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Outdoor THz fading modeling 
by means of gaussian and gamma 
mixture distributions
Evangelos N. Papasotiriou 1*, Alexandros‑Apostolos A. Boulogeorgos 1,2 & Angeliki Alexiou 1

Terahertz (THz) band offers a vast amount of bandwidth and is envisioned to become a key enabler 
for a number of next generation wireless applications. In this direction, appropriate channel models, 
encapsulating the large and small-scale fading phenomena, need to be developed for both indoor 
and outdoor communications environments. The THz large-scale fading characteristics have been 
extensively investigated for both indoor and outdoor scenarios. The study of indoor THz small-scale 
fading has recently gained the momentum, while the small-scale fading of outdoor THz wireless 
channels has not yet been investigated. Motivated by this, this contribution introduces Gaussian 
mixture (GM) distribution as a suitable small-scale fading model for outdoor THz wireless links. In 
more detail, multiple outdoor THz wireless measurements recorded at different transceiver separation 
distance are fed to an expectation-maximization fitting algorithm, which returns the parameters of 
the GM probability density function. The fitting accuracy of the analytical GMs is evaluated in terms of 
the Kolmogorov-Smirnov, Kullback-Leibler (KL) and root-mean-square-error (RMSE) tests. The results 
reveal that as the number of mixtures increases the resulting analytical GMs perform a better fit to the 
empirical distributions. In addition, the KL and RMSE metrics indicate that the increase of mixtures 
beyond a particular number result to no significant improvement of the fitting accuracy. Finally, 
following the same approach as in the case of GM, we examine the suitability of mixture Gamma to 
capture the small-scale fading characteristics of the outdoor THz channels.

Terahertz (THz) wireless systems have been identified as a key enabler of the next generation networks era, since 
it can provide the required radio resources for a number of killer-applications, including wireless backhauling, 
mobile ad-hoc backhauling, as well as massive connectivity of bandwidth-hungry applications, like virtual and 
holographic reality1–3, as well as enabling sensing4,5 and cm-level localization capabilities6. Novel wireless con-
cepts, such as the internet of everything, connected and autonomous vehicles, and unmanned aerial vehicle, 
are also expected to benefit from the usage of the THz band2. The first step towards designing and optimizing 
THz wireless systems is the development of indoor and outdoor channel models that can accurately capture 
the particularities of the propagation medium in this band. In particular, the THz wireless channel model can 
be seen as the joint contribution of the large and small scale fading7. The large scale fading can be expressed in 
terms of the deterministic pathloss and shadowing, while the fast channel amplitude fluctuations are described 
in terms of the stochastic small-scale fading7.

The large scale fading characteristics have been extensively investigated in both outdoor and indoor 
environments8–23. In more detail, urban outdoor double directional channel measurements in the range of 
141.1−148.5 GHz for distances over 100 m have been conducted8. These measurements by means of the many 
identified angles of arrival and angles of departure have verified the existence of line-of-sight (LoS) and non-
line-of-sight (NLoS) THz multipath components. An outdoor measurement campaign in an urban microcell 
environment at 140 GHz recorded omni and directional LoS and NLoS links at a maximum distance of 117.4 m9. 
Based on the aforementioned measurements, omni and directional pathloss exponent models have been imple-
mented, where the shadowing is expressed by means of a lognormal distribution. A ray-based deterministic tool 
has been employed to model the large scale pathloss of an urban outdoor scenario in the range of 90−200 GHz
10. The pathloss has been modeled by the exponent model, where the shadowing due to vegetation has been 
modeled by means of a lognormal distribution. Based on 142 GHz multiple-input-multiple-output (MIMO) 
urban microcell propagation measurements, the channel spatial statistics of the number of spatial clusters and 
the cluster power distribution have been identified11. A detailed spatial statistical MIMO channel generation 
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procedure has been introduced based on the empirical channel statistics. An extensive set of wireless LoS and 
NLoS measurements in the range of 145−146 GHz for distances between 1−100 m have been conducted11. Build-
ing upon the measurements, the deterministic pathloss, shadowing, delay spread, angular spread and multipath 
component power distribution have been modeled. A vehicle to infrastructure channel has been developed for 
an urban scenario by means of ray tracing for the operational frequency of 110 GHz13. Accordingly, the channel 
statistics of pathloss, time-of-arrival and direction-of-arrival have been characterized. An initial review on the 
impact of the weather conditions to the deterministic attenuation of THz wireless links has been conducted14. 
In more detail, the channel impairments caused by the water vapor, dust particles, fog, clouds, and rain have 
been investigated. Meanwhile, deterministic THz polynomial pathloss models for the ranges of 100−450 GHz , 
200−450 GHz and 275−400 GHz have been developed15,18,19. In these models, the THz channel has been assumed 
to consist of a single deterministic LoS coefficient, which has been expressed as the sum of the free space and 
molecular absorption loss. Various LoS and NLoS indoor measurements are performed for wireless links operat-
ing at 28 GHz and 140 GHz16,17. Therein, based on the received signal strength of the multipath components of the 
links, the millimeter wave (mmWave) and THz channels have been deterministically modeled as the logarithmic 
scale sum of the exponential pathloss and lognormal shadowing. A single path theoretical THz channel model 
for THz wireless communications within vegetation has been developed21,23. In this model, the wireless channel 
consists of two coefficients, namely the deterministic pathloss and the lognormal shadowing.

