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Strategy inference during learning 
via cognitive activity‑based credit 
assignment models
Ashwin James 1,6, Patricia Reynaud‑Bouret 2,6, Giulia Mezzadri 3, Francesca Sargolini 4, 
Ingrid Bethus 5,7 & Alexandre Muzy 1,7*

We develop a method for selecting meaningful learning strategies based solely on the behavioral data 
of a single individual in a learning experiment. We use simple Activity‑Credit Assignment algorithms 
to model the different strategies and couple them with a novel hold‑out statistical selection method. 
Application on rat behavioral data in a continuous T‑maze task reveals a particular learning strategy 
that consists in chunking the paths used by the animal. Neuronal data collected in the dorsomedial 
striatum confirm this strategy.

To learn complex tasks, individuals (human or animal) often decompose them into elementary sub-tasks and 
learn an execution order for these elementary sub-tasks (also called actions in reference to reinforcement learn-
ing)1. This decomposition can be more or less coarse. For instance, when children learn how to go to school by 
themselves, do they segment their path at every turn, or do they employ a coarser representation such as “go to 
the bakery” (because they have done it so many times with their parents) and then “turn left, the school is at the 
end of the street”? More generally, what strategy is at play when learning complex tasks? By strategy, we mean 
here a representation of the world in terms of states and possible actions to be performed in each state. Inferring 
this representation would reveal how individuals understand their environment and their actions, and could 
help to shed light on covert (neuro)cognitive processes. This strategy can be based on an action representation, 
i.e., a chunking/grouping of actions as  above1–3, or a state representation, where only certain features are impor-
tant, i.e., rule-based reasoning (“stop when the pedestrian light is red”)4; it can also involve actions based on the 
similarity of the states, e.g., reasoning based on similarity (“would rather walk on large sidewalks like the one at 
home than on small ones”)5, etc.

The purpose of the present work is to infer a learning strategy. In the sequel, learning always refers to a cogni-
tive process, that is the learning of a given task by an individual (or the corresponding model), whereas inference 
always refers a statistical procedure (eventually combined with an experimental protocol) to guess the learning 
strategy. The two contributions of this work consist of: (i) a new inference procedure to test different models or 
hypotheses about how agents learn using only individual observed choice behavior, and (ii) a new version of 
Activity-Credit  Assignment6, named Cognitive ACA (CoACA), to model the different possible cognitive strate-
gies used during the learning. In short, we describe strategy-based learning models and an inference procedure 
- based on cross validation - to select the best model based upon empirical observations.

Many cognitive experiments in human or animal setting have been designed to infer particular features of 
strategies, e.g., the allocentric/egocentric spatial  representation7. Most of the time, the design of these experiments 
is such that the representation is tested at the end of the learning, making it difficult to infer the strategy during 
learning. These tests are typically called probe tests for animals or transfer phase for  humans8–10 and consist in 
showing new stimuli/situations without giving feedback or reward. Some experimental designs use probe tests 
during the learning  phase11. While this can reveal a clearer picture of the strategy during learning, it has been 
shown that these tests, which interrupt learning, can also alter the learning  itself12–14.

Therefore, if one wants to understand how a human or animal chooses one strategy or another during free 
learning (i.e., learning that is not modified by any external intervention except rewards/feedbacks), one must 
look for experiments that are not hindered by probe tests. This is especially true for continuous spatial tasks. For 
example, by allowing mice to freely learn sequences of positions in an open space, Belkaid et al.15 showed that the 
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best description of learning, in mice, was afforded by changes in the degree of random exploration by estimating 
the degree of randomness at different stages of learning. However, most of the time, strategy inference cannot be 
reduced to the estimation of one parameter in a sole model. Indeed, typically in a maze, the different strategies 
are granular (discretization at each junction). In this setting, auxiliary data are generally used to deduce some 
characteristics of the strategy. For example, in van der Meer et al.16, the authors use very fine-grained behavior, 
namely forward-backward movements at Junctions, called Vicarious Trial Errors (VTE), to determine where 
the decision is  made17. Neural data can also be used: neural trajectory decoding techniques have suggested that 
trajectories are chunked using particular brain states (theta cycle length and number of gamma cycles per theta 
cycle)18.

The goal of the present work is to propose a much more general method for inferring strategies during learn-
ing that could deal with model selection. Our method is based only on free learning data, without the need for 
probe tests or auxiliary variables (such as VTE or neural data). It can be applied on an individual-by-individual 
basis and thus reveal inter-individual variability. Indeed, the strategy may vary from individual to individual and 
averaging across individuals could lead to misleading  conclusions19–22. The method proposed here is validated 
only in a second step, by neural evidence recorded on animals (in the present application) at a later stage, but it 
could also be validated by other auxiliary data. Note, however, that this validation is not part of the method itself 
in order to keep the method as general, flexible and agnostic as possible.

To this end, the method proposed here is based on a specific hold-out statistical method that is adapted to 
the learning data of a single individual and requires no prior knowledge.

Estimation in learning has a long history and model selection is usually done either by cross-validation on a 
population of individuals, which assumes the existence of a shared strategy, or by Bayesian model selection, which 
requires prior constraints on the parameters of a model or, indeed, the model itself. However, these priors are 
not universally available. For more details, we refer the readers to Daw’s  review23 and the references therein, but 
also to Collins and Wilson’s crystal clear methodological work giving “10 simple rules” to follow for performing 
computational modeling of behavioral  data24. Here, we focus on a hold-out method that we have specifically 
designed to select learning models based on a single learning experiment of a single task.

