
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6310  | https://doi.org/10.1038/s41598-023-33585-2

www.nature.com/scientificreports

Bioinformatics analysis 
of the pathogenic link 
between Epstein‑Barr virus 
infection, systemic lupus 
erythematosus and diffuse large B 
cell lymphoma
Qian‑Ying Zhu 

Epstein-Barr virus (EBV) is a risk factor for diffuse large B-cell lymphoma (DLBCL) and systemic 
lupus erythematosus (SLE). While prior research has suggested a potential correlation between 
SLE and DLBCL, the molecular mechanisms remain unclear. The present study aimed to explore 
the contribution of EBV infection to the pathogenesis of DLBCL in the individuals with SLE using 
bioinformatics approaches. The Gene Expression Omnibus database was used to compile the gene 
expression profiles of EBV-infected B cells (GSE49628), SLE (GSE61635), and DLBCL (GSE32018). 
Altogether, 72 shared common differentially expressed genes (DEGs) were extracted and enrichment 
analysis of the shared genes showed that p53 signaling pathway was a common feature of the 
pathophysiology. Six hub genes were selected using protein–protein interaction (PPI) network 
analysis, including CDK1, KIF23, NEK2, TOP2A, NEIL3 and DEPDC1, which showed preferable 
diagnostic values for SLE and DLBCL and involved in immune cell infiltration and immune responses 
regulation. Finally, TF-gene and miRNA-gene regulatory networks and 10 potential drugs molecule 
were predicted. Our study revealed the potential molecular mechanisms by which EBV infection 
contribute to the susceptibility of DLBCL in SLE patients for the first time and identified future 
biomarkers and therapeutic targets for SLE and DLBCL.

Epstein-Barr virus (EBV) is considered to be one of eight human herpesviruses that contain protein capsids 
around the double-stranded linear DNA genome1. EBV infects over 90% of people worldwide. The oral cavity 
is assumed to be the site of primary EBV infection2. Lymphocytes and epithelial cells make up the majority of 
host cells for EBV3. In adolescents, primary EBV infection often causes infectious mononucleosis (IM). Several 
autoimmune disorders, including systemic lupus erythematosus (SLE), have been linked to EBV4. In addition, as 
the first tumorigenic virus to be identified, EBV causes approximately 200,000 new instances of cancer each year, 
comprising cancers originating from B cells like Burkitt lymphoma and diffuse large B-cell lymphoma (DLBCL)5.

SLE is an autoimmune disorder that usually occurs among women of childbearing age with multi-systemic 
involvement6. The phenotypes of SLE can vary from minor mucocutaneous signs to serious central nervous or 
kidney damage, which results in a high risk of death for patients7. The characteristic feature of SLE is the occur-
rence of autoantibodies against nuclear antigens (ANA), which can be detected up to 10 years before disease 
onset8. SLE is considered to be brought on by a confluence of hereditary and environmental factors. Among 
environmental factors, viral infection, especially EBV infection, is closely related to SLE9. Previous studies have 
shown that, compared to healthy controls, higher viral loads and elevated titers of antibodies against EBV are 
detected among SLE patients10. Moreover, a growing body of research suggests that EBV-infected B cells may 
become resistant to apoptosis, leading to the proliferation, activation and antibody production of autoreactive 
B cells, which may result in tissue damage for SLE11. However, the underlying genetic molecular mechanism of 
EBV infection on the development of SLE is still not fully elucidated.
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DLBCL refers to diffuse growth tumors with nuclei greater than 2 normal lymphocytes. It is the most prevalent 
kind of non-Hodgkin’s lymphoma, making up roughly 40% of all B-cell lymphomas12. The R-CHOP therapy can 
cure approximately 60% of DLBCL. However, many patients still develop resistant to this treatment or experience 
a recurrence and eventually die13. At present, the etiology of DLBCL is not particularly clear, which is usually 
associated with gene abnormalities, EBV infection and other reasons14. In 2016, the World Health Organization 
classified EBV-associated DLBCL as a new subtype of DLBCL (EBV + DLBCL, NOS)15. Although a number of 
researches have demonstrated that EBV play extremely crucial roles in the process of inducing malignant trans-
formation of lymphocytes16,17, the specific molecular mechanism of EBV regulating B cell signaling pathway 
still needs to be further studied.

Some studies have found an elevated incidence of malignancies, notably lymphoma, in people with SLE18. 
DLBCL composes 37–62% of all lymphomas identified in SLE19, but there is currently a lack of knowledge on 
the pathophysiology between DLBCL and SLE. Several determinants could be behind this altered risk, such as 
genetic factors, immunologic derangements and viruses, among which EBV infection is suggested to be the 
link between SLE and DLBCL20. Recent studies have shown that persistent EBV infection in SLE patients can 
promote malignant transformation of B cells due to the use of immunosuppressive drugs and other reasons21. 
However, molecular mechanisms underlying the contribution of EBV infection to the development of DLBCL 
in SLE patients are yet unknown.