The indoor THz small-scale fading channel modeling has recently gained a momentum7,16,17,20,24–31. Spe-
cifically, for the case of wireless backhaul THz links, the small-scale fading has been theoretically modeled by 
means of the α−µ distribution24,26. Then, the system performance has been quantified under different levels of 
transceiver hardware impairments, antennas misalignment and fading severity. Furthermore, the suitability of 
the α−µ distribution to describe the small-scale fading channel amplitude of indoor THz wireless channels has 
been experimentally validated in several studies7,30,31. Experimental LoS and NLoS THz wireless measurements 
have been performed in an anechoic chamber27. Based on this model, a stochastic indoor THz channel model 
has been developed, where the small-scale fading attenuation factor has been expressed in terms of a Rayleigh 
or Nakagami-m distribution under NLoS and as a Rice or Nakagami-m in LoS propagation conditions, respec-
tively. A two dimensional stochastic geometric channel model has been developed for indoor THz wireless 
communications28,29. Then, a parametric multipath Rice fading model has been derived. A measurement based 
indoor channel model for the range of 126−156 GHz for both LoS and NLoS conditions has been developed20. 
The exponential pathloss and shadowing have been used to model the large scale fading, whereas the small-scale 
fading amplitude has been given by a novel distribution. Meanwhile, THz wireless measurements have been 
conducted within an anechoic chamber in the range of 240−300 GHz25. Then, by exploiting the measurements 
and various fitting accuracy metrics, it has been concluded that the small-scale fading amplitude of the links 
can be accurately modeled by means of the Gamma and Gaussian mixture models. Also, the mixture Gamma 
(MG) has been employed in investigating the capacity of a wireless channel and expressions for the optimal and 
power rate adaptation, the channel inversion with fixed and truncated rate were derived. The expressions were 
verified by means of Monte-Carlo simulations32. Furthermore, the Gamma mixture has been used for analytical 
performance assessment of composite fading channels in terms of received signal-to-noise-ratio33. In continua-
tion of the previously mentioned work, the Gaussian mixture has been employed in the performance analysis of 
an energy detector. In more detail, analytical expressions for the performance parameters of average detection 
and area under the receiver probabilities were derived34.

The aforementioned contributions underline the importance of not only the large-scale, but also the small-
scale fading THz channel modeling. However, to the best of the authors knowledge, results on THz small-scale 
fading channel modeling in outdoor environments have not been published so far. Motivated by this, in this work, 
outdoor THz measurements performed in the campus area of Aalto university in Finland are exploited. In more 
detail, multiple LoS and NLoS links have been measured at different transceiver separation distances. For each 
link, multiple channel gain measurements were recorded, which have been used to perform fitting analysis of the 
empirical channel gain distribution amplitude to Gaussian Mixtures (GMs) analytical distributions. The evalua-
tion of the suitability of GMs to describe the small-scale fading channel gain amplitude of outdoor THz wireless 
links is very useful. An appropriate GM is capable of describing complicated fading scenarios, where multiple 
peaks can occur in the fading amplitude of the empirical distribution25,35. The GM is expressed as the sum of 
independent Gaussian distributions. Hence, it offers mathematical tractability, which is of great importance in 
analytical expressions evaluations. By taking this into account it should be noted that, the fluctuating-two-ray 
(FTR) model has also been employed in THz channel modeling36,37. However, the FTR uses an infinite number 
of components to approximate the empirical distribution. As a consequence simpler distributions like the GM 
and Gamma mixture are preferred to accommodate the channel modeling and the analytical evaluation needs. 
Moreover, it should be noted that, in this work the suitability of GMs to model the small-scale fading amplitude 
of the outdoor THz links is more thoroughly investigated in comparison with MGs distributions. The reason 
for this is that the analytical expression of the GMs are more tractable in comparison with those of the MGs 
and have been employed in various performance evaluation works35,38,39. Also, the suitability of MG to model 
the small-scale fading amplitude of short range indoor THz wireless links has been previously investigated25. 
Moreover, the support of a GM is defined in the (−∞,∞) , which aids in achieving a good fit to the tails of the 
empirical distributions.

In this work the measurements of each link are preprocessed to obtain the channel gain of each of the recorded 
multipath components. Subsequently, in order to increase the number of the different channel realizations in 
each link, a method based on adding random phases to the path amplitudes will be employed. Then, by mak-
ing use of the resulting channel realizations of each link, the empirical probability density function (PDF) and 
cumulative density function (CDF) are fitted to the analytical GMs. Also, MGs distributions are fitted to some 
indicative links and the fitting performance is compared to that of the GMs. Then, the parameters and weights 
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of each Gaussian and Gamma distribution of a GM and MG expression, respectively, are obtained by fitting it to 
the empirical channel gain distribution of the investigated link. This is accomplished by means of the expectation 
maximization (EM) algorithm25,35,38,40. The accuracy of the fit of the analytical distributions to the corresponding 
empirical ones is quantified in terms of the Kolmogorov-Smirnov (KS), Kullback-Leibler (KL) and root-mean-
square-error (RMSE) tests41–43. However, the evaluation of the fitting accuracy of the analytical GMs and MGs 
to the empirical ones is performed only in terms of the KL and RMSE tests, because, for all the GMs and MGs 
of all the investigated links, the KS yields a good fit. As a result, the KS poses as a non strict fitting criterion. 
According to the KL and RMSE metrics for all the links, it is observed that, as the number of mixtures increases 
the resulting analytical GMs and MGs perform a better fit to the empirical distributions. On the other hand, 
as the number of mixtures decreases, the resulting analytical GMs and MGs perform worse in terms of fitting 
even for single peak empirical distributions. Furthermore, the KL and RMSE metrics indicate that the increase 
of mixtures above a particular threshold does not improve drastically the fitting accuracy performance of the 
analytical GMs and MGs to the empirical ones.

In order to further elucidate, the key contribution of this work lies in the approach that is followed to derive 
the empirical small-scale fading amplitude distribution of the investigated THz links. In more detail, the principle 
of transfer learning combined with the EM algorithm is employed for the measured data of an outdoor static 
THz propagation environment44. These THz wireless link measurement data contain deterministic pathloss 
measurements and during each link measurement session there were no moving scatterers. Yet, in a realistic 
THz wireless signal propagation scenario moving scatterers may influence the channel characteristics. This can 
be adequately modeled by the methodology initially proposed by Molisch et al.45. In this work this methodol-
ogy is employed to populate the herein used link measurements datasets44. Next, after observing the resulting 
empirical PDF of each measured THz link, we propose the GM distribution as a suitable target distribution. In 
order to identify the number of Gaussian distributions needed and their corresponding weights and parameters 
we follow a fitting methodology based on an interactive EM algorithm.