Cross-validation (and hold-out as one of its special instance) is a very old statistical method that seems to date 
back to the  1930s25. It consists in separating data into two sets: a training set to train the models (i.e., estimate 
the parameters) and a testing set to evaluate the models fit, these two sets being generally independent. When 
the fit is evaluated by log-likelihood, the difference of log-likelihood can be seen as the logarithm of a likelihood 
test ratio between two models or as a crude (log)Bayes  factor26. The current hold-out method is a continuation 
of a previous work on human category  learning11, where two models involving different learning strategies were 
pitted against each other:  Alcove5, in which individuals learn by similarity, and Component-Cue4, in which indi-
viduals learn by features or rules. To do this, we interleaved the learning phases with several (human) probe tests, 
using the probe tests data as the testing set for the hold-out method. However, the use of this specific interleaved 
protocol might have changed the free learning strategy as mentioned  above13. Here, we take this a step further 
by showing that hold-out can work even on the (dependent) learning data of a single individual, without having 
to perform specific experiments.

This statistical method is then demonstrated with a particular type of Reinforcement Learning (RL) algorithm 
called Activity-based Credit Assignment (ACA)6, from which several new versions are derived to model different 
cognitive strategies. Several RL algorithms, called hierarchical abstract  machine27,28 or hierarchical reinforce-
ment  learning3, have been designed to decompose tasks into sub-tasks (see also Botvinick et al.2). We decide to 
consider an ACA  algorithm29 that is much simpler and more modular than previous hierarchical RL algorithms 
in order to ensure a robust statistical fit of the data without risking overfitting. From a modeling point of view, it 
also has the advantage of easily incorporating certain characteristics of the actions, such as their duration, into 
the notion of activity.

Our inference strategy can be used in a second step to better understand other data, typically neural data 
and as an application, we show that the strategy selected by our method matches the neural data in a continuous 
T-maze alternation task.

Results
Description of the method. The method consists of the following steps: 

1. Choose the different strategies that one would like to put in competition and model them. We here develop 
a cognitive variant of ACA, featuring only behavioral variables and named CoACA. The latter is based on 
two main notions:

• A credit K(S, A) which is the credit of action A when the individual is in state S. At each new state S, the 
action A is selected at random (the action with the highest credit being the one that is selected more 
often). Defining the set of possible states and actions determines the level of chunking, or more gener-
ally the strategy. For instance, in the toy example of children learning to go to school, the actions can be 
all the possible turns (left, straight and right) leading to the school and the states can be all the possible 
crossroads. Another potential chunking can be defined by a longer and more complex action such as 
“go to the bakery”, whereas the states can be reduced to “at the bakery” and “at school”.

• An episode, which is a group of actions that have to be executed before evaluating the reward. These 
actions may have to be performed sequentially (for instance for the children’s path), or the order may 
not matter (for instance if we add “take the keys”, “take the backpack”, etc.). Whatever the chunking, 
the notion of episode usually does not vary, since it ends when individuals have all the information to 
adequately estimate their reward. For instance, for the children an episode would end when coming 
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back from school, since their highest reward would be to have been to school and to have their keys to 
go back home.

   For a given episode, a reward R is obtained. Then, we update the credit for all the actions A that have been 
performed during the episode: 

 where α ∈ [0, 1] is a learning parameter and a(A) is a measure of the activity corresponding to action A. This 
activity might reflect several features, for instance the fact that a longer action might be more important and 
therefore would have a larger activity in order to give more credit to this action.

  Other features might be added: for the children’s example, one could add forgetting after the vacations, 
which would lead to a decay of all credits right after the vacations.

  Also, CoACA is more than a chunking tool. For instance, and inspired by Component-Cue4, we could 
design a credit of the form 

 where S1 and S2 are two features of the state S and the update (1) is not performed on K(S, A) but on each 
of the credits per feature K1(S1,A) and K2(S2,A) . Both of them could be updated by different states sharing 
the same feature (for instance the presence of the red pedestrian light) and would explain a learning where 
states with the same features have the same pattern of likely actions. However, in the present work we only 
focus on chunking models, that are defining different sets of states and actions, using (1) directly.

  NB: In the sequel, we will use indifferently “models” and “algorithms” to refer to this step, that is the 
specification of all the states, actions, and parameters involved in the update of the credit. Note that if their 
number is fixed at this stage, the value of the parameters for a given model are not known. This will allow us 
to fit the model on the data.

2. Once all the strategies in competition (represented by different models, typically modeled by different 
CoACA algorithms) have been designed, estimate the parameters (at least the learning parameter α ) in the 
early learning phase, which represents the training data set. The early learning phase consists of all the actions 
taken between the beginning of the experiment and a given point in time to choose. The estimation in the 
early learning phase is performed by maximum likelihood (see  Daw23 for an excellent review of likelihood 
estimators in RL algorithms). The models with estimated parameters are called the trained models, each of 
them corresponding to one strategy.

3. Select the strategy which corresponds to the trained model with the maximum likelihood in the late learning 
phase, that is the complement of the early learning phase in the data. This late learning phase corresponds 
to the testing data set of the hold-out procedure.

As compared to Mezzadri et al.11, we do not use data without feedback as the testing set. Instead, we use the 
late learning phase as testing set to provide an approach that can be applied to a larger panel of experiments. Note 
that it would not have been possible to easily train the models on the late learning phase or perform other forms 
of selection (such as the cross-validation30), since individual learning data are not stationary. Indeed, learning 
algorithms always update the probability of the choice of a given action as a consequence of the feedback or 
rewards and as a function of the non-observed parameters, but it usually starts with equal initial probabilities to 
select a given possible action in a given state. Hence, it is easy to start with one set of parameters, compute the 
evolution of the probability on the real data set, and find the parameter that is the closest to the data (by maxi-
mum likelihood estimation). On the contrary, if the estimation is not performed on the early learning phase, 
one would have to guess or estimate with which probability the learning algorithm starts its evolution, which 
would have been much more intricate and computationally costly.