In this study, we attempted to identify the shared gene signatures between EBV infection, SLE and DLBCL 
and explore the possible biological effect of EBV infection to the pathogenesis of DLBCL in the context of SLE. 
Firstly, we employed three datasets in this investigation to explore the biological link between EBV infection, 
SLE, and DLBCL. GSE49628, GSE61635, and GSE32018 were chosen from the Gene Expression Omnibus (GEO) 
database for EBV infection, SLE, and DLBCL, respectively. We first identified the differentially expressed genes 
(DEGs) in each dataset before identifying the common DEGs in these three datasets. To comprehend genome-
based biological processes, shared DEGs were employed as the key experimental genes throughout the study, 
including gene ontology (GO) analyses, pathway enrichment analyses, and protein–protein interaction (PPI) 
network construction. In addition, 6 hub genes were extracted utilizing Cytoscape software for gene regula-
tory investigation, such as transcription factors (TFs)-gene network and miRNAs-gene network generation and 
immune landscape assessment. Finally, receiver operating characteristic (ROC) curves and candidate drugs 
prediction for SLE and DLBCL were performed based on the hub genes. Taken together, our study explored 
the molecular mechanisms by which EBV infection contribute to the susceptibility of DLBCL in SLE patients 
for the first time and identified potential biomarkers and therapeutic targets for patients with SLE and DLBCL.

Results
Identification of DEGs among EBV infection, SLE and DLBCL.  Figure 1 depicts the whole work 
flow of this project. Firstly, 5016 genes, comprising 2883 up-regulated and 2133 down-regulated genes from 
the GSE49628 dataset, were differentially expressed for EBV infection (Fig. 2A). A total of 1549 DEGs were 
discovered using the SLE dataset (GSE61635), of which 992 genes showed up-regulation and 557 genes showed 
down-regulation (Fig. 2B). We discovered 1802 DEGs for the DLBCL dataset (GSE32018), comprising 791 up-
regulated genes and 1011 down-regulated genes (Fig. 2C). With the use of the cutoff criteria (P-value < 0.05 
and |logFC|> 1), all significant DEGs were retrieved. The summarized information of these datasets was listed 
in Table 1. Then by taking the intersection of DEGs of EBV, SLE and DLBCL datasets, 72 common DEGs were 
identified and visualized by Venn diagrams (Fig. 2D).

Figure 1.   Flowchart for this investigation.
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Figure 2.   Volcano diagrams and Venn diagram. The volcano maps of GSE49628 (A), GSE61635 (B), and 
GSE32018 (C). Up-regulated genes are shown in red, while down-regulated genes are shown in blue. (D) There 
were 72 DEGs shared by these three datasets.

Table 1.   Summary of the datasets used in this investigation, together with their geo-features and quantitative 
metrics.

Disease name GEO accession GEO platform Total DEGs count Up regulated DEGs count Down regulated DEGs count

EBV GSE49628 GPL570 5016 2883 2133

SLE GSE61635 GPL570 1549 992 557

DLBLC GSE32018 GPL6480 1802 791 1011
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GO and pathway enrichment analysis.  We used the Enrichr online tool to analyze GO and pathway 
enrichment of the common DEGs. The rank of significant terms was determined by the P-value. GO analysis 
consists of three categories, including biological process, cellular component and molecular function. The top 
10 significant terms of different categories were summarized in Table 2 and listed as bar graphs in Fig. 3. The 
most impacted pathways of the common DEGs among EBV infection, SLE and DLBCL were identified from 
four databases (WikiPathways, Reactome, KEGG and BioCarta). The top 10 pathways gathered from the above 
datasets were listed in Table 3 and also shown precisely in bar graphs in Fig. 4.

PPI network and submodule analysis.  The PPI network of 72 common DEGs was analyzed by STRING 
platform, and the result was further visualized with Cytoscape software. The 42 nodes and 91 edges of the PPI 
network were shown in Fig. 5A. The stronger the connection of the gene with other genes, the redder the node 
was in the PPI network. Besides, we applied the MCODE plug-in of Cytoscape to construct a key gene module, 
which contained 8 common DEGs (Fig. 5B).

Hub gene identification and functional analysis.  Using 7 algorithms of cytoHubba plug-in of 
Cytoscape, the top 10 hub genes were screened. By applying the intersection of Venn diagrams, we finally identi-
fied 6 common hub genes, including CDK1, KIF23, NEK2, TOP2A, NEIL3 and DEPDC1 (Fig. 6A). The expres-
sion of the six hub genes were further verified in the EBV infection dataset (GSE49628), SLE dataset (GSE61635) 
and DLBCL datasets (GSE32018 and TCGA_GTEx-DLBC) (Fig. 6B–E). All of the six genes expressions were 
higher in EBV infection, SLE and DLBCL group compared to the control group. Through the GeneMANIA data-
base, a complex gene interaction network was constructed for understanding the biological roles of the common 
hub genes, with the co-expression of 92.3%, co-localization of 3.98%, physical interactions of 3.52%, pathway of 
0.12% and shared protein domains of 0.08% (Fig. 6F). Based on the 6 hub genes, 20 related genes were identified, 
showing that they were mainly associated with mitotic nuclear division, chromosome segregation and cell cycle 
checkpoint. Besides, GO and pathway enrichment of the hub genes was analyzed, showing the similar results 
from DEGs (Supplementary Figs. 2 and 3).