Results
Measurement setup and sites.  Figure 1 illustrates the top-view of the outdoor premises of Aalto Uni-
versity in Finland, where the THz measurements are conducted. In more detail, each link is defined by a unique 
transmitter (Tx) and receiver (Rx) pair. Both the Tx and Rx are equipped with a single antenna. During each 
measurement session both the Tx and Rx were in fixed positions, while only the Tx-Rx pair of interest was 
active, i.e., no interference is induced by neighbor links. Figures 1a and b show that individually Rx1 and Rx2 
are employed to perform the wireless THz measurements. The Txs marked with green dots denote a LoS link 
between the Tx and the Rx of interest, whereas the Txs marked with a yellow dot stand for a NLoS transceiver 
link. However, it should be noted that for the investigated outdoor THz measurements no paths were able to be 
received in the NLoS transmissions scenarios. The THz transmissions of all the investigated links are performed 
at the center radio frequency (RF) of 142 GHz with a total bandwidth of 4 GHz44. The transmit power is set equal 
to 5 dBm and the transceivers antennas heights are 1.85 m . The Rx is equipped with a sectoral horn antenna with 
a gain of 19 dBi , whereas the Tx is equipped with an omni-directional antenna. Also, during the measurement of 
each Tx−Rx link, the Rx antenna is rotated with an angular step of 5o and no moving objects are present.

Fitting of the gaussian & gamma mixtures to the channel gain measurements.  In this section, 
the fading channels are approximated using the GM distribution. Also, some indicative fitting results of mod-
eling the fading channels by means of the MG distribution are presented. In more detail, Figs. 2, 3, 4 and 5 serve 
as an illustrative example of the fitting achieved by the analytical GMs and MGs expressions, which are obtained 
as the weighted sum of K Gaussian and K Gamma distributions respectively, to the empirical channel gain meas-
urements of the investigated links. Table 1 quantifies the fitting achieved by the GMs to the empirical measure-
ments of the links in terms of the KL and RMSE fitting accuracy metrics. The link, d , KL, R̂ and K columns stand 
for the TX−RX link index, the transceiver antennas separation distance, the achieved KL and RMSE metric 

(a) Tx–Rx1 links. (b) Tx–Rx2 links.

Figure 1.   Top-view of the outdoor campus premises.
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values and the corresponding K of the GM, respectively. The K GM components that yield the most accurate 
fit to the empirical channel gain measurements, are selected by using as a criterion the minimization of the KL 
metric. Meanwhile, the KS metric for K ∈ [1, 20] for all of the presented links yields a good fit. Hence it is a non 
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Figure 2.   TX1−RX1 and TX28−RX2 : (a) KL and (b) R̂ metrics for different values of K for the GMs and MGs. 
(c) Fitting of the PDF and (d) CDF analytical GM expressions to the empirical channel gain data. (e) Fitting 
of the PDF and (d) CDF of the best fitting analytical GM and MG expressions to the empirical channel gain 
measurements.
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strict fitting criterion and cannot be employed to identify the K that corresponds to the GM with the best fit to 
the empirical measurements. Furthermore, the RMSE metric serves as the second best fitting criterion after the 
KL. Moreover, it should be noted that, the K ∈ [1, 20] MGs passed the KS test for all of the examined links. As a 
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Figure 3.   TX4−RX1 and TX16−RX1 : (a) KL and (b) R̂ metrics for different values of K for the GMs and MGs. 
(c) Fitting of the PDF and (d) CDF analytical GM expressions to the empirical channel gain data. (e) Fitting 
of the PDF and (d) CDF of the best fitting analytical GM and MG expressions to the empirical channel gain 
measurements.
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result, the KS test cannot be employed to evaluate the fitting accuracy for the MG distributions. Meanwhile, as 
it can be observed from Figs. 2, 3, 4 and 5 and especially from 2(a)(b), 3(a)(b), 4(a)(b)s and 5(a)(b); the KL and 
RMSE tests are reliable fitting accuracy tests not only for the GMs but also for the MGs distributions. Note that, 
for the interested reader the parameters of the GMs and MGs extracted in this work; can be found on the follow-
ing link: https://github.com/T34gr/Gaussian-and-Gamma-mixture-distribution-parameters.git.

Figure 2 illustrates the statistical characterization of the TX1−RX1 and TX28−RX2 links. In more detail, Fig. 2a 
shows the KL values of GMs and MGs with different K for both TX1−RX1 and TX28−RX2 . As expected, for a 
given link, as K increases, the KL value of the GMs generally decreases. After achieving a minimum KL value, as 
K further increases, a short variation towards this value is observed. According to Table 1, for both of the links 
the maximum KL value is achieved for K = 1 . Meanwhile, for K = 4 the first local minimum of KL is observed 
for the GMs of both TX1−RX1 and TX28−RX2 , which is equal to 0.037 and 0.123, respectively. For the TX1−RX1 
link, the global minimum value of KL is achieved for the GM with K = 11 , which can be found in Table 1. On 
the other hand, for TX28−RX2 according to Table 1 the global minimum value of KL is achieved for the GM 
with K = 9 . For the case of MG modeling, from Fig. 2a it is observed that for both TX1−RX1 and TX28−RX2 as 
K increases the KL is reduced. Also, for both the links K = 1 yields the worst fit, where KL is 0.715 and 0.879, 
respectively. Furthermore, for TX1−RX1 the KL results of the MGs tend to stabilize for K ≥ 15 and the best fit is 
achieved for K = 17 with KL = 0.019 . Also, it is observed that the KL results for both the MGs and GMs for the 
TX1−RX1 link are similar for K ≥ 3 . For the TX28−RX2 link the MG KL results stabilize for K ≥ 10 and the best 
fit is accomplished for K = 20 with KL = 0.087 . The KL values of the GMs in Table 1 and those of the MGs in 
Fig. 2a denote that for both links, the MG yields a better fit than the GM. However, as shown in Fig. 2e, both the 
examined mixture distributions achieve an accurate fit to the empirical channel gain measurements. Meanwhile, 
in Fig. 2b, the RMSE for different values of K of the GMs and MGs for both the TX1−RX1 and TX28−RX2 links 
is depicted. According to Table 1, for both of the aforementioned links the maximum RMSE value is achieved 
for K = 1 . Meanwhile, for both the TX1−RX1 and TX28−RX2 , the GM with K = 4 yields the minimum RMSE, 
which is reported in Table 1. Also, Fig. 2b shows that for both TX1−RX1 and TX28−RX2 the RMSE values of 
the MGs are lower compared to those of the GMs. In more detail, the MG with K = 17 yields the best fit to the 
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empirical distribution of TX1−RX1 with R̂ = −18.12 dB . For the TX28−RX2 the best GM fit is accomplished 
for K = 20 with R̂ = −15.17 dB.