Another difficulty for inferring strategies in learning experiments is that the late learning phase might not 
contain enough information, depending on the models. Typically, if all the strategies in competition lead to 
learning algorithms that are so good that they do not make any mistake in the late learning phase, and if the 
corresponding data are also without any mistakes, it is not possible to select anything meaningful (see Material 
and Methods and SI).

Therefore, we need a thorough simulation study to be sure that the models and the partition between early 
learning phase and late learning phase are done in such a way that the whole procedure does indeed identify a 
winning model efficiently. The early learning phase needs to be long enough to guarantee a good estimation of the 
parameters, but the late learning phase needs to still contain enough information to discriminate between models. 
A trade-off needs therefore to be found in simulations (see Material and Methods and SI). Note that the forget-
ting aspect might also play a crucial role. Indeed, from a data standpoint, it might be helpful to incorporate it to 
obtain a more realistic algorithm. In addition, forgetting might lead to more errors in the models in competition 
and therefore help the hold-out procedure because there is still enough information in the late learning phase.

A continuous T‑maze spatial alternation task. To illustrate the previous method, let us now describe 
a particular learning experiment.

The experiment consists in a modified ‘T’ maze  apparatus31,32, where rats learn to take specific good paths 
indicated in Fig. 1a to find sucrose pellets at one of the two suppliers. Four adult rats (Long Evans, Janvier) were 
used in this experiment. Single Unit activity of neurons in the dorso-medial striatum was recorded during a 
20mn freely moving session per day. Each rat performed at least 18 sessions and at most 51 depending on the 
quality of neural recordings.

(1)K(S,A) ← K(S,A)+ α a(A)R,

K(S,A) = K1(S1,A)+ K2(S2,A),
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We identified 12 possible elementary paths that rats traveled during the different sessions. Since the maze 
arms were narrow (12cm), ‘turn back’ paths were extremely rare and therefore were not included among the 
elementary paths (see Fig. 1b). In the sequel, the word “path” only refers to one of the twelve elementary paths 
(see Fig. 1b), neglecting all other types of behaviors. A session is therefore a long sequence of paths from one 
supplier to the same supplier or to the opposite supplier. Figure 1.c shows the percentage of success, that is the 
number of good paths (left or right, see Fig. 1b) in one session divided by the total number of paths taken inside 
this same session, as a function of the session and the rat. Figure 1d shows more precisely the intra-session evolu-
tion of the percentage of success of rat 3 for the paths starting from the right supplier: declines in performance 
are appearing mostly at the beginning of each session. The curves for every rat (not reported here) were very 
similar. One of the many explanations for these drops could be forgetfulness.

CoACA models of the free‑moving T‑maze experiment. Our main goal on the T-maze experiment 
is to understand whether the rat plans its trajectory as a whole and somehow knows from the start (when leav-
ing a supplier) how it will go to the other supplier, or if it decomposes this path into smaller elementary chunks.

Before detailing the different chunking models, let us first detail the common aspect of each of these models.
A state (see Fig. 2a) is defined by the current position of the rat in the maze and the last supplier it visited. 

Indeed if a rat does not remember the last visited supplier, it cannot distinguish the red good path from the loop 
once it is in the central stem. This is not important of course if the path is planned as a whole but, if it is chunked 
in smaller pieces, this information has to be kept in the model.

Figure 1.  Experimental protocol and learning curves.
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An action is a path (see Fig. 2a) or a chunk of a path (cutting could be done at junctions A and/or B, see 
Fig. 1a). An episode consists of starting from one supplier, going to the other supplier at least once, and then 
returning to the original supplier. Indeed rats were habituated to the environment and knew that food could 
come from both suppliers. It is therefore reasonable to think that the correct evaluation of the reward would take 
place only once both suppliers have been visited at least once. In particular an episode could be constituted of a 
good path, a loop and the other good path (the reward is 2) but also, for instance, by a good path, and a wrong 
path to come back (the reward is 1) or two wrong paths (the reward is 0) as shown in Fig. 2b. The duration of an 
episode in terms of number of paths or even actual duration is therefore not fixed.

The activity of an action is the percentage of time during the whole episode that an action takes. The idea is 
that the shorter the action, the less the rat is involved in the action.

Finally all credits K(S, A), for all actions A and states S are multiplied by a factor γ ∈ [0, 1] at the beginning 
of a session (or equivalently at the end of the previous session) to model the forgetfulness of the rat from one 
day to another.

Therefore each model is parameterized by θ = (α, γ ) , the learning parameter and the forgetfulness parameter.
Let us now explain what are the different models (see their corresponding diagram in Fig. 3). In the model 

with the smallest number of states, we consider as an action, a path in the sense of Fig. 1b. This is the Path model 
that has only two states (the two suppliers) and from each state, 6 possible actions (the six paths starting from 
one supplier) (see Fig. 3a).

The model with the largest number of states consists in considering that an action is just a turn and that the 
action is selected at random (according to the credit) at each junction. This is the turn model, with 10 states and 
two possible actions in each state (see Fig. 3f).

In between these two extremes, the rat can have different strategies:

• The rat deliberates only at the second encountered junction if there are two of them in its path, i.e., the model 
picks the last part of the path according to ACA rule (Hybrid 1 model, Fig. 3b).

• The rat deliberates at the first encountered junction (Hybrid 2 model, Fig. 3c). This reflects more or less the 
fact that the rat does not need to plan everything in advance. It moves forward and then decides at the first 
junction it encounters what it has to do next.

• It is also possible that this is not the first encountered junction that matters but a physical Junction A or B 
(See Fig. 1a), where the rat is making its decision (that is the model picks the action at random according to 
ACA rule). If this is A, this leads to the Hybrid 3 model (Fig. 3d). If this is B, we obtain the Hybrid 4 model 
(Fig. 3e).