Table 2.   Ontological analysis of shared DEGs between EBV, SLE, and DLBCL.

Category GO ID Term P-Values Genes

GO
Biological process

GO:0045685 Regulation of glial cell differentiation 2.65E-04 CDK1;TNFRSF21

GO:0009070 Serine family amino acid biosynthetic process 8.24E-04 MTHFD1;PSPH

GO:1901653 Cellular response to peptide 0.001138615 FYN;IGF1;CHMP5

GO:0045445 Myoblast differentiation 0.001301854 MBNL1;IGF1

GO:0009069 Serine family amino acid metabolic process 0.001484374 MTHFD1;PSPH

GO:0032511 Late endosome to vacuole transport via multivesicular body 
sorting pathway 0.001484374 LEPROT;CHMP5

GO:1903829 Positive regulation of cellular protein localization 0.002145527 CDK1;FYN;BICD1

GO:0045821 Positive regulation of glycolytic process 0.002567618 ZBTB20;IGF1

GO:1900544 Positive regulation of purine nucleotide metabolic process 0.002567618 ZBTB20;IGF1

GO:0032481 Positive regulation of type I interferon production 0.002704008 ZBP1;RIOK3;LRRFIP1

GO Cellular Component

GO:0043231 Intracellular membrane-bounded organelle 0.001192748 TOP2A;NEK2;TMPO;KIF23;NEIL3DEPDC1;CDK1

GO:0099503 Secretory vesicle 0.004872687 IGF1;BICD1

GO:0005634 Nucleus 0.005698888 TOP2A;NEK2;TMPO;KIF23;NEIL3;DEPDC1;CDK1

GO:0097208 Alveolar lamellar body 0.021409026 LAMP3

GO:1990246 Uniplex complex 0.021409026 MICU3

GO:0010494 Cytoplasmic stress granule 0.022972237 MBNL1;ELAVL1

GO:0101002 Ficolin-1-rich granule 0.028757131 CLEC4C;CAND1;TNFAIP6

GO:0030688 Preribosome, small subunit precursor 0.038904184 RIOK3

GO:0005736 RNA polymerase I complex 0.045815566 POLR1E

GO:0097386 Glial cell projection 0.049252856 FYN

GO Molecular function

GO:0003725 Double-stranded RNA binding 6.52064E-06 ZBP1;MBNL1;STRBP;LRRFIP1;ELAVL1

GO:0003723 RNA binding 0.001391275 TOP2A;ZBP1;MBNL1;STRBP;MRPS23;MSI2;ELAVL1

GO:0016799 Hydrolase activity, hydrolyzing N-glycosyl compounds 0.001484374 NEIL3;MACROD2

GO:0035925 mRNA 3’-UTR AU-rich region binding 0.002817823 ELAVL1;RBMS3

GO:0050699 WW domain binding 0.005208639 PRRG4;PMEPA1

GO:0045296 Cadherin binding 0.006086267 PPFIBP1;LRRFIP1;RPL15;TMPO;CHMP5

GO:0004715 Non-membrane spanning protein tyrosine kinase activity 0.007042367 FYN;FRK

GO:0003690 Double-stranded DNA binding 0.008866374 ZBP1;KLF12;NEIL3;ZBTB20;BACH2;KLF2;NR3C2

GO:0000287 Magnesium ion binding 0.015749168 TOP2A;EPHX2;PSPH

GO:0005315 Inorganic phosphate transmembrane transporter activity 0.017872498 ANKH
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Determination of regulatory signatures.  To identify the regulatory molecules of hub genes at the tran-
scriptional level, we constructed TFs-gene and miRNAs-gene networks using NetworkAnalyst platform, which 
were visualized by Cytoscape. As shown in Fig. 7, the TFs-gene interaction network contains 50 nodes and 52 
edges. CDK1 was modulated by 18 TF genes, and NEK2 was modulated by 17 TF genes. The TFs such as SIN3A, 
GABPA, ZNF18 and ZNF24 regulated many hub genes in the network. The miRNA-gene regulatory network 
was also predicted by Networkanalyst and created by Cytoscape, including159 nodes and 185 edges (Fig. 8). It 
has been ascertained that 30 miRNAs regulated with more than one hub gene, which demonstrated the high 
interaction between them.