Figure 2c and d serve as an illustrative example of the fitting achieved by the analytical GM expressions with 
different K to the empirical channel gain PDFs and CDFs for the links TX1−RX1 and TX28−RX2 , respectively. 
Specifically, the blue circles represent the empirical channel gain distributions of the investigated links, while 
the continuous and dashed lines stand for the fitted GMs of different K for the links TX1−RX1 and TX28−RX2 , 
respectively. Note that, unless otherwise is stated, the continuous and dashed lines of the same color denote GMs 
with the same K. By taking into account the KL and RMSE values of Table 1 and by examining the fitting of the 
PDFs and CDFs of the GMs to the empirical channel gain distributions of Fig. 2c and d, it can be ascertained that 
the increase of K leads to analytical GM expressions that better fit the empirical ones. Fig. 2e and f illustrate the 
fitting achieved by the analytical PDFs and CDFs of the GMs and MGs with different K to the empirical channel 
gain measurements of TX1−RX1 and TX28−RX2 links. In these figures, the blue circles represent the empirical 
channel gain PDFs and CDFs of the links. The continuous and dashed red and green lines stand for the GMs 
with K equal to 4 and 11, which denote the best fitting GMs to the empirical distributions according to the RMSE 
and KL metrics of the TX1−RX1 and TX28−RX2 links, respectively. Moreover, the red crosses indicate the MGs 
that yield the best fit to the empirical distributions according to both the metrics. In more detail, the MG with 
K equal to KŴ = 17 is the one that yields the best fit to the empirical distribution of TX1−RX1 , whereas the MG 
with K equal to KŴ = 20 is the one that yields the best fit to the empirical distribution of TX28−RX2.

Figure 3 depicts the statistical characterization of the TX4−RX1 and TX16−RX1 links. In Fig. 3a, the KL 
values of GMs and MGs with different K for both TX4−RX1 and TX16−RX1 are presented. For the case of GM 
modeling, it is observed that, for both TX4−RX1 and TX16−RX1 as K increases KL is reduced. Up to K = 7 , 
KL presents a significant variation for both links. However, for K ∈ [8, 20] , the resulting KL values stabilize. 
From Table 1, the minimum KL value for both the TX4−RX1 and TX16−RX1 links corresponds to a GM with 
K = 15 , whereas K = 1 leads to the worst fit. For the case of MG modeling, it is observed that, for both TX4−RX1 
and TX16−RX1 as K increases KL is reduced. For TX4−RX1 , up to K = 5 , KL shows a significant variation, 
whereas for K ∈ [6, 20] , the KL values stabilize. Also, according to the KL metric the MG that performs the best 
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fit to TX4−RX1 is the one with K = 20 and KL = 0.003 , whereas the worst fit is for the MG with K = 1 and 
KL = 2.152 . By taking this into account, and according to the KL results for the GMs of Table 1, the MG yields 
a better fit to the empirical channel gain distribution of this link. For TX16−RX1 , up to K = 7 the KL results of 
MGs vary significantly, whereas, for K ∈ [8, 20] , the KL values of the MGs tend to stabilize. Also, according to 
the KL metric the MG that yields the best fit for this link is the one with K = 20 and KL = 0.009 , whereas the 
worst fit is obtained for K = 1 and KL = 1.856 . From the KL values for the GMs of Table 1, it is observed that the 
MG achieves a better fit to the empirical channel gain measurements of TX16−RX1 in comparison with the GM. 
However, from Fig. 3a it is deducted that, both the GMs and MGs for the TX4−RX1 and TX16−RX1 link yield 
similar KL values for K ∈ [8, 20] . In more detail, the good fit achieved by both the GMs and MGs to the empirical 
distributions of the investigated links is demonstrated by means of Fig. 3e and f. Meanwhile, Fig. 3b shows the 
RMSE metric results of the GMs and MGs for different values of K for both of the TX4−RX1 and TX16−RX1 links. 
For both TX4−RX1 and TX16−RX1 it is observed that as K increases the RMSE of the GMs is improved. How-
ever, for both the links the RMSE values for K ≤ 10 showcase significant variation. Table 1 reveals that, for both 
of the links K = 1 , yields the worst fitting accuracy performance, in terms of RMSE. Meanwhile, for TX4−RX1 
the GMs with K = 15 , K = 17 , and K = 20 yield R̂ equal to −19.28 , −19.33 , and −19.37 dB respectively. For 

Table 1.   Fitting accuracy metrics of GMs with different values of K. Significant values are in  bold

