore, the decrease in IFN-γ over n2-n4 and n3-n5 was associated with a reduction in 
number of significantly declining mediators over the same dynamic intervals, suggesting that IFN-γ-associated 
pathways may drive the attenuation of both local and systemic inflammation in the absence of TBI (Fig. 6C–E).

Discussion
In the present study, we characterized dynamic networks of local and systemic inflammation in complex combat 
injures either with or without TBI. Our findings suggest the following novel findings:

•	 The presence of a robust, cross-compartment inflammatory response that is more complex in TBI than non-
TBI combat casualties,

•	 A central role for IL-17A and Th17 responses in both the systemic circulation and local wounds of combat 
casualties with TBI, supporting a role for neural regulation of Th17 responses,

•	 The development of a novel Dynamic Hypergraph framework for assessing cross-tissue interactions over 
time,

•	 The suggestion, based on assessment of the dynamic evolution of inflammatory networks, that pro-inflam-
matory Th17 cells may efflux from the systemic circulation into the wound to counteract wound infection 
in trauma patients with TBI, and

•	 The inferred role of TNF-α in promoting—and IFN-γ in resolving—neurally regulated inflammatory 
responses involving IL-17A.

While a recent study that defined civilian trauma endotypes using a multi-omic approach pointed to IL-17A 
as one biomarker of a trauma endotype enriched for TBI13, this is the first study in humans specifically link-
ing TBI in combat trauma to elevated wound and systemic IL-17A. As such, our study links injury-associated 
Th17 immune responses13,17,21,24,46 to the well-established negative impact of TBI on trauma outcomes47–49. Our 
studies may also connect the emerging role of IL-17A and Th17 immune responses in wound healing50 to the 
documented but not yet fully elucidated impact of systemic inflammatory responses on local inflammation in 
the wound23. That IL-17A was increased only in TBI patients when wound number was controlled for, suggests 
that IL-17A may be regulated in part by the central nervous system, as previously described for the chemokine 
IP-10/CXCL1015.

While the present study did not examine brain-localized inflammatory networks, our results are consist-
ent with those of prior experimental studies involving TBI. The pro-inflammatory activity of IL-17A, which is 
produced by the IL-23/IL-17 axis, has also been associated with the pathogenesis of TBI in a rat model of sec-
ondary brain injury after TBI51. In another study, administration of taurine effectively mitigated the severity of 
brain damage by attenuating the increase of astrocyte activity and edema as well as pro-inflammatory cytokines 
including GM-CSF, IFN-γ, IL-17A, and TNF-α52. In a model of severe, penetrating TBI, intravenous delivery 
of simvastatin provided significant protection against injury-induced cognitive dysfunction and reduced TBI-
specific serum levels of IL-17A53. More recently, propofol, a commonly used anesthetic, alleviated brain injury in 
rats with TBI and maintained the Th17/Treg balance54. Notably, IL-17A derived predominantly from microglia 
has also been implicated in the pathobiology of various neurodegenerative diseases such as Alzheimer’s and 
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Figure 6.   Dynamic hypergraphs propose the involvement of neural regulation in trans-compartmental 
inflammation. Dynamic hypergraphs indicate the statistically significant (P < 0.05; Pearson Correlation) growing 
or diminishing presence of an inflammatory mediator. (A) Demonstrates a shift in the number of upregulated 
inflammatory mediators from the effluent to the serum in TBI compared to non-TBI patients. (B) Depicts a 
greater number of downregulated inflammatory mediators in the effluent in non-TBI compared to TBI patients. 
(C–E) Depict significantly elevated/diminished cytokines over dynamic debridement intervals in both TBI 
(upper panels) and non-TBI (lower panels) patients.
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Parkinson’s’ disease55. Further studies are needed to determine if there is a connection between IL-17A produc-
tion in wounds, the systemic circulation, and the brain following trauma with TBI.

Th 17 cells have been divided broadly into two sub-groups: nonpathogenic Th17 cells that express both IL-
17A and IL-10 and highly inflammatory, pathogenic Th17 cells that upregulate GM-CSF and down-regulate the 
host-protective IL-1056,57. In our study comparing time-courses and dynamic networks of inflammation in the 
systemic circulation of military patients, we found a higher overall network complexity and mediator connectiv-
ity, including IL-17A, in serum of TBI patients as compared to non-TBI casualties. We have suggested previously 
that trends toward increasing inflammatory network complexity as assessed by DyNA are often associated with 
adverse outcomes such as mortality following trauma17,18,21. In the present study, the elevated systemic levels 
and positive correlation of IL-17A with GM-CSF, not with IL-10, supports the hypothesis of a type 17 immune 
response skewed towards a pro-inflammatory state characterized—and possibly driven by—pathogenic Th17 cells 
in trauma patients with TBI. Further studies with a larger panel of mediators are needed to define the potential 
beneficial effect of targeting IL-17A in the setting of TBI.