Strategy inference on the T‑maze experiment. After a complete simulation study (see Material and 
Methods and SI), we have shown that defining the early learning phase as the first 800 paths that have been taken 
and the late learning phase as the paths from 801 to the end of the experiment for each individual guaranteed a 
good accuracy of the method. In particular, this simulation study shows that, if the rat was indeed behaving like 
one of the 6 models, the method is able to identify the correct model in more than 67% of the simulations (this 
happens in only 1 over 22 cases, the other 21 cases having a percentage of correct identification larger than 83%).

Next on the real data set, Table 1 gives the log-likelihood of the trained models on the testing data set, for 
each rat.

Therefore all the rats seem to learn according to the Hybrid 3 model, which means that their learning is driven 
by a chunking of their path. Since the Path model is not chosen, it means that they do not seem to plan the whole 

Figure 2.  All possible states and examples of episodes.
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path when leaving a supplier but to fragment it. The fact that the Turn model is not chosen as well means that 
they do not need to stop at each crossroad either. All the rats seem to deliberate at Junction A in the maze (Hybrid 
3 model) (see Fig. 1a). Note that from the criterion point of view, Paths, Hybrid 2 and Hybrid 3 have very close 
values, even if Hybrid 3 is the chosen model, whereas models Hybrid 1, Hybrid 4 and Turns are much less likely.

Figure 3.  Decision diagrams of the 6 different CoACA models. Nodes of the graphs are the possible states, 
edges corresponds to the possible transitions from one state to another, the actions are represented by colored 
arrows on top of the edges. In red, the actions corresponding to the red good path of Fig. 1a. In blue, the actions 
corresponding to the blue good path of Fig. 1a. In green, actions constituting the other paths.

Table 1.  Comparison of the log-likelihood of the trained CoACA models presented in Fig. 3 for the 4 rats. 
In bold the maximal values. Note that the smallest difference in log-likelihood is 7.25 and is achieved for rat 4 
between Paths and Hybrid 3. This difference means that the likelihood test ratio between Hybrid 3 and Paths is 
about 1400.

Rat

Models

Paths Hybrid1 Hybrid2 Hybrid3 Hybrid4 Turns Selected

Rat 1 − 841.82 − 1198.88 896.16 −739.04 − 1370.52 − 1170.65 Hybrid3

Rat 2 − 916.02 − 1484.91 − 932.43 − 878.77 − 1479.51 − 3947.30 Hybrid3

Rat 3 − 456.90 − 725.83 − 459.94 −446.99 − 774.72 − 623.06 Hybrid3

Rat 4 − 722.94 − 1067.23 − 726.10 −715.69 − 1116.30 − 969.62 Hybrid3
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Neuronal validation of the selected chunking in the T‑maze experiment. Our strategy inference 
method is self-consistent and does not need auxiliary data per se. But, it can provide a new way to look at neu-
ronal data and new neuronal evidence that the inferred strategy (namely Hybrid 3) has a neuronal counterpart.

Using DorsoMedial Striatum (DMS) lesions, we have shown in a previous work that the DMS is essential in 
the learning process of this spontaneous spatial alternation  task31. Hence, if we consider that the neuronal activ-
ity in DMS encodes the behavior, neuronal activity should be different when the rat knows where it wants to go. 
More precisely, if at a given location, for instance the central stem of the T-maze, the future path is known by the 
rat, neurons should be coding a difference between turning right and turning left. Coding is here understood 
as a significative statistical difference between the firing rates in both conditions (see Material and Methods).

First, Fig. 4a shows that we found coding neurons at each of the 3 locations that have been tested: lateral 
descent, central stem and first straight. This can also be seen on the 3 cumulative distribution functions (c.d.f.) 

Figure 4.  Analysis in terms of firing rate coding neurons. In (a) all neurons of all sessions are analyzed in terms 
of their firing rate. If the firing rate in a given location between two possible future (sub)paths is sufficiently 
different (see section “Methods”), the neuron is said to be coding. This analysis is possible only if the two 
conditions are present in the session, when the neuron has been recorded and if the neuron fires enough inside 
the location under consideration. The number of neurons for which the computations were possible is given 
as well as the number of coding neurons among them. 3× 2 different locations (named respectively Lateral 
descent, Central Stem and First Straight) have been tested, they are indicated for the first row (resp. second row) 
by the position of the cartoon rat is the maze on top (resp. bottom). The two different future (sub) paths that are 
compared are given on top (resp. bottom). The difference between the first and second rows is the location of 
the last visited supplier (right and left). In (b) the firing rates being highly inhomogeneous among neurons, we 
computed for each of them a p-value of the test of equality of the firing rates between the two future (sub) paths. 
The cumulative distribution functions (zoomed on small values) of the pvalues of each of the three conditions 
are plotted (red for central stem, blue for first straight and black for lateral descent, right and left are pooled). 
All c.d.f. are non uniform (Ks Test of homogeneity with pvalues smaller than 2.10−5 ). Coding neurons counted 
in (a). are the ones for which the adjusted Benjamini-Hochberg pvalues is smaller than 0.05 (the multiplicity 
correction is applied for all the possible neurons at a particular location). Also corresponding p-values of 
Kolmogorov Smirnov tests of equality of the c.d.f. are given on top. In (c), comparison of the number of coding 
neurons (c) and non coding neurons (N.C.) between two particular locations (right and left are pooled). 
McNemar tests have been performed to decide if the diagonal elements of the tables are statistically different and 
p-values are written on top.
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of the p-values for the test of equality of the firing rates between the two conditions (Fig. 4b) which are all sig-
nificantly non uniform (p-value < 2.10−5).