Link d (m) KL R̂ (dB) K Link d (m) KL R̂ (dB) K

Tx1 − Rx1 13.72 0.191 −12.61 1 Tx24 − Rx2 57.11 0.267 −10.93 1

Tx1 − Rx1 – 0.037 −15.41 4 Tx24 − Rx2 – 0.038 −13.99 17

Tx1 − Rx1 – 0.036 −15.35 11 Tx24 − Rx2 – 0.037 −13.98 18

Tx13 − Rx1 16.41 0.097 −14.7 1 Tx15 − Rx1 58.68 0.597 −11.44 2

Tx13 − Rx1 – 0.044 −16.64 8 Tx15 − Rx1 – 0.025 −18.17 17

Tx13 − Rx1 – 0.045 −16.71 11 Tx25 − Rx2 57.71 0.932 −7.25 2

Tx21 − Rx2 19.71 0.238 −11.68 1 Tx25 − Rx2 – 0.106 −13.4 18

Tx21 − Rx2 – 0.154 −12.4 4 Tx25 − Rx2 – 0.126 −13.48 12

Tx8 − Rx1 23.1 0.109 −13.89 2 Tx18 − Rx2 59.21 0.102 −13.69 1

Tx8 − Rx1 – 0.058 −15.38 20 Tx18 − Rx2 – 0.058 −15.15 6

Tx2 − Rx1 27.73 0.144 −14.44 1 Tx18 − Rx2 – 0.058 −15.22 16

Tx2 − Rx1 – 0.026 −17.47 15 Tx4 − Rx1 64.46 0.317 −13.72 1

Tx2 − Rx1 – 0.026 −17.5 19 Tx4 − Rx1 – 0.019 −19.28 15

Tx20 − Rx2 34.1 0.152 −14.11 1 Tx4 − Rx1 – 0.019 −19.37 20

Tx20 − Rx2 – 0.063 −15.59 7 Tx32 − Rx2 67.23 0.42 −10.51 1

Tx20 − Rx2 – 0.062 −15.59 9 Tx32 − Rx2 – 0.05 −14.12 13

Tx30 − Rx2 37.25 0.219 −13 1 Tx32 − Rx2 – 0.046 −14.08 20

Tx30 − Rx2 – 0.159 −13.6 8 Tx11 − Rx1 73.6 0.145 −14.29 1

Tx30 − Rx2 – 0.158 −13.57 12 Tx11 − Rx1 – 0.025 −18.42 4

Tx14 − Rx1 38.15 0.061 −15.85 1 Tx5 − Rx1 78.47 0.195 −14.97 1

Tx14 − Rx1 – 0.018 −18.03 7 Tx5 − Rx1 – 0.035 −17.85 14

Tx14 − Rx1 – 0.018 −18.09 10 Tx5 − Rx1 – 0.035 −17.88 20

Tx27 − Rx2 38.6 0.263 −13.68 1 Tx16 − Rx1 81.02 0.797 −10.69 1

Tx27 − Rx2 – 0.064 −15.61 17 Tx16 − Rx1 – 0.015 −18.07 15

Tx9 − Rx1 40.02 0.331 −12.89 1 Tx16 − Rx1 – 0.015 −18.12 19

Tx9 − Rx1 – 0.063 −16.1 5 Tx23 − Rx2 81.09 1.593 −6.74 1

Tx9 − Rx1 – 0.063 −16.11 11 Tx23 − Rx2 – 0.156 −10.83 20

Tx19 − Rx2 42.35 0.454 −12.53 2 Tx17 − Rx1 94.66 0.026 −18.85 20

Tx19 − Rx2 – 0.024 −18.61 20 Tx12 − Rx1 99.61 0.283 −13.16 1

Tx3 − Rx1 45.19 0.39 −13.69 2 Tx12 − Rx1 – 0.065 −15.38 18

Tx3 − Rx1 – 0.024 −18.57 18 Tx12 − Rx1 – 0.064 −15.37 20

Tx3 − Rx1 – 0.024 −18.62 19 Tx22 − Rx2 110.1 0.528 −9.54 1

Tx31 − Rx2 53.21 0.116 −13.44 1 Tx22 − Rx2 – 0.138 −12 12

Tx31 − Rx2 – 0.048 −14.78 8 Tx22 − Rx2 – 0.135 −12 19

Tx31 − Rx2 – 0.046 −14.74 9 Tx18 − Rx1 127.86 0.391 −12.17 1

Tx10 − Rx1 57.11 0.187 −14.35 1 Tx18 − Rx1 127.86 0.064 −15.03 10

Tx10 − Rx1 – 0.015 −18.94 12 Tx18 − Rx1 127.86 0.064 −15.05 20

Tx10 − Rx1 – 0.015 −18.98 13 - – – - –

Tx28 − Rx2 19.86 0.123 −13.82 4 Tx28 − Rx2 19.86 0.122 −13.78 9
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TX16−RX1 the resulting RMSE values almost stabilize for K ≥ 15 . For example, K = 15 , K = 19 , and K = 20 
yield R̂ = −18.07 , R̂ = −18.12 , and R̂ = −18.11 dB , respectively.

From Fig. 3b, it observed that for the TX4−RX1 link the RMSE results of the MGs vary significantly for K ≤ 8 
and improve with the increase of K. Meanwhile, based on the RMSE metric the MG with K = 1 yields the worst 
fit, whereas the best fit is achieved for K = 19 with R̂ = −22.87 . Furthermore, the RMSE metric results shown 
in Table 1 for the GMs and Fig. 3b demonstrate the better fitting accuracy of MGs compared to GMs for the 
empirical channel gain distribution of TX4−RX1 . For the TX16−RX1 link as Fig. 3b illustrates the RMSE values 
of the MGs tend to stabilize for K ≥ 11 . The best fit for the link according to the RMSE is achieved for K = 20 
with R̂ = −20.33 dB , whereas the worst for K = 1 with R̂ = −8.57 dB . Also, according to the RMSE values of 
the GMs for the TX16−RX1 link of Table 1 and Fig. 3b, the MGs yield a better fit to the empirical channel gain 
measurements of this link. Fig. 3c and d present the fitting accomplished by the analytical PDFs and CDFs of 
GMs with different K to the empirical channel gain distributions of the links TX4−RX1 and TX16−RX1 . The 
blue circles represent the empirical channel gain distributions of the investigated links, while the continuous 
and dashed lines stand for the fitted analytical GMs of for TX4−RX1 and TX16−RX1 , respectively. By taking 
into account the KL and RMSE values of Table 1 and by observing Fig. 2c and d, it can be ascertained that the 
increase of K leads to analytical GM expressions with improved fit to the empirical PDF and CDF. Moreover, it is 
obvious that a single Gaussian distribution (i.e. K = 1 ) can not accurately describe the empirical data. Figures 3e 
and f illustrate the fitting achieved by the analytical PDFs and CDFs of the GMs and MGs with different K to 
the empirical channel gain distributions of the TX4−RX1 and TX16−RX1 links. In these figures, the blue circles 
stand for the empirical channel gain PDFs and CDFs of the TX4−RX1 and TX16−RX1 . The continuous red and 
green lines denote the best fit achieved by the analytical GM to the empirical data of TX4−RX1 according to the 
RMSE and KL metrics, respectively, while the corresponding dashed lines denote the best fitting GM curves to 
TX16−RX1 . Meanwhile, the curves marked with the red crosses and cyan dots indicate the analytical MGs that 
yield the best according to the RMSE and KL metrics to the empirical distribution of TX4−RX1 link with K equal 
to KŴ = 19 and KŴ = 20 , respectively, while the red crosses with KŴ = 20 denote the MG that yields the best fit 
to TX16−RX1 according to both metrics. Figures 3e and f illustrate that both the GMs and MGs can yield a good 
fit to the data and can be both considered for the THz small-scale fading channel modeling.