Acute inflammation is mediated by local, hormonal, and neuronal mechanisms, all of which rely of TNF-α 
as a key, feed-forward inflammatory mediator59. Our DyHyp analyses suggest that TBI results in a greater 
pro-inflammatory response that begins with the expression of TNF-α in the effluent during the first dynamic 
interval and then the appearance of TNF-α in both the serum and effluent in the second dynamic interval. 
Consistent with the known role of neural pathways in regulating cytokines such as TNF-α and IL-660, TNF-α 
was not significantly upregulated in non-TBI patients. This finding supports the hypothesis that neural regula-
tion is necessary to prevent the excessive significant rise in TNF-α and concomitant rise in IL-6 and IL-17A. 
Interferon-γ, a conventionally pro-inflammatory molecule often present in neurologic inflammatory diseases, 
is now more appropriately considered a modulator of both pro- and anti- inflammatory responses61. In line with 
recent discoveries of its anti-inflammatory properties, IFN-γ was inferred to be decreasing in the serum and 
effluent in non-TBI patients and increasing in the serum in TBI patients during the intervals n2-n4 and n3-n5. 
One proposed explanation for this phenomenon stems from knowledge that brain astrocytes produce TNF-α, 
IL-6, and other inflammatory mediators in response to IFN-γ. In the absence of CNS inflammation in non-TBI 
patients, IFN-γ decreased over time. This reduction in IFN-γ could plausibly attenuate the astrocyte-mediated 
secretion of TNF-α and IL-6, thereby further reducing IL-17A-mediated inflammatory responses in the serum 
and effluent62,63. Furthermore, we hypothesize that microglia-mediated neuroprotective effects are reduced in 
response to IFN-γ stimulation64. We further hypothesize that protective, neurally mediated effects of IFN-γ may 
prevent upregulation of inflammatory mediators in patients with combat wounds.

To discern whether the computational analyses suggesting that TBI is not merely associated with more com-
plex inflammation, we rely on past analyses of TBI and wound healing domains. Compared to non-survivors of 
TBI, survivors of TBI manifested differential roles for IL-6, one of which included propagating TNF-α mediated 
inflammation65. Non-survivors of TBI also exhibited elevated TNF-α that was mediated by both IL-6 and IL-865. 
Our DyHyp analysis suggests that TNF-α serves as a cross-compartmental bridge that facilitates an upregulation 
in IL-8 and IL-6 in the serum, even when IL-6 is being attenuated in local injuries. The inferred neural regulation 
of TNF-α suggests at least one mechanism for propagating inflammatory responses in injured patients with TBI.

Many of the insights, inferences, and hypotheses discussed above were facilitated by a workflow involving 
multiplexed assessment of immune/inflammatory mediators coupled with dynamic network inference, and 
specifically DyHyp. We posit that while tools such as DyNA and Dynamic Bayesian Network (DyBN) inference 
have been of tremendous value in elucidating novel aspects of trauma-induced inflammation10,66, tools such as 
hypergraphs24 and now DyHyp are necessary to explicitly infer dynamic inflammatory processes across tissue 
compartments. This is especially so when attempting to infer the role for a compartment, such as the central 
nervous system, that is not assessed explicitly.

Our studies must be interpreted in the context of several limitations. These limitations include some hetero-
geneity of sampling given the sample acquisition at debridement intervals rather than standard time points; the 
heterogenous number of wounds in individual patients; the limited number of analytes (especially with regard to 
wound infection) that could be assessed; and the absence of an independent validation cohort of combat casual-
ties. Computationally, tools such as mechanistic mathematical models11,12 might yield more precise and testable 
insights into the inflammatory responses of these patients. Additionally, our study cohorts were predominantly 
male. While a recent study in rodents found no sex-based differences in various pathological features of TBI 
including splenocyte cell proliferation, activation of microglia, and inflammatory cytokine production at 6 h 
post-injury58, future multi-center studies in diverse cohorts of TBI patients remain necessary to confirm this 
equivalence. We also note that, in addition to TBI, psychiatric and neurological factors (e.g., PTSD) can have an 
impact on the systemic stress response and need to be considered in future studies. Finally, adding an extensive 
panel of multi-omic analytes assessed in both wounds and the systemic circulation will likely add substantial 
new knowledge.

In conclusion, despite a heterogeneous inflammatory response in individual patients, our studies suggest 
that a network-based analysis may have the potential to clearly identify TBI-based inflammatory responses in 
trauma patients. Furthermore, these combined clinical and computational studies suggest a novel role for Th17 
immune responses following combat trauma and TBI, which may serve to counteract wound infection at the 
cost of elevated and sustained systemic inflammation and attendant sequalae. Ultimately, we suggest that com-
bined approaches using network-based analysis of biomarkers and related machine learning approaches may 
help better identify possible treatment complications and aid in the diagnosis and management of both combat 
casualties and civilian polytrauma victims.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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