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Perceiving the representative 
surface color of real‑world 
materials
Yan Zhang  & Isamu Motoyoshi *

Natural surfaces such as soil, grass, and skin usually involve far more complex and heterogenous 
structures than the perfectly uniform surfaces assumed in studies on color and material perception. 
Despite this, we can easily perceive the representative color of these surfaces. Here, we investigated 
the visual mechanisms underlying the perception of representative surface color using 120 natural 
images of diverse materials and their statistically synthesized images. Our matching experiments 
indicated that the perceived representative color revealed was not significantly different from the 
Portilla–Simoncelli-synthesized images or phase-randomized images except for one sample, even 
though the perceived shape and material properties were greatly impaired in the synthetic stimuli. 
The results also showed that the matched representative colors were predictable from the saturation-
enhanced color of the brightest point in the image, excluding the high-intensity outliers. The results 
support the notion that humans judge the representative color and lightness of real-world surfaces 
depending on simple image measurements.

The world is full of objects with a variety of colors. Using information about color, we can recognize object cat-
egories, estimate the physical state of objects, communicate with other people using color names, and artificially 
create objects with a specific color1,2. All these behaviors rely on neural information processing in the visual 
system that estimates the color of objects.

The mechanisms by which the human eye and brain perceive the color of objects have been studied under 
the assumption that color perception is defined as a problem of estimating the physical reflectance properties 
of a surface. Early studies on "surface color" perception have investigated the perception of flat uniform color 
patches placed within a context such as a Mondrian background3–6 or regions within a simplified object such as 
sphere and cube (e.g.7–9). These studies demonstrated that humans could perceive constant color against large 
variations in color signals on the retinal image due to the intensity and wavelength distribution of illumination; 
i.e., color constancy10–13. However, these experimental data and theories can only deal with the color of matte, 
smooth, and uniform surfaces under simplified illuminations. Such surfaces are far from real-world objects, 
which have complex optical properties and shapes.

Recent studies on "material perception" approach the mechanism of color perception for more realistic 
objects under natural lighting14,15. Typical psychophysical experiments examine the perception of the apparent 
lightness and color of surfaces using 3D objects with various material properties generated by physically based 
computer graphics16–19 or photographs of objects made of a particular material20–22. Unlike flat patches, these 
objects produce complex images due to shading, specular reflections, and sub-surface scattering. Despite this, 
it has been shown that humans can easily perceive both lightness and color, as well as gloss and transparency, 
using various low- and high-order cues in the images14. It can be said that these studies allow us to get much 
closer to the mechanisms of color perception in the real world.

However, we rarely encounter smooth and coherent objects made of perfectly homogeneous materials, such 
as those used in the above. Although computer generated objects look very realistic because they precisely 
simulate the optics, they are ecologically irrelevant stimulus sets with a strong sampling bias. Real-world surfaces 
(e.g., rocks, skin, fabric, hair, and food) usually involve a more complicated structure including fibers, granules, 
scratches, and layers. In addition, they are often not composed of uniform materials. For example, many surfaces 
such as bark and stones are combinations of visibly different material parts. Furthermore, most surfaces involve 
dust, dirt, or cracks. Regardless, we can easily and steadily judge the overall color of a surface in daily life, unless 
the surface is composed of distinctively different colors. For example, we can say "This apple is a slightly dark 
red" about an apple even though the apple’s skin actually involves lightness/color gradations, yellowish stripes, 
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dark spots, and dust specks. In terms of ethology, this is the typical color perception that humans perform in 
most daily situations.

The perception of "representative color" has largely been ignored in conventional color studies because color 
perception has usually been defined as the estimation of physical reflectance (and therefore its mechanism has 
been investigated using artificial stimuli with uniform and simplified properties). However, we can find recent 
studies that addressed this issue explicitly or implicitly23–27. For example, Milojevic et al. (2018) showed that 
human observers could easily categorize photographs of autumn leaves into a single color category27. Giesel 
and Gegenfurtner (2010) examined the perceived color of real objects using various kinds of materials, such as 
wool balls and crumpled paper with similar colors, as well as objects made from the same material that differed 
only in color, in relation to the reflection properties of objects and the characteristics of image features24. These 
studies suggest that observers focus on the brightest (except highlights) and most saturated parts of the image to 
judge the representative color of an object23–25,28,29. Other studies conducted in the context of texture/ensemble 
perception also examined how the visual system can estimate the "average color" of spatial patterns composed of 
chromatic dots following a particular probability distribution30–33. Although the perception of the average color 
of such artificial stimuli may not be directly related to the representative color perception of natural surfaces, 
these findings would be useful when analyzing the perception of representative colors in terms of image features.