Figure 4 presents the statistical characterization of TX25−RX2 link. In more detail, Fig. 4a shows the KL 
achieved by GMs and MGs with different K. For the GM it is observed that as K increases the KL improves. The 
value of K = 5 yields KL = 0.151 , which is the first local minimum. Meanwhile, for K ≥ 9 the KL stabilizes to 
almost the optimum value. For example, GMs with K = 9 , 14, 18, and 20 result to KL = 0.131 , 0.117, 0.106, and 
0.112, respectively. Meanwhile, according to Table 1, K = 2 yields the maximum value of KL and hence the worst 
fit. Moreover, from Fig. 4a it is observed that the MGs have similar performance with the GMs in terms of fitting 
when the KL metric is employed. The best fit of the MG is achieved for K = 20 , where KL = 0.016 . The similar 
fitting performance of GM and MG can also be observed in Fig. 4c and d. In Fig. 4b the RMSE for GMs and MGs 
with different K is presented. In more detail, for the GMs the first local minimum is obtained for K = 4 and is 
R̂ = −11.18 dB , while the second local minimum results for K = 5 and is R̂ − 13.1 dB . Moreover, for K ≥ 10 the 
RMSE almost stabilizes to the optimum value. For example, the GMs with K = 10 , 12, and 20 yield R̂ = −13.47 , 
−13.48 , and −13.4 dB , respectively. Similar observations for the RMSE results of the MGs can be extracted as 
those for the GMs. However, according to this metric the MGs perform significantly better in terms of fitting 
for K ≥ 13 . The best fit is accomplished for the MG with K = 20 , where R̂ = −16.28 dB.

In Fig. 4c and d the fitting achieved by the analytical PDF and CDF GM and MG expressions with different 
values of K to the empirical channel gain distribution of TX25−RX2 are presented. In more detail, the blue circles 
stand for the empirical distribution of the investigated link, whereas the continuous red, green and magenta 
lines indicate the GM with K equal to 4, 12 and 20, respectively. Also, the dashed black lines denote the analyti-
cal MG expressions obtained for K equal to KŴ = 20 , which denotes the best fitting MG based on both metrics. 
Figure 4c and d illustrate that the best fit to the empirical data is accomplished by the GM with K = 18 , which 
is in accordance with the KL metric results. Also, it can be conducted that, in the case an empirical PDF with 
multiple peaks the increase of K, leads to a GM with a higher fitting accuracy performance. In this sense, the GM 
with K = 4 performs the worst fit. As an example, for K = 4 the metrics are KL = 0.233 and R̂ = −11.18 dB.

Figure 5 presents the statistical characterization of TX17−RX1 link. In more detail, Fig. 5a shows the KL 
achieved by GMs and MGs with different K. It is observed that, for the GMs as K increases the KL improves. In 
more detail, the GM with K = 5 yields KL = 0.139 , which is the local minimum of the KL metric. Meanwhile, 
for K ≥ 11 the KL results are almost equal. For example, for K = 11 , 15 and 20 the resulting KL is equal to 0.029, 
0.03, and 0.026, respectively. Furthermore, based on Table 1, the GM with K = 2 performs the worst fit in terms 
of the KL metric. Meanwhile, from Fig. 5a it is similarly observed that the increase of K improves the fitting 
accuracy of the MGs to the empirical channel gain data. Also, the KL results tend to stabilize for K ≥ 10 and 
the best fit for the MG is accomplished for K = 11 , where KL = 0.181 . It should be noted that, according to the 
GMs KL metric of Table 1 the GM performs a better fit to the empirical data when compared to MG in terms of 
the KL metric. This significant difference is illustrated in Fig. 5c. In Figure 5b the RMSE for GMs and MGs with 
different K is presented. It is observed that, for the GMs the first and second RMSE local minima are R̂ = −14.77 
and −17.89 dB , which are obtained for a GM with K = 5 and 9, respectively. The minimum RMSE according to 
Table 1 is accomplished for the GM with K = 20 . Meanwhile, as Fig. 5b illustrates as K increases the RMSE of 
the MGs improves and then deteriorates. This indicates that for the TX17−RX1 link increasing the number of 
Gamma mixtures does not improve the fitting performance. The best fit in terms of the RMSE metric for the MG 
is achieved for K = 11 , where R̂ = −12.85 dB . Both the KL and RMSE metrics shown in Fig. 5a and b denote 
that for an empirical distribution with multiple peaks the GM can yield a better fit in comparison with the MG.

Figure 5c and d illustrate the fitting achieved by the analytical PDF and CDF GMs and MGs of different K to 
the empirical channel gain measurements of TX17−RX1 . In these figures, the blue circles stand for the empirical 
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distributions, whereas the continuous red, green and magenta lines indicate the analytical PDFs and CDFs of 
the GMs with K = 4 , 12 and 20, respectively. Moreover, the dashed black lines stand for the MG obtained with 
K equal to KŴ = 11 , which denotes the best fitting MG based on both metrics. Figure 5c and d demonstrate 
that the GM with K = 20 yields the best fit. This can be verified by the KL and RMSE metric results of Table 1. 
Furthermore, it can be concluded that, in order to analytically describe an empirical distribution presenting 
multiple peaks a GM with a greater K is needed. As Figure 5c demonstrates the GM with K = 4 achieves the 
worst fit to the empirical data.