Figure 3.   GO terms of common genes between EBV infection, SLE and DLBCL. (A) Biological Processes, (B) 
cellular component, (C) molecular function.
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ROC curves of hub genes.  The diagnostic effectiveness of the 6 hub genes was evaluated using ROC 
curves. To identify SLE patients from healthy controls in the SLE dataset (GSE61635), CDK1 (AUC: 0.923) 
and TOP2A (AUC: 0.904) showed preferable diagnostic effectiveness (Fig. 9A). For separating DLBCL patients 
from healthy controls in the DLBCL dataset (GSE32018), TOP2A (AUC: 0.935), DEPDC1 (AUC: 0.935), NEIL3 
(AUC: 0.922), and NEK2 (AUC: 0.916) showed good diagnostic performance (Fig. 9B). To distinguish DLBCL 
patients from healthy controls in the TCGA_GETx dataset (Fig. 9C), TOP2A (AUC: 0.825), CDK1 (AUC: 0.799) 
and NEK2 (AUC: 0.782) ranked the top 3 genes.

Immune infiltration assessment.  We investigated the relationship between the expression of hub genes 
and the infiltration of immune cells in DLBCL based on the TIMER database (Fig. 10A). The results showed 
that the expressions of CDK1, KIF23, NEK2, TOP2A, NEIL3 and DEPDC1 were all positively associated with 
T helper 2 (Th2) cells and T helper cells. On the contrary, the expressions of these six hub genes were negatively 
linked with plasmacytoid dendritic cells (pDCs) and NK CD56bright cells. In addition, immune checkpoint cor-

Table 3.   Pathway enrichment analysis of shared DEGs between EBV, SLE, and DLBCL.

Category Pathways P-Values Genes

WikiPathways

Trans-sulfuration and one-carbon metabolism WP2525 0.005554958 MTHFD1;PSPH

White fat cell differentiation WP4149 0.005911567 EBF1;KLF2

Prion disease pathway WP3995 0.006278388 EBF1;FYN

Adipogenesis WP236 0.011549909 MBNL1;EBF1;IGF1

Pre-implantation embryo WP3527 0.018552642 ELAVL1;NR3C2

Arachidonate Epoxygenase / Epoxide Hydrolase WP678 0.024932997 EPHX2

LDLRAD4 and what we know about it WP4904 0.024932997 PMEPA1

EV release from cardiac cells and their functional effects WP3297 0.024932997 KLF2

Serine Metabolism WP4688 0.028444455 PSPH

Caloric restriction and aging WP4191 0.028444455 IGF1

Reactome

Establishment Of Sister Chromatid Cohesion R-HSA-2468052 6.88E-04 PMEPA1;ESCO2

Mitotic Telophase/Cytokinesis R-HSA-68884 9.72E-04 PMEPA1;KIF23

Depolymerisation Of Nuclear Lamina R-HSA-4419969 0.001301854 CDK1;TMPO

Initiation Of Nuclear Envelope (NE) Reformation R-HSA-2995383 0.002100521 CDK1;TMPO

Cell Cycle, Mitotic R-HSA-69278 0.002729699 TOP2A;CDK1;PMEPA1;NEK2;KIF23;ESCO2

G0 And Early G1 R-HSA-1538133 0.004232191 TOP2A;CDK1

Dectin-2 Family R-HSA-5621480 0.004872687 CLEC4C;FYN

Cell Cycle R-HSA-1640170 0.009080403 TOP2A;CDK1;PMEPA1;NEK2;KIF23;ESCO2

M Phase R-HSA-68886 0.011934571 CDK1;PMEPA1;NEK2;KIF23;TMPO

Nuclear Envelope Breakdown R-HSA-2980766 0.015645345 CDK1;TMPO

KEGG 2021 Human

p53 signaling pathway 0.002322805 SESN3;CDK1;IGF1

Aldosterone-regulated sodium reabsorption 0.007846291 IGF1;NR3C2

mRNA surveillance pathway 0.04867657 MSI2;GSPT1

Progesterone-mediated oocyte maturation 0.050463783 CDK1;IGF1

Longevity regulating pathway 0.052274479 SESN3;IGF1

AMPK signaling pathway 0.069559815 IGF1;ELAVL1

One carbon pool by folate 0.069621662 MTHFD1

Oocyte meiosis 0.078812459 CDK1;IGF1

FoxO signaling pathway 0.080918832 IGF1;KLF2

RNA polymerase 0.105852996 POLR1E

BioCarta

cdc25 and chk1 Regulatory Pathway in response to DNA damage Homo sapiens h cdc-
25Pathway 0.024932997 CDK1

TSP-1 Induced Apoptosis in Microvascular Endothelial Cell Homo sapiens h tsp1Pathway 0.024932997 FYN

Sonic Hedgehog Receptor Ptc1 Regulates cell cycle Homo sapiens h ptc1Pathway 0.031943443 CDK1