However, in all the data that have been collected only eleven neurons are coding at the lateral descent location, 
whereas almost three times more are coding in the central stem. This difference is significant. Indeed, the c.d.f. 
of the corresponding p-values for the central stem is clearly above the one for the lateral descent (p-value of the 
KS test 0.04) and the McNemar test of equality of the two proportions has a p-value of 0.014 (Fig. 4c). This leads 
us to think that the cognitive state in the lateral descent is different from the cognitive state in the central stem 
and that there is much more coding in the central stem.

It also tells us that in the central stem, there is a significant number of coding cells that have a different firing 
rate between turning left or right (that is a loop or a good path). This should mean that the rat would know where 
it will turn before Junction B (see Fig. 1a).

Both of these facts are only coherent with strategies Hybrid 2 or 3, among all the 6 strategies.
To distinguish between Hybrid 2 or 3, we can look at the difference of cognitive states in the first half of 

the straight path before Junction A. We find here again some coding neurons. The c.d.f. of the first straight (in 
blue) seems to be clearly higher than the lateral descent, and would lead us to think that there is indeed a strong 
anticipation of the next move before arriving to Junction B, fact which is only coherent with Hybrid 3. However, 
we did not find any statistical evidence (p-value of 0.14 for the KS test and 0.62 for for Mc Nemar test). This 
might be due to the relative small number of neurons for which the test can be performed between straight paths 
and turns at Junction B. Indeed, we need sessions where the rat turns sufficiently many times in the middle to 
compute these statistical tests and if the straight path is frequent, it is not very frequent to have turns towards 
the central stem at Junction B (see Material and Methods for more details).

Note however that we have evidence that the coding is stronger in the central stem than in the first straight 
(p-value 0.002 for the McNemar test). Also note that we also find some coding neurons in the lateral descent, 
which would lead to think that the rat might be aware of the whole path since the lateral descent, even if it is less 
strong that in the central stem.

To summarize, we have strong neuronal evidence against Turns, Hybrid 1 and 4, because none of them would 
explain such a strong anticipation in the central stem. This is in adequation with the fact that the negative log 
likelihood of these 3 models are very large (see Table 1). The fact that there is much less coding in the lateral 
descent than in the central stem, makes us reduce the possibilities to Hybrid 2 or 3, even if it is possible that the 
rat might plan its whole path, since very few neurons are coding in the lateral descent. Finally, because there are 
also neurons coding in the first straight half, it would lead us to privilege Hybrid 3, but the statistical evidence is 
tempered by the small amount of neurons supporting this fact. This also explains why we can do this neuronal 
analysis only on pooled data of all the 4 rats and when looking at pairs of paths where at least one of them is 
good or straight (that is the most likely behaviors).

Discussion
In the present work, we infer strategies, that is representations of the states and actions, used during a learning 
task and this individual per individual. This relies on two main ingredients: a specific hold-out method and 
particular learning models.

First, we develop a hold-out procedure that works even if the learning data are neither independent nor 
identically distributed. This seems to be in contradiction with the excellent review by  Daw23, which advises 
against this method in non-i.i.d. situations and prefers Bayesian procedures (see also Wilson and  Collins24 
for the use of the Bayesian Information Criterion (BIC)). However, Bayesian procedures require an a priori 
knowledge that we do not have here, and the BIC criterion would be useless when the competing models have 
the same number of parameters. But, under certain specific conditions, hold-out can give good results even in 
non-i.i.d. contexts. Indeed, a very recent  work33 has proved mathematically, via oracle inequalities, that hold-
out can work on Markov processes. Even if we are not strictly speaking in their mathematical framework, the 
CoACA models are essentially Markovian if we examine them episode by episode. Simulations on a realistic set 
of parameters, following the rules of Wilson and  Collins24 (see “Material and Methods” and “SI”) have shown 
that our specific hold-out procedure is able to identify the CoACA model in more than 67% of the simulations 
(this happens in only 1 out of 22 cases, the other 21 cases having a percentage of correct identification higher 
than 83%). Therefore, our first contribution is to say that hold-out can work on individual learning data if the 
models are “sufficiently identifiable”.

By sufficiently identifiable, we mean that there is still enough information in the late learning phase, which 
we use as testing set, to infer the model and thus the strategy. The CoACA models we used, especially with their 
session-to-session forgetting aspects, have this property as shown in the simulations. Moreover, they are able to 
model simply the different strategies we want to compare.

While the fitting of RL algorithms to learning data has a long  history15,23,24, it has been less used to infer strate-
gies, in the sense of granular representation of state and actions. Indeed, there are many RL algorithms, different 
from CoACA, that are capable of modeling different strategies: hierarchical abstract  machines27,28, hierarchical 
reinforcement  learning3, etc. However, most of the time, these models are not used to fit data but to prove the 
optimality of a given strategy in a certain sense. For example, in Solway et al.3, a given hierarchy model, which is 
equivalent to a chunking in our framework, defines small reinforcement learning problems on each subtask. The 
authors computed the optimal hierarchy, as the hierarchy for which the overall algorithm is most likely to obtain 
the best reward. Because the authors were interested in human tasks, they were able to design experiments in 
which it was easy to determine which hierarchy was used by individuals by asking them auxiliary questions. As a 
result of their work, it appears that humans use the optimal hierarchy in various tasks such as delivery problems, 
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Hanoi tower, etc. But note that they inferred the strategy, not from the free learning data they had, but from an 
auxiliary survey that the participants answered.