Discussion
The majority of the THz small-scale fading channel modeling works employ analytical distributions, such as 
Nakagami–m, Rayleigh, Rice, α−µ , and Weibull7,27–29. However, these distributions are capable of only describing 
single-peak fading channels. In this work, the suitability of modeling single and multiple peaks PDFs of outdoor 
THz channels in terms of GMs is investigated. Also, MGs are fitted to the empirical channel gain measurements 
of some indicative links. It is observed that, for both the cases of single and multiple peaks, empirical channel 
gain distributions the increase of K yields GMs and MGs that better fit the data. Accordingly, this is verified by 
the results of the KL and RMSE fitting accuracy metrics. In more detail, for all of the investigated links, for the 
lower values of K, the KL and RMSE fitting accuracy performance deteriorates. For most of the links, low values 
of K tend to yield significant variations to the KL and RMSE. On the other hand, for all of the examined links, as 
K increases beyond a specific value, the KL and RMSE fitting accuracy results tend to stabilize. This elucidates 
that, for any given link, the best fit is accomplished by a GM or MG with a particular value of K or higher. Hence, 
further increasing K is expected to make only a slight difference on the fitting performance of the GMs to the 
empirical distributions. Moreover, from the analytical GM and MG distributions illustrated in Figs. 2, 3, 4 and 5 
and according to equations (4) and (7) the defining parameter for an analytical GM or MG to present significant 
peaks is the weight parameter w of its Gaussian or Gamma distribution coefficients. In more detail, as an example, 
for analytical GM distributions such as those presented in Figs. 2(c) and 3(c) for each K the differences of the w 
parameters are not significant. On the other hand, for analytical GM distributions such as those that are shown 
in Figs. 4(c) and 5(c) , especially by increasing K there are w values that are greater compared to the rest. As a 
result, the corresponding Gaussian distribution coefficient with such a w, is more prominent in defining the peak 
amplitudes of the total GM. To demonstrate this, Table 2 presents the w parameter values for the Tx1−Rx1 and 
Tx25−Rx2 links. Moreover, the fitting accuracy statistics for the MGs employed in this work, verified that the 
MGs can model the small-scale fading amplitude of THz links. By comparing the fitting accuracy of the MGs and 
GMs for some indicative TX–RX links, it is observed that they both achieve a good fit to the empirical channel 
gain measurements. This observation verifies the previous technical works, where both the GMs and MGs were 
found suitable for THz channel modeling25. Meanwhile, the MG yields a better fit than the GM for the majority 
of the investigated links. However, the fitting accuracy of the GM is superior than that of the MG for links with 
multiple peaks with severe changes of amplitude. In more detail, as Fig. 5c illustrates and based on the KL and 

Table 2.   Weight parameters, w for the GMs with K equal to 2, 4, 11, 12, 18, and 20 for the Tx1 − Rx1 and 
Tx25 − Rx2 links.

Tx25 − Rx2

K = 2 K = 4 K = 11 K = 20 K = 4 K = 12 K = 18Tx1 − Rx1

w1 0.35 0.069 0.02 0.01 0.2 0.06 0.05

w2 0.65 0.23 0.03 0.01 0.22 0.06 0.05

w3 – 0.34 0.03 0.03 0.27 0.07 0.05

w4 – 0.36 0.05 0.03 0.31 0.07 0.05

w5 – – 0.09 0.04 – 0.08 0.05

w6 – – 0.1 0.04 – 0.08 0.05

w7 – – 0.12 0.05 – 0.08 0.05

w8 – – 0.13 0.05 – 0.09 0.05

w9 – – 0.13 0.05 – 0.09 0.05

w10 – – 0.16 0.06 – 0.1 0.05

w11 – – 0.16 0.06 – 0.11 0.05

w12 – – – 0.06 – 0.11 0.06

w13 – – – 0.06 – – 0.06

w14 – – – 0.06 – – 0.06

w15 – – – 0.06 – – 0.06

w16 – – – 0.06 – – 0.06

w17 – – – 0.06 – – 0.06

w18 – – – 0.06 – – 0.06

w19 – – – 0.07 – – –

w20 – – – 0.07 – – –
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RMSE fitting accuracy tests, the GM yields an accurate fit with K = 20 to the empirical PDF of TX17−RX1 . On 
the other hand, the MG fails to yield a good fit to the data for K ≤ 20 , where according to both the metrics the 
best fit of the MG is accomplished for K = 11 . As a consequence, the resulting analytical PDF and CDF MG 
expressions do not fit at all the empirical ones of the TX17−RX1 link. Finally, as a future work we intend to use 
more outdoor THz wireless measurements and compare the fitting achieved by Gaussian and Gamma mixtures 
to the empirical channel distributions.

Methods
Preprocessing of the measurement data.  The wireless communication channel is expressed in terms 
of the product of one deterministic and one stochastic coefficient. The deterministic part encapsulates the large-
scale effects of the propagation, i.e., the pathloss. The large-scale fading phenomena are time-invariant and 
remain unchanged during the wireless signal propagation. On the other hand, the stochastic channel coefficient 
expresses the small-scale fading characteristics of the channel, which are time and frequency dependent. The 
study of the small-scale fading behavior of RF wireless signals of is great importance, because it can cause unpre-
dicted deep fades to the received signal power. As a consequence, to perform small-scale fading characterization 
of the channel, the effect of pathloss should be eliminated. The channel sounding performed in the outdoor 
campus measurements provides power angular delay profiles (PADPs) for each of the Tx–RX links. For any 
given link, the PADPs are expressed

where φi , Pi and ti stand for the azimuth angle at the Rx, the propagation delay gain and time of the i–th propaga-
tion path, respectively. The parameter G, known as the broadside angle, denotes the combined gains of the Tx 
and Rx antennas, while δ(·) and I are the Dirac delta function and the total number of multipath components of 
a link, respectively. Subsequently, in order to eliminate the deterministic phenomenon of pathloss, by employ-
ing (1) to each link, the link pathgain measurements are normalized to unity as

Incrementing a link channel realizations.  The inherent high frequencies of the THz band lead to much 
higher propagation losses in comparison with the lower mmWave and ultra-high-frequency (UHF) bands15,17,46. 
The THz free space pathloss even at distances of a few meters and a low transmission frequency can be severe. 
As an example, for an operational frequency of 140 GHz and a communication distance of 1 m the free space 
pathloss can be in the excess of 80 dB17,47. Moreover, the atmospheric water vapor causes severe attenuation to 
the propagating THz signal7,15. Also, the wavelength of the emitted THz signal can be much smaller compared to 
the size of obstacles laid within the propagation environment48. As a consequence, the refraction and reflection 
losses of the THz band are significantly stronger, when compared to lower frequency bands46,49–51. This leads 
to a significant reduction of the number of dominant rays, since the THz signal power is drastically weakened, 
when it is reflected or scattered two or more times48,49. In this sense, the ability of the THz electromagnetic wave 
to propagate through blockages is nearly lost, due to the severe penetration loss. As a result, the ability of THz 
signals to diffract around obstacles is significantly reduced. The aforementioned remarks elucidate that, the THz 
band yields non-rich multipath environments, when compared for example to the mmWave band. However, 
still there are surfaces that can act as scatterers for propagating wireless THz signals16,17,20,29,46. This leads to the 
existence of reflected NLoS multipath components carrying a significant amount of power, which are capable of 
being detected by the Rx. Nevertheless, the amount of measured multipath components, utilized in our analy-
sis, is still not adequately enough to perform small-scale fading statistics analysis for a THz wireless channel. 
This limitation is surpassed by generating different realizations of the transfer function. This is accomplished 
by changing the phases of the measured multipath components of a link7,45. The random phases are assumed 
to be stochastic and are given by a uniform distribution in the interval [0, 2π] . This assumption is based on the 
contribution of Molisch et. al, which was based on the principle that the aggregated phases of different paths in 
an environment of moving scatterers followed a uniform distribution45. Hence, from the electromagnetic theory 
point of view, this is extracted by taking into account the phase shift due to the Doppler effect and it stands in any 
propagation environment where motion is present. The channel coefficient of the system can be obtained as7,45