To investigate the role of image features in the perception of the representative color with a wide range of 
natural surfaces, the present study carried out a series of color-matching experiments to measure the perceived 
representative colors for 120 real-world surfaces made of diverse materials (e.g., grass, fabric, hair, metal, gravel, 
powder) and for their synthetic versions: Portilla-Simoncelli (PS)-synthesized images34 and phase-randomized 
images. The results showed that the matching data for both types of synthetic stimuli were not significantly dif-
ferent from that for the original surfaces except for one sample, even though the perceived 3D shape and mate-
rial properties in the synthetic stimuli were greatly impaired. We found that the matching data for 360 stimuli 
were predictable by the lightness and slightly oversaturated color at the brightest point in the image, excluding 
high-intensity outliers. The results provide further evidence for the critical role of simple image features in the 
perception of representative surface color.

Experiment 1: natural surface images
We measured the perceived representative colors of 120 natural surfaces with a variety of materials, and analyzed 
the perceptual data with respect to the average lightness and color of the images.

Methods.  Observers.  Ten naïve paid volunteers including one of the authors took part in the experiment 
(seven males, 23 years old on average). All observers had normal or corrected-to-normal vision and normal 
color vision. All the experiments were conducted with the permission of the Ethical Review Committee for 
experiments on humans at the Graduate School of Arts and Sciences, The University of Tokyo. All observers 
provided written informed consent. The study followed the Declaration of Helsinki guidelines.

Apparatus.  Visual stimuli were generated by a PC and displayed on an LCD monitor. Owing to the situation of 
COVID-19, stimuli were displayed on LCD/OEL monitors (three BENQ XL2730Z, two BENQ XL2430T, BENQ 
XL2735_B, SONY PVM-A250, SONY PVM 2541A, BENQ XL2731K, and BENQ XL2746S) set up in the observ-
ers’ own homes. The viewing distance was adjusted so that the pixel resolution was 0.97 min/pixel. As a result, 
the size of the uniform background varied among monitors (from 59.7 (W) × 33.6 (H) to 53.1 (W) × 29.9 (H) 
deg), and the overall uniform background was much wider than the target image (4.6 × 4.6°). The background 
mean luminance was in the range 44–116 cd/m2. All monitors had gamma-corrected luminance, and a frame 
rate of 60 Hz. The CIE x–y coordinates (x,y) of each gun (r:g:b) of the monitors were on average (r: 0.65, 0.33), (g: 
0.33, 0.61), and (b: 0.15, 0.05) with standard deviations of (r: 0.008, 0.006), (g: 0.015, 0.011), and (b: 0.011, 0.011), 
respectively. These variations in chromaticity across monitors were much smaller than those of the matching 
data across observers.

Color space.  The absolute luminance and color of the stimuli varied between observers because different moni-
tors were used for each observer. If this variation was large, it would make our analysis (see the Results section) 
based on matching data averaged across observers difficult. To check whether the variation was sufficiently small, 
we calculated the s.d. of color signals across the monitors (10×) for all possible pixels in all surface images used 
(256 × 256 pixels × 120 images). The calculation was performed in the CIE L a* b* space, which was employed in 
our matching experiment (see “Procedure” section). The La*b* values were computed from the luminance values 
of each gun that were actually measured for each monitor. The average s.d. were 0.15 for L, 0.26 for a*, and 0.97 
for b*. The analysis indicated that the variability of a* and b* were far smaller than those across observers (3.0 
for a*, and 3.7 for b*) whereas the variability of L was relatively large as compared to that of the matched L across 
observers (s.d. of 0.19), probably reflecting a large variation in the absolute luminance level across individual 
monitors. In addition to these relatively small variability of color signals across monitors, it is also important 
to note that the present study is focused on the relationship in the color between the reference patch and the 
test stimulus on the individual monitor. Accordingly, we assumed that the pixels on each observer’s monitor 
had a common luminance and color in sRGB space, and treated all stimuli and matching values in La*b* space, 
which is transformed from sRGB space, by approximately defining them as having lightness and color in a com-
mon sRGB space. This made it possible, albeit imperfectly, to examine the relationship between test images and 
matched colors in the same space across all observers.
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Stimuli.  Visual stimuli were photographed images of 120 natural surfaces (256 × 256 pixels, Fig. 1) including 
various materials such as stone, fabric, wood, grass, soil, mud, and metal. The images were taken from our own 
image database and other sites on the Internet. Images in which it is difficult to perceive a single representative 
color, such as surfaces with multiple regions of distinctly different colors or a set of objects with distinctly differ-
ent color elements, were not used in the experiments.