The CoACA algorithms presented here, as cognitive versions of the ACA  algorithms29, are simpler than the 
previous hierarchical RL algorithms and can incorporate additional information, such as forgetting, that could 
be useful from a modeling/fitting point of view. ACA also uses a particular notion of episode, different from the 
one classically used in  RL34. In ACA, episodes consist of elementary groups of decisions after which a reward 
is integrated in the individual’s prediction. With respect to the strategy inference problem, each episode can be 
chunked in different ways, which lead to different versions of ACA. Furthermore, unlike hierarchical RL, ACA 
does not assume anticipation of rewards and does not consider subsequent rewards to be of less and less impor-
tance. In ACA, all actions in an episode are constituents that can all contribute differently depending on their 
own activity. The advantage of ACA is that, on the other hand, important characteristics of the actions (such as 
duration in the T-maze task) can be incorporated into the notion of activity: this allows the model to be more 
flexible, without greatly increasing the number of parameters.

Another trend in the literature, different from the strategy inference based on learning data, is the develop-
ment of increasingly complex models of multiple cognitive structures and functions at the same  time35–37. For 
example, typically in Dollé et al.37, this trend aims at gathering all the qualitative knowledge of the brain in a 
huge numerical model with a very large number of parameters that would be able to do “as well” as an individual 
performing free learning. However, it is difficult with so many components to discriminate which features are 
necessary to represent which behavior, and the model is so complex that it is almost impossible to fit the param-
eters to real data. In particular, one cannot make strategy inference with such a complex model.

That said, given all the existing literature on more complex models, it would certainly be interesting to incor-
porate more features into the competing models, for example by starting with a hierarchical abstract  machine27, 
simply adding decayed reward  anticipation34 or adding more variability in the  decision15 and gradually increasing 
the complexity of the models. The hold-out procedure would then be able to detect the minimum complexity 
model that best reflects the available data. This must be tempered by the fact that the higher the number of 
parameters, the longer the early learning phase (training set) must be, in order to obtain a correct estimation of 
the parameters and to trust the inference method. Thus, although we do not believe that it is possible to achieve 
such a high complexity as Dollé et al.37, the selection of key features to incorporate is a promising avenue for 
future work. It would also be interesting to see how a strategy changes throughout the learning process as 
Belkaid et al.15 have done for the choice variability. However, the hold-out presented here would then have to be 
performed on several segments much smaller than the whole data set and it is not sure that the accuracy of the 
method would then be sufficient.

From the user’s perspective, the performance of our method (CoACA combined with hold-out) makes it a 
promising pre-processing of behavioral data. Thanks to the strategy it selects, it reduces the search for significant 
neural behaviors (see also Rule 9 Analyze winning patterns of Wilson and  Collins24, where latent variables—here 
strategies—are linked to physiological data). The user is thus no longer doomed by an exhaustive search of sig-
nificant neuronal differences in the space of all possible chunkings of space and time, whereas such exhaustive 
search would have to be corrected for multiple testing errors and would have therefore a very low detection 
rate. This approach is not limited to the continuous T-maze alternation task but could be extrapolated to other 
learning experiments.

More specifically, for the experiment presented here, we decided to record neural activity in the dorsomedial 
striatum (DMS) during the continuous T-maze alternation task since a lesion in this region impairs learning for 
this task. In the present work, we go further by showing that DMS neurons have a firing rate that is coding for 
action anticipation. However, other anatomical structures, such as the dorsolateral prefrontal cortex (see Bot-
vinick et al.2 and references therein) or the dorsolateral  striatum38 are also involved in the representation of the 
world in terms of states and actions. It is therefore legitimate to ask, for future work, how these two structures 
interact or share these representations, and this should be facilitated by the chunking of the behavioral data 
provided by the method presented here.

In conclusion, CoACA models are simple enough to be selected on real learning data of a single individual 
via a new hold-out procedure. This allows us to infer strategies, i.e. representations of the world in terms of 
actions and states, during the learning phase, without any a priori. This strategy inference then allows us to 
target a temporal or spatial window, during which the neural encoding/decoding aspects can be studied, and 
this method could be applied on a vast variety of learning experiments. Increasing gradually the complexity of 
the models in competition can also be envisioned.

Methods
Experimental design. Animals and surgery. Four male Long-Evans rats (Janvier, Le Genest-St-Isles, 
France) weighing 300–350 g were housed in individual cages (40 cm long × 26 cm wide × 16 cm high) with 
food and water ad libitum and maintained in a temperature-controlled room (20◦ + 2). One week after their 
arrival, animals were handled daily by the experimenter for 7 days. They were then implanted with tetrodes 
aimed at the dorsomedial striatum (DMS) at the following coordinates: AP: +1mm, ML: ±2.2 mm from the 
midline, DV: −3 mm below the dura. The surgery was performed under sterile conditions and under general 
anaesthesia (Ketamine 75 mg/kg (Imalgene 1000, Merial, France)/Medetomidine 0.25 mg/kg (Domitor, Janssen, 
France)). As postoperative treatment, the rats were injected with antibiotic (Clamoxyl, 150 mg/kg) and analgesic 
(Tolfedine, 4 mg/kg). After surgery, the rats were given 5–7 days of recovery. They were then subjected to a food 
deprivation program that kept them at 90 pourcent of their body weight to start the T-maze continuous task. 
All experiments were performed in accordance with the National Institute of Health’s Guide for Care and Use of 
Laboratory Animals (NIH Publication No. 80-23) revised in 1996 for the UK Animals (Scientific Procedures) 
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Act of 1986 and associated guidelines or the Policy on Ethics approved by the Society for Neuroscience in No-
vember 1989 and amended in November 1993 and under veterinary and National Ethical Committee supervi-
sion (French Agriculture Ministry Authorization). Experiments were performed in the Laboratory of Cognitive 
Neuroscience (UMR7291) and protocols were approved by the host institutions: CNRS and Aix-Marseille Uni-
versity. We certify that all our methods are in accordance with the ARRIVE Essential 10 of the National Center 
for the Replacement Refinement & Reduction of Animals Research and our manuscript has followed the Arrive 
recommend set. Following the 3R we used only four male Long Evans animals. Since our study is about learn-
ing under physiological conditions, each animal is its own control and the behavior task has been done on the 
same animal implanted with the headstage for the single unit recording system. Each animal is in an individual 
cage because of its headstage and to avoid any damage to the animal. Surgery has been done in accordance with 
the National Institute of Health’s Guide for Care and Use of Laboratory Animals, with antalgic, antibiotic and a 
recovery period.