Regulation of Splicing through Sam68 Homo sapiens h sam68Pathway 0.035430005 CDK1

Regulators of Bone Mineralization Homo sapiens h npp1Pathway 0.038904184 ANKH

Protein Kinase A at the Centrosome Homo sapiens h akapCentrosomePathway 0.042366023 CDK1

Lck and Fyn tyrosine kinases in initiation of TCR Activation Homo sapiens h tcraPathway 0.045815566 FYN

RB Tumor Suppressor/Checkpoint Signaling in response to DNA damage Homo sapiens h 
rbPathway 0.045815566 CDK1

Multiple antiapoptotic pathways from IGF-1R signaling lead to BAD phosphorylation 
Homo sapiens h igf1rPathway 0.045815566 IGF1

AKAP95 role in mitosis and chromosome dynamics Homo sapiens h akap95Pathway 0.049252856 CDK1
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Figure 4.   Pathway enrichment analysis of common genes between EBV infection, SLE and DLBCL. (A) 
Wikipathway, (B) Reactome Pathway, (C) KEGG Human Pathway, (D) BioCarta Pathway.
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relation analysis showed that hub genes were closely associated with various immune checkpoint factors, such as 
NRP1, TNFSF18 and LGALS9 (Fig. 10B).

Prediction of candidate drugs.  Using the Enrichr platform, which is based on the DSigDB database, the 
top 10 candidate therapeutic compounds were extracted and sorted by their P-value in the areas of hub genes 
as prospective pharmacological targets for EBV infection, SLE, and DLBCL (Table 4). It was discovered that the 
three pharmacological molecules that interacted with the majority of genes were testosterone (CTD 00006844), 
resveratrol (CTD 00002483), and calcitriol (CTD 00005558).

Discussion
Several studies have indicated that EBV infections could trigger the occurrence of SLE and DLBCL. Addition-
ally, SLE patients are more likely to develop DLBCL, suggesting that EBV infection may be the link between 
SLE and DLBCL. However, the underlying mechanism is still unclear. In this study, we performed a series of 
bioinformatics analysis and attempted to reveal the possible molecular machanisms by which EBV infection 
contribute to the pathogenesis of DLBCL in SLE patients for the first time and discovered potential biomarkers 
and therapeutic targets for SLE and DLBCL.

Figure 5.   PPI network and gene module analysis. (A) PPI network diagram. (B) Significant gene module. The 
redder the color of the gene in the network, the higher the connectivity of the gene with other genes.
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GO analysis was performed based on the 72 common DEGs identified by the three datasets of EBV infection, 
SLE and DLBCL. In terms of biological process terms, regulation of glial cell differentiation, serine family amino 
acid biosynthetic process, cellular response to peptide, myoblast differentiation and serine family amino acid 
metabolic process were the most significant. Serine is a significant supply of one-carbon units, which are neces-
sary building blocks for the production of nucleotides. EBV upregulates import and synthesis of serine through 
its encoded protein EBNA2, which is essential for EBV-driven B cell survival and proliferation22. Moreover, 
reducing the amount of extracellular serine available or preventing the production of serine from glycolytic 
intermediates have also been proposed as innovative therapeutic approaches for the treatment of autoimmune 
diseases23 and B-cell lymphomas24. Regarding the molecular function, double-stranded RNA binding, hydro-
lase activity, cadherin binding were the top terms. EBER-1 and EBER-2, two short RNAs that EBV encodes, are 
highly expressed in latently infected cells. EBERs can bind to the double-stranded RNA-activated protein kinase 
(PKR) and prevent it from being phosphorylated, leading to the resistance of IFN-alpha-induced apoptosis in 

Figure 6.   Venn diagram and hub gene co-expression network. (A) The Venn diagram displayed six hub genes 
that were filtered by seven algorithms. (B) Differential expression of hub genes in EBV-transformed B cells and 
resting B cells in the GSE49628 dataset. (C) Differential expression of hub genes in SLE patients and healthy 
donors in the GSE61635 dataset. (D) Differential expression of hub genes between DLBCL samples and healthy 
controls in the GSE32018 dataset. (E) Differential expression of hub genes between DLBCL samples and 
healthy controls in the TCGA_GTEx-DLBC dataset. (F) GeneMANIA was used to assess hub genes and the 
co-expressed genes. *P < 0.05, **P < 0.01, and ***P < 0.001.
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EBV-positive lymphoma25. As for cellular components, intracellular membrane-bounded organelle, secretory 
vesicle and nucleus ranked the top 3. Secretory vesicles released from EBV-infected cells are capable of promot-
ing inflammation and immune dysfunction, which may contribute to autoimmune diseases and numerous 
malignancies26.