As shown in Fig. 2, the visual display consisted of the test surface image on the left (4.6 × 4.6°), the uniform 
reference patch in the center (1.2 × 1.2°), and a color palette to assist the observer’s color matching (4.6 × 4.6°). 
All of these were located on a black-and-white random dot background (30.2 × 15.1°), which enabled the match-
ing to be effectively performed under constant adaptation or anchoring level across various test images. In the 
palette, a white dot was drawn to indicate the current a*–b* coordinates of the reference patch that the observer 
was adjusting. The observers could make use of this dot as a guide to know which way to change the color of the 
reference patch, but they were strongly instructed not to refer the dot position to make a final decision.

Procedure.  For each surface, the apparent representative color was measured by an asymmetric color matching 
task based on the adjustment method. Observers were asked to adjust both the lightness and color of the central 
reference patch so that it is perceptually best matched to the "representative color" of the entire natural surface. 
They were instructed to match the color that they usually answer in daily life when asked "what color is it?" but 
not to respond to the physical reflectance of a particular local part of the surface, nor to make use of any special 
knowledge about the physical material of the surface; they were asked, for example, not to imagine the color 
of the diffuse component excluding the specular reflection of a surface covered with a blurry gloss (e.g., skin, 
leather, leaves), nor to imagine the color of the dye used to dye the cloth (e.g., fabrics). In each trial, the observer 
binocularly viewed the display with free gaze and adjusted the lightness and color of the reference patch in the 
La*b* space by pressing buttons. Observers adjusted a* and b* by pressing two horizontally and vertically paired 

Figure 1.   Examples of natural surface images used in Experiment 1.

Figure 2.   Schematic diagram of the stimulus display in Experiment 1.
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buttons, respectively. Pressing the right or left button respectively increased or decreased a* by 1.0, and pressing 
the up or down button respectively increased or decreased b* by 1.0. The current (a*, b*) values were reflected in 
the position of the white cursor dot on the palette immediately. When observers pressed the up or down but-
ton of another pair of vertically aligned buttons, L was increased or decreased by 1.0. The current L value was 
reflected as the L value of the entire palette. The observers pressed the decision button when they considered the 
color and lightness of the reference patch to be satisfactorily close to the representative color of the test surface. 
Then, the (L, a*, b*) values of the reference patch were recorded. The observers were encouraged to adjust the 
color along the continuous color appearance without relying on the categorical color name. There was no time 
limit for matching, and observers spent an average of ~ 47  s with each stimulus. All observers practiced the 
matching task in advance in short sessions consisting of four or five trials.

It is more important to collect response data from as many diverse stimuli as possible to obtain ecologically 
valid findings than to collect accurate data from each observer by repeated measurements for a small number 
of stimuli. For this reason, the number of stimuli was prioritized in the present study over the accuracy of an 
individual observer’s data. Therefore, each observer matched each test image once, but it took more than 1–1.5 h 
to complete all stimuli (a total of 3.0–4.5 h for the 360 stimuli in Experiments 1 and 2). For each test image, we 
obtained the mean and s.e.m. of the L, a*, and b* values across ten observers.

Results.  Figure 3 shows an example of the results obtained for six natural surfaces. On the left of each panel is 
the test image, and the inset on the lower right patch of each image is the matched representative color averaged 
across observers. The red clouds in the three scatter plots on the right show the joint histograms of pixels in the 
test images plotted in the a*–b*, L–a*, and L–b* planes, respectively. The black dots indicate the matched color by 
individual observers. The blue dot represents the pixel-mean of the test image, which is merely introduced as a 
reference to visualize the trend of the matching data (we did not use the mode since we found it difficult to see 
the single global peak in the histogram for many images).

It is found that the mean matched colors (black dots) tend to deviate from the pixel mean of lightness and 
chromaticity of the image (blue dots). In Fig. 4, we plot the pixel mean of the image (blue circles) and the matched 
representative color for all test images (red circles), connected by lines. Each panel represents the result on the 
a*–b*, a*–L, and b*–L planes, respectively. For almost all test images, it is clear that the matched representative 
color deviates from the pixel mean. The matched lightness (Lmatch) is higher than the mean lightness (Lmean), 
and the matched colors in the a*–b* coordinates are farther from the origin than the image mean, i.e., they are 
more saturated.

Figure 5a shows the data replotted on the plane of L and chroma (i.e., saturation) given by C = sqrt (a*2 + b*2). 
Figure 5b shows the difference between the matched representative color and the image mean. These plots dem-
onstrate that for almost all images, the matched lightness (Lmatch) and chroma (Cmatch) are higher than the image 
mean (Lmean and Cmean). We confirmed that, on average across images, Lmatch is significantly higher than Lmean 
(t(119) = 20.02, p < 0.0001) and Cmatch is significantly higher than Cmean (t(119) = 13.70, p < 0.0001).