where ψi ∼ U(0, 2 π) represents the random phase of the i-th multipath component. Moreover, by assuming 
that the amplitude of the channel coefficients does not change dramatically among the progressing ti , i.e., the 
channel can be considered as flat-fading then, ti = 045. Also, the term U(·, ·) is the uniform distribution operator52.

Expectation‑maximization based fitting approach.  The gaussian and gamma mixture models.  The 
THz small-scale fading phenomenon has been the epicenter of many recent channel modeling studies7,25,27,51. 
Moreover, it has been experimentally observed that there are wireless THz propagation scenarios, where the 
small-scale fading channel amplitude shows significant fluctuations25. In this sense, the commonly used ana-

(1)PADP(φ, t) =
I∑

i=1

GPiδ(φ − φi)δ(t − ti),

(2)ζ 2i =
Pi

∑I
i=1 Pi
I

.

(3)h =
∑

i=1

ζi exp
(
−j2π fti

)
exp(jψi),
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lytical distributions that are only capable of fitting single peak distributions are now inadequate to describe the 
small-scale fading amplitude of such THz channels. However, by considering small-scale fading THz and lower 
frequency studies, mixture distributions such as Gaussian and Gamma can be employed instead25,35,38,53.

The GMs have been extensively employed to describe the small-scale fading channel amplitude of RF wireless 
channels25,35,38. The PDF of the GM is defined as

where K and wi denote the number of GM components and the weight of the i-th mixture component, respec-
tively. The parameters µi and σi stand for the mean and standard deviation of the i-th GM component, respec-
tively. Also, wi ∈ [0, 1] and

The CDF of the GM is expressed as

where Erfc(·) is the complementary error function41. Moreover, of note is the fact that the K Gaussian distribu-
tions that comprise equation (4) are mutually independent. Hence, the GM is not only a favorable distribution for 
modeling significant empirical distribution amplitude fluctuations, but also it can offer analytical tractability. The 
latter is of great importance, when the performance analysis of a wireless system must evaluated. Also, it should 
be noted that since this work employs pathloss measurements the x instance of a GM is always non-negative, 
hence for the PDF of equation (4) x ∈ [0,∞).

The MGs have been employed in various channel modeling works in lower frequency bands and the THz 
band as well25,54,55. The PDF of the MG is defined as

where ai and bi stand for the shape and scale parameters of the i-th MG component. Also, according to the 
definition of equation (7) x ∈ [0,∞) and the operator Ŵ(·) denotes the gamma function41. The CDF of the MG 
is defined as

where γ (·, ·) stands for the lower incomplete gamma function41.

The expectation maximization algorithm.  The weights and the parameters of the Gaussian distribu-
tions that compose the GM with the best possible fit to the empirical data must be identified by employing an 
appropriate method. The EM algorithm is such a method. The EM is a machine learning approach that simpli-
fies maximum-likelihood-estimate (MLE) problems and is vastly used in calculating the parameters of mixture 
models25,35.

The EM is a two step algorithm. It consists of the expectation (E) and the maximization (M) steps40. To operate 
the EM algorithm, the K number of mixtures and the vector y =

(
y1, ..., yn

)
 of the n channel gain measurements 

of a link are required as inputs. Subsequently, the mixtures parameters are updated at the M–step during the 
m+ 1 iteration of the EM algorithm until the convergence criterion is met. Otherwise the EM terminates, when 
a predefined number of repetitions is reached. The converge criterion is defined as

where ε stands for the desired convergence value. The term L[m] signifies the MLE log–likelihood at the m-th 
iteration of the EM algorithm and can be obtained as

where j ∈ [1,K] , i ∈ [1, n] and ln(·) stands for the natural logarithm. The term φ
(
yi

∣∣∣∣µ
[m],σ [m]

j

j

)
 is the Gaussian 

distribution of the j-th mixture component at the m-th iteration of the EM, which has mean and standard devia-
tion µ[m]

j  and σ [m]
j  , respectively. Meanwhile, the E–step of the EM is implemented as
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Uppon the completion of the E–step, the EM algorithm implements the M–step. The M–step provides the 
updated values of the distribution parameters of the j-th mixture at the m+ 1 step of the algorithm, which for 
the particular case of a GM are calculated as in equations (12)–(14)

The convergence of the EM algorithm depends on K and the initialization values of the mixtures parameters that 
are provided as inputs. Several methods are available to provide initialization values for the mixtures parameters. 
One of the most common is to employ the K-nearest-neighbour (KNN) algorithm56.

Evaluation of the fitting.  The kolmogorov‑smirnov test.  The KS goodness of fit test is defined as41

where Femp(x) and N stand for the empirical values of the channel gain CDF of the examined link and the number 
of discrete samples of Femp(x) , respectively. The parameter Fgm(x) denotes the analytical CDF of the examined 
analytical distribution, while A = 5% is the selected significance level.

Kullback–leibler divergence test.  The KL divergence test is defined as the distance between the empirical PDF 
femp(x) and the analytical PDF fgm(x) of the examined distribution i.e.,42

The closer the value of equation (16) to 0 the better is the fit of the analytical fading distribution to the empirical 
channel gain distribution.

The root mean square error.  The RMSE is defined as43

The lower the value of R̂ the better the fit of the analytical fgm(x) PDF to the empirical distribution. Also, it should 
be noted that the RMSE results are commonly presented in dB scale.

Data availability
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