The KEGG pathway enrichment analysis showed that p53 signaling pathway, aldosterone-regulated sodium 
reabsorption and mRNA surveillance pathway are the top 3 significant pathways. Mutations that inactivate p53 
promote genomic instability and are hallmark of cancer27. EBV-encoded oncoprotein latent membrane protein 1 
(LMP1) is reported to promote the growth of lymphoma cells by the degradation of p5328. Interestingly, mutations 
in p53 have been shown to increase autoimmune susceptibility in multiple strains of mice29,30. The autoantibodies 
against p53 have been detected in the serums of patients with SLE, which could functionally block p53 activation 
and affect apoptosis31. Results from WikiPathways indicated that trans-sulfuration and one-carbon metabolism, 
white fat cell differentiation and prion disease pathway are the most significant. The trans-sulfuration route is 
a biochemical process that connects methionine metabolism to the production of cellular redox-controlling 
molecules, which contributes to atherosclerosis and tumor development32. Reactome analysis showed that the 
most interacted gene pathways are establishment of sister chromatid cohesion, mitotic telophase/cytokinesis 
and depolymerisat of nuclear lamina. According to recent research, abnormal sister chromatid cohesion leads 
to chromosomal instability, which in turn promotes the growth of cancer33. As for BioCarta, the top pathways 
are as follows: cdc25 and chk1 regulatory pathway in response to DNA damage, TSP-1 induced apoptosis in 
microvascular endothelial cell and sonic hedgehog receptor Ptc1 regulates cell cycle.

Based on the PPI network, CDK1, KIF23, NEK2, TOP2A, NEIL3 and DEPDC1 were selected as hub genes. 
CDK1 is able to regulate cell cycle progression and transcription34. CDK1 expression was up-regulated in EBV-
positive DLBCL and nasal natural killer/T-cell lymphoma (NNKTL). Treatment with CDK1 inhibitors causes the 
death of EBV-transformed cells35–37. In addition, type I interferon (IFN) signaling is also thought to be a major 
pathogenic route in SLE. The excessively increased type I IFN signaling in SLE may be caused by overexpression 
of CDK1. KIF23, a kinesin 6 family member that is found at the interzone of mitotic spindles, is essential for 
cytokinesis38. KIF23 expression is increased in DLBCL and is a risk factor for this disease39. NEK2, a member 
of NIMA-related kinase family that regulates cell cycle, is up-regulated in a variety of malignancies, including 
DLBCL40,41. TOP2A is a multifunctional nuclear enzyme required during DNA replication, transcription and 
DNA damage repair42. It was identified that TOP2A-nucleolin interaction is essential for regulating Top2A 
targeting agent induced DLBCL cell death43. TOP2A is also proposed as potential biomarker for SLE diagnosis 
by comparative analysis44. For the remaining two hub genes, NEIL3 and DEPDC1, there are no publications 
describing their role in EBV, SLE or DLBCL, which highlights its significance for future research.

We also performed the TFs-gene and miRNAs-gene connection to discover the transcriptional and post-
transcriptional regulators of the hub genes. The TFs such as SIN3A and ZNF18 regulated most hub genes in the 
network. SIN3A is hypothesized to control gene expression by acting as histone deacetylases, which is linked 

Figure 7.   The TFs-gene regulatory network. Hub genes are represented by the pink nodes, and TF genes are 
represented by the other blue nodes.
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to tumor progression45. EBV nuclear antigen 3C is reported to recruit SIN3A to repress CDKN2A, which is 
important for immortal human B-lymphoblastoid cell line proliferation46. Furthermore, three miRNAs, including 
hsa-miRNA-186, hsa-miRNA-192 and hsa-miRNA-215 were identified to regulate most hub genes. These miR-
NAs play critical role in several types of cancers, such as breast cancer, gastric cancer and colorectal cancer47–49. 
However, their function in SLE or DLBCL has not been reported.

With the ROC curves, we found that six hub genes exhibit good diagnostic performance in SLE and DLBCL. 
Furthermore, we used a cohort of DLBCL patients from TCGA dataset to investigate the association between the 
expression levels of the six hub genes and overall survival. By ultilizing GEPIA250 tool, Kaplan–Meier survival 
analysis and Cox proportional hazards regression to assess the association between gene expression and patient 
survival were conducted (Supplementary Fig. 1). However, we observed that the expression levels of these hub 
genes were not associated with overall survival in DLBCL patients. These findings suggest that while these hub 
genes may be useful for diagnostic purposes, they may not be reliable prognostic markers for DLBCL.

Figure 8.   The miRNAs-gene regulatory network. Hub genes are represented by the pink nodes, and miRNAs 
are represented by the other green nodes.
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With assessment of immune infiltration, we observed that hub genes expressions are positively correlated 
with Th2 cell infiltration and negatively linked with pDC in DLBCL. Th2 cells have been primarily associated 
with promoting tumor growth and suppressing anti-tumor immunity51, while pDCs can contribute to anti-
tumor immunity by promoting the activation and expansion of effector immune cells, and by producing type 
I interferons52. In addition, we found that these 6 hub genes had the highest positive correlation with NRP1 
expression. NRP1 can promote tumor angiogenesis, tumor cell migration and invasion, and the infiltration of 
immunosuppressive cells into the tumor microenvironment53,54. This finding suggested that hub genes may play 
a role in remodeling immune landscape of tumor microenvironment (TME) to promote DLBCL.