Microdrives and recording setup. Four tetrodes formed a bundle threaded through a piece of stainless-steel 
tubing. Each tetrode consisted of four twisted 25 µ m nichrome wires. The connector, tubing and wires could be 
moved downwards by turning the drive screw assemblies cemented to the skull. Cable was connected to the rat’s 
stage head, which contained a field effect transistor amplifier for each wire. The signals from each tetrode wire 
were amplified 10,000 times, bandpass filtered between 0.3 and 6 kHz with Neuralynx amplifiers (Neuralynx, 
Bozeman, MT, USA), digitised (32 kHz) and stored by the DataWave Sciworks acquisition system (DataWave 
Technologies, Longmont, CO, USA). A red light-emitting diode (LED) attached to the head assembly was used 
to determine the position of the rats. The LED was filmed by a CCD camera mounted on the ceiling above the 
maze, and their position was tracked at 50 Hz by a digital point tracker.

Behavioral T-maze training. The T-maze consisted of four 10 cm wide, grey-painted wooden tracks (with walls 
of 2 cm height on each side), a 100 cm long central rod, a 100 cm long crossbar forming the two choice arms, and 
two additional tracks each connecting the distal end of one choice arm to the base of the central rod. The reward 
wells were located at the distal end of each choice arm. Food rewards (45 mg sugar pellets) were dispensed from 
two food pellet dispensers (MedAssociates) mounted above the wells and activated by remote manual switches. 
The maze was elevated 40 cm off the ground on a metal frame. The apparatus was illuminated by four symmetri-
cal spotlights (40 W) mounted on the ceiling. A centered radio above the maze was used to mask uncontrolled 
disturbing sounds and the experimenter was located in an adjacent room. After a recovery period from surgery, 
the rats were familiarized with the maze in daily 20-min sessions for two days, during which they were allowed 
to freely explore the apparatus and collect randomly scattered sugar pellets. Training began on the third day with 
two 20-min sessions per day. Rats had to run along the central rod and alternately enter the left or right arm of 
choice in order to obtain a 45 mg sugar pellet. Each rat performed one session per day as long as dorsomedial 
striatal units were clearly identified. Rats performed at least 18 sessions and at most 51.

Pre-processing of the behavioral data. A pre-processing of the data, consisting mainly in clearing rapid head 
movements and reflection artifacts of the camera, was performed and localization of the rats into a refined grid 
enabled us to identify which one of the elementary paths was taken (see Fig. 1b). Note that some rare portions 
of the recordings were not classified as one of the elementary paths. These was mostly due to the animals jump-
ing out of the maze or jumping in a non contiguous spot in the maze. In any case, these portions were purely 
removed from the analysis.

Pre-processing of the neuronal data. Spike sorting was performed manually using the graphical cluster-cutting 
software Offline Sorter (Plexon). Units selected for analysis had to be well-discriminated cluster with spiking 
activity clearly dissociated from background noise. Units that were lost before the session series was completed, 
or whose waveform changed too much between two sessions, were not used for further analysis. Units having 
inter-spike intervals < 2 ms (refractory period) were removed due to poor isolation, as were cells with a peak 
firing rate ≤ 1 Hz. A total of 293 cell clusters for the 4 rats was accepted and we assimilate them to neurons, each 
neuron being recorded in only one session (we do not try to track the waveform from one session to another). 
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

In each session, each neuron produces a certain number of spikes in a certain region of the space in a given 
condition (for instance spikes produced in the central stem when it is part of a loop or a good path). To decide 
whether a neuron is coding in a particular region, we compare N1 and N2 , the number of spikes produced during 
the session in the region of interest under condition 1 (resp. 2) (see Fig. 4a for the different regions and condi-
tions). More precisely we compute the p-value of the chi-square test that decides if (N1,N2) is a multinomial 
distribution of parameters p = (d1/(d1 + d2), d2/(d1 + d2) and n = N1 + N2 , with di the time spent in the region 
of interest under the condition i during the session. Therefore, for a given region and given pair of conditions, 
neurons were removed from the analysis if either one of the di ’s were null (this depends solely on the behavior of 
the rat during the session) or if np < 5 (this tends to eliminate neurons with very small average firing rate inside 
the region of interest). This gives the set of possible neurons (see Fig. 4a) and each possible neuron is linked to a 
pvalue. A possible neuron is declared to be coding in a particular region between two conditions if its adjusted 
p-value is less than 0.05. Here adjusted p-value refers to Benjamini and Hochberg method applied on all the 
possible neurons in a particular region between two given conditions.
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Specification of the CoACA models used in the T‑maze experiment. The sequence of states during 
the experiment is formally denoted Sp,n,t : p is the session, going from 1 to P, n is the episode, going from 1 to np 
(the number of episodes in session p), and t is the performed action, going from 1 to Tp,n (the number of actions 
chosen in episode n and session p). All possible states are shown in Figure 2a.

At each state Sp,n,t , an action Ap,n,t is performed to go to the next state Sp,n,t+1 . The set of possible actions 
at a given state is formalized in Fig. 3 and depends on the model. During session p, at episode n, the rat 
obtains a reward Rp,n . If no good path is taken, Rp,n = 0 , if one good path is taken, Rp,n = 1 , and if the two 
good paths are taken, Rp,n = 2 as shown in Figure 2b. At each episode n, a rat thus achieves a sequence 
Sp,n,1,Ap,n,1, Sp,n,2,Ap,n,2, Sp,n,3, ..., ,Rp,n, Sp,n,Tp,n.