Six hub genes were applied to the DSigDB database for the prediction of potential medicines. The top 3 
chemical molecules were listed as follow: lucanthone, testosterone and trifluridine. Recently, it was discovered 
that the anti-schistosomal drug lucanthone, which may pass the blood–brain barrier, inhibit autophagy and sup-
press the growth of breast cancer and glioblastoma55,56. In peripheral blood mononuclear cells from SLE patients, 
testosterone, one of the male hormones, is able to reduce the production of anti-DNA antibodies by inhibiting 
B cell hyperactivity, supporting the therapeutic effects for SLE57,58. Trifluridine, a thymidine-based nucleoside 
analog, is a novel oral cytotoxic chemotherapy licensed for the treatment of metastatic colorectal cancer refrac-
tory to standard therapies59. It is also an antiviral agent for topical use in the eye, which could effectively inhibit 
the replication of herpes simplex virus type 160.

Certainly, our study has some limitations. On the one hand, there was a lack of information on patients with 
DLBCL secondary to SLE with EBV infection to further verify our finding.. On the other hand, our findings were 
obtained by pure bioinformatics analysis, so the function of hub genes and prospective medicines is required to 
be further confirmed by scientific investigation in vitro and in vivo.

Conclusion
To the best of our knowledge, our study is the first to reveal shared DEGs, GO and pathway enrichment and PPI 
network for EBV infection, SLE and DLBCL using bioinformatic analysis to explore the potential molecular 
mechanisms underlying the contribution of EBV infection to the development of DLBCL in SLE patients. Our 
research also identified immune-related biomarkers and future therapeutic targets for patients with SLE and 
DLBCL, which will help better manage SLE patients and provide early diagnosis and treatment for DLBCL.

Methods
Compilation of datasets.  GEO (www.​ncbi.​nlm.​nih.​gov/​geo) is a big database providing gene expression 
profiles for a variety of disorders. It is free of charge and publicly available61. GSE4962862 dataset contains resting 
and EBV transformed B cells from 3 donors and GSE61635 dataset consists of 79 SLE patients and 30 healthy 
donors, which were both sequenced using the Affymetrix Human Genome U133 Plus 2.0 Array platform. 
GSE3201863 is of 21 DLBCL samples and 7 healthy controls, which was sequenced by Agilent-014850 Whole 
Human Genome Microarray 4 × 44 K G4112F platform. Gene expression data and patient clinical information 
were downloaded from TCGA database (project ID: TCGA_GTEx-DLBC) (https://​portal.​gdc.​cancer.​gov/). In 
total, information for 41 DLBCL tissues and 447 adjacent normal tissues was obtained.

Identification of shared DEGs between EBV infection, SLE and DLBCL.  An online program called 
GEO2R (www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/) can be used in the comparison and analysis between the groups 
with different gene expression64. GEO2R was used to identify DEGs for GSE49628, GSE61635 and GSE32018. 
DEGs were defined as genes with |log2 fold change (log2FC)|> 1.0 and an adjusted P-value < 0.05. The volcano 
map of DEGs from each dataset and the Venn diagram of shared DEGs between these three datasets were both 
plotted by Bioinformatics (https://​www.​bioin​forma​tics.​com.​cn).

Figure 9.   Verification of common diagnostic biomarkers. (A) The ROC curve used to verify the diagnostic 
efficacy in GSE61635. (B) The ROC curve used to verify the diagnostic efficacy in GSE32018. (C) The ROC 
curve used to verify the diagnostic efficacy in TCGA_GTEx dataset.

http://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.bioinformatics.com.cn
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Figure 10.   Immune landscape assessment. (A) Relationship of hub genes expression and immune cell subtypes 
in DLBCL patients. (B) Heatmap of the correlation between hub genes expression and immune checkpoint. 
*P < 0.05, **P < 0.01, and ***P < 0.001.

Table 4.   Prediction of top 10 candidate drugs for EBV, SLE, and DLBCL.

Name of drugs P-Values Genes

LUCANTHONE CTD 00006227 7.96E−10 TOP2A;CDK1;DEPDC1;KIF23;NEK2

testosterone CTD 00006844 5.84E−08 TOP2A;NEIL3;CDK1;DEPDC1;KIF23;NEK2

trifluridine MCF7 DOWN 8.16E−08 TOP2A;DEPDC1;KIF23

monobenzone PC3 DOWN 1.55E−07 TOP2A;DEPDC1;KIF23;NEK2

0173570–0000 PC3 DOWN 1.84E−07 DEPDC1;KIF23;NEK2

troglitazone CTD 00002415 2.12E−07 TOP2A;NEIL3;CDK1;KIF23;NEK2

resveratrol CTD 00002483 2.62E−07 TOP2A;NEIL3;CDK1;DEPDC1;KIF23;NEK2

methotrexate MCF7 DOWN 3.30E−07 TOP2A;DEPDC1;KIF23

ciclopirox MCF7 DOWN 7.13E−07 TOP2A;DEPDC1;KIF23

calcitriol CTD 00005558 8.77E−07 TOP2A;NEIL3;CDK1;DEPDC1;KIF23;NEK2
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Investigation of GO and pathways enrichment.  In order to find the functions of the shared DEGs or 
hub genes in EBV infection, SLE and DLBCL, we utilized Enrichr65, a useful gene set enrichment online platform 
(https://​maaya​nlab.​cloud/​Enric​hr/), to conduct a series of enrichment analyses. Biological process, cellular com-
ponent, and molecular function are the three elements of GO66. The shared pathways among DEGs or hub genes 
were identified based on four databases, including WikiPathways67, Reactome68, Kyoto Encyclopedia of Genes 
and Genomes (KEGG)69–72, and BioCarta73.

PPI network construction and module analysis.  The assessment of PPI network is the cornerstone 
of cellular biology for understanding protein function and the mechanism of cellular machinery operations. 
Search Tool for the Retrieval of Interacting Genes (STRING, http://​string-​db.​org) is a database for studying PPI 
network with physical and functional interactions74. We used STRING to create the PPI network of shared DEGs 
with an interaction score greater than 0.4 and displayed it by Cytoscape (Version 3.9.1)75. The core functional 
module was produced using a Cytoscape plug-in—Molecular Complex Detection (MCODE)76.

Recognition of hub genes.  The hub genes of this study were identified using CytoHubba77, a plug-in of 
Cytoscape. Subsequently, the final hub genes were confirmed by seven algorithms (MCC, MNC, EPC, Close-
ness, Degree, Radiality and Stress) and visualized by Venn diagram. Based on the final hub genes, co-expression 
networks were constructed by GeneMANIA (http://​genem​ania.​org), an online platform for gene interactions 
prediction78.

Validation of the hub genes in EBV infection, SLE and DLBCL.  To confirm hub shared genes in 
EBV infection, SLE and DLBCL, we conducted the differentially expressed gene analysis on validation data-
sets (GSE49628, GSE61635 and GSE32018). GEPIA250 (http://​gepia2.​cancer-​pku.​cn/#​index) is an analysis tool 
containing RNA sequence expression data of tumors and normal tissue samples. We used GEPIA2 to analyze 
TCGA and GTEx databases of gene expression profiles in DLBCL. Unpaired comparisons of hub gene expres-
sion between two groups were analyzed by Wilcoxon rank-sum test. We also performed prognostic analysis of 
hub genes in DLBCL with the “survival plots” module using a Kaplan–Meier curve with GEPIA2.

Identification of TFs and miRNAs interactions with hub genes.  Proteins called TFs control how 
quickly genes are transcribed by binding to certain DNA regions. TFs-gene networks were created by utilizing 
ENCODE database79 on NetworkAnalyst platform (https://​www.​netwo​rkana​lyst.​ca/)80. Furthermore, miRNAs 
are a group of short non-coding RNAs, which can impede translation or degrade the target mRNA. The network 
of miRNAs-gene was acquired from mirTarbase81 via NetworkAnalyst. Cytoscape was used to display TFs-gene 
and miRNAs-gene regulatory networks.

Receiver operating characteristic curves of hub genes.  Receiver operating characteristic (ROC) 
curves of the hub genes on SLE (GSE61635) and DLBCL (GSE32018 and TCGA_GTEx-DLBC) were both plot-
ted by Bioinformatics platform. The diagnostic ability of each hub gene was assessed using the calculation of area 
under ROC curve (AUC).

Assessment of the immune landscape.  We used immune cell infiltration and gene expression data 
from the TIMER database82 to identify relationships between the expression of hub genes and immune cell 
abundance in DLBCL, and plotted bubble plots to show these results. Spearman’s correlation analysis was used to 
analyze the relationship between hub genes and a range of immune-related genes, such as immune checkpoint-
associated genes and immune cell subpopulation-associated genes.

Prediction of candidate drugs.  It is important to evaluate protein-drug interactions in this research. On 
the basis of hub genes, drug molecules were obtained from Drug Signatures database (DsigDB)83 on Enrichr 
platform. P-value was used to rank the candidate medications from small to large.

Copyright permission of KEGG.  We have contacted Kanehisa Laboratories. We do not directly use these 
KEGG Pathway map “images” in the article, we need not obtain copyright permission of KEGG. However, they 
believe that we have written our article using their data, they kindly ask us to cite the following articles in it69–72.

Data availability
The datasets used in this investigation are accessible through online repositories. The article contains information 
on the repository names and accession numbers.
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