All CoACA algorithms implement the same features. At session p = 1, ..., P , episode n = 1, ..., np and action 
t = 1, ...,Tp,n , being in state Sp,n,t , the action Ap,n,t is picked with probability defined in Eq. (2), with the credit 
Kp,n defined recursively by Eq. (3), where α ∈ [0, 1] the learning parameter to be fitted, a(An,t) =

d(t)
d(n) the activity 

of action An,t , d(t) the duration of action t, d(n) the duration of episode n, and Rp,n the reward obtained during 
session p and episode n. At initialization K1,1(S,A) = 0 for all state-action pairs (S, A). Notice that all state action 
pairs (S, A) that are not chosen in an episode are not updated: Kp,n+1(S,A) = Kp,n(S,A).

To represent the decrease of action probabilities at each new session (see Fig. 1d), at the end of session p, all the 
credits are multiplied by forgetfulness parameter γ ∈ [0, 1]:

Validation and application of the method. To validate our method, we follow the 10 Rules defined  in24. 
The design of experiment (Rule 1) has been done in subsection “Experimental design” and the design of models 
(Rule 2) in subsection “Specification of the CoACA models used in the T-maze experiment”.

Simulations of the models. We use the Rcpp package (https:// cran.r- proje ct. org/ web/ packa ges/ Rmpi/ index. 
html, lastly accessed on 07-13-2022) for efficiency reasons. The simulations were run fully in parallel using 
Rmpi package(https:// cran.r- proje ct. org/ web/ packa ges/ Rmpi/ index. html, lastly accessed on 07-13-2022). The 
NEF computing platform ( https:// wiki. inria. fr/ Clust ersSo phia/ Usage_ policy, lastly accessed on 07-13-2022) has 
been used for running the parallel simulations. The platform has 320 Xeon SP Silver 2.2GHz cores, 128 Xeon E5 
v2 2.6GHz cores and 320 Xeon E5 v2 2.8GHz cores.

Both validation and estimation are computationally intensive. For the likelihood estimation of each model, 
50 Xeon cores were used for an execution time of approximately 1 hour for each rat. For the hold-out part, 200 
Xeon cores were used for an execution time of approximately 6 hours for each rat.

Maximum Likelihood Estimators (MLE) are computed as explained  in23,24 thanks to the function DEoptim 
of R applied on minus the log-likelihood. To avoid local minima, the optimisation algorithm was randomly 
initialized 200 times.

For Rule 3 (Simulation of the models), we simulated the different models (i) with parameters chosen uni-
formly on θ̂ (1± 0.05) , where θ̂ are the MLE parameters estimated on the real data and (ii) with a number of 
actions per session equal to the ones observed on real data of each given rat. The simulation of a given model 
does not always reach the Learning Criterion (LC), that is 80% of good paths in one session (criterion that is 
matched by all the rats in the experiments. Such simulations were discarded and we evaluated the performance 
of the MLE only on the simulations reaching LC. However for some models, it was difficult even after 10000 runs 
to get 20 simulations reaching LC (see Supplementary Fig. S1). Note that Hybrid 3, always meets the learning 
criterion in a consequent number of simulations.

To check the efficiency of the MLE (Rule 4–5), one computes, for each simulation that met the learning crite-
rion, the estimator as a function of the number of paths that were taken into account in the MLE procedure. Note 
that we chose paths and not actions as a unit since the number of actions depend on the model. Supplementary 
Fig. S1 shows that the MLE converges for the models that are meeting the learning criterion, even if it is much 
slower for the forgetfulness parameter γ since one needs to see several sessions to estimate it correctly. Note that 
after about 800 paths the MLE’s are quite close to the model parameters.

The choice of 800 paths for the cut between early learning phase and late learning phase in the hold-out 
method is further validated (Rule 6) by exhibiting the confusion matrix for this precise choice (see Supplemen-
tary Fig. S2 where the simulation is done with the MLE estimators on real data on the whole data set). One can 
see that except for rat 2 with the model Path which has only 67 % of correct recognition, all other cases achieve 
83% when the model reaches LC in sufficiently many simulations.

Real data analysis. On real data (Rule 7), the stability of the MLE as a function of the number of Paths (Sup-
plementary Fig. S3) seems good in most cases after 800 paths, except for Rat 2 for which 800 might seem slightly 
too small. However to simplify procedures, we decided to take the same cut at 800 paths for all rats.

(2)P(Ap,n,t = A) =
exp(Kp,n(Sp,n,t ,A))∑

A′possible from state Sp,n,t
exp(Kp,n(Sp,n,t ,A′))

(3)Kp,n+1(S,A) = Kp,n(S,A)+ α ×

Tp,n∑

t=1

a(An,t)1An,t=A1Sn,t=SRp,n

(4)Kp+1,1(S,A) = γ × Kp,np(S,A)

https://cran.r-project.org/web/packages/Rmpi/index.html
https://cran.r-project.org/web/packages/Rmpi/index.html
https://cran.r-project.org/web/packages/Rmpi/index.html
https://wiki.inria.fr/ClustersSophia/Usage_policy
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To validate the winning model (Rule 8), we represented the vector of the probabilities of each path during an 
episode as a function of time and reduced its dimensionality by Principal Component Analysis. This represen-
tation (see Supplementary Fig. S4) shows that even if the empirical choice probability of the different paths is 
noisier than the one given by the models, Hybrid 3 seems most of the time to represent well what is happening 
at least in the late learning phase.

For the record, Rule 9 consists in analyzing the winning model with respect (for instance) to physiological 
data and this is what we did in Fig. 4 and Rule 10 consists in reporting the analysis.
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