These data indicate a tendency for observers to estimate lightness and saturation as higher than the image 
mean when matching representative colors for a variety of natural surfaces. Additional analysis revealed that for 
as many as 36% of the stimuli, the saturation of the matched representative color was higher than the maximum 
saturation of all pixels. This overestimation was not observed for lightness. Similar tendencies have been reported 
in previous studies. For example, it has been suggested that human observers perceive lightness by ignoring 

Figure 3.   Examples of representative colors matched for natural surfaces. The test image is on the left of each 
panel. The lower right inset patch shows the matched lightness and color averaged across observers. The three 
scatter plots on the right represent the joint histogram of the test stimulus pixels plotted on the a* vs. b*, L vs. 
a*, and L vs. b* planes (red clouds), the between-observer average of the matched representative color (black 
dots), and the pixel mean of the test image (blue dots), respectively. Error bars represent the s.e.m. among 10 
observers.
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dark shadows and highlights in 3D objects17,35, and by ignoring brighter or darker tails in the skewed luminance 
histogram of natural surfaces20,21. Studies of ensemble color perception have reported that human observers 
perceive the "average color" of a chromatic random-dot pattern with a very enhanced saturation31,36, which is 
often beyond the maximum in the stimulus30,37. These agreements seem to suggest that the trend we observed 
in the current data is consistent with a general rule in the perception of representative (or average) colors for 
various classes of visual stimuli. Thus, this leads us to hypothesize that the perceived representative color of a 
natural surface is correlated with simple measurements of the image, as suggested by previous studies23–25,28.

Experiment 2: synthetic texture images
To examine the above hypothesis directly, we next examined the perceived representative color for synthetic 
images such as Portilla-Simoncelli (PS)-synthesized images and phase-randomized images, which have image 
statistics equal or similar to those of the original images but with significant loss of 3D structure and material 
perception. If the perception of representative color solely depends on image features, then similar matching 
data would be obtained. On the other hand, if higher-order information beyond low-level image features is also 
important, then different matching data would be obtained.

Figure 4.   Distribution of matched representative colors in La*b* color space. The red circles represent the 
matched representative colors averaged across 10 observers, and the blue circles connected to it represent 
the pixel mean of the test image. Each panel shows the results in the a*–b*, a*–L, and b*–L planes. Error bars 
represent the ± 1 s.e.m. across observers.

Figure 5.   (a) Distribution of matched representative colors in the L-chroma plane. The red circles represent the 
matched representative color, and the blue circle connected to it by a line represents the pixel mean of the test 
image. (b) Difference between the matched representative color and the pixel mean of the image. Positive values 
indicate that the matched color had a higher lightness (Y-axis) and chroma (X-axis) than the image mean. Error 
bars represent the ± 1 s.e.m. across observers.
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Methods.  PS-synthesized images and phase-randomized images were created from the natural surface 
images used in Experiment 1. Figure 6 shows examples of the two types of synthetic images: the PS-synthesized 
image has nearly identical low- and high-level image statistics considered in the Portilla-Simoncelli’s texture 
model with the original image34. Phase-randomized images are images that preserve only the global spatial-
frequency spectrum of the original image. These synthetic images maintain a textural impression similar to 
the original images to some extent, but the perception of 3D shape and material properties are substantially 
impaired.

For all image stimulus, all observers participating in Experiment 1 were asked to match the representative 
color of the test image. All other conditions were the same as those in Experiment 1.

Ratings of material properties.  In addition, to see if the perception of shape and surface properties is impaired 
in the synthetic images, we independently carried out a simple rating experiment. In each trial, the test image 
was presented in the center of the random-dot background, as in Experiment 1. Observers were asked to rate 
each of the three surface properties, glossiness, variation of depth, and softness, on a 5-point scale individually 
in separate blocks. Glossiness was defined as almost completely matte (0) to clearly shiny (4). Variation of depth 
was defined as almost completely flat (0) to very large variation (4) in the 3D depth of objects contained in the 
image, regardless of its physical origin such as bumpiness (e.g., crumpled paper) or overlaps between multiple 
surfaces (e.g., overlapping leaves in a tree). Softness refers to the ability of object(s) to be deformed, which 
includes elasticity, viscosity, and fragility, from being solid and fixed (0) to being very easily deformed (4) when 
touched. Each observer made one rating for each stimulus. The experimental blocks were independent for the 
original image, the PS-synthesized image, and the phase-randomized images. Nine of the observers who partici-
pated in Experiment 1 took part in the rating experiment.

Results.  Figure 7 shows the relationship between the rating obtained for the original image (X-axis) and the 
rating obtained for the synthetic image (Y-axis). Each column shows the results for different surface proper-
ties. For all attributes, the ratings obtained for the PS-synthesized image (top row) are significantly lower than 
those obtained for the original image, and the ratings for the phase-randomized image are often reduced to 
near zero. The t-test statistics showed that ratings for the PS-synthesized images were significantly lower than 
the original image for all three attributes (glossiness: t(119) = 5.15, p < 0.0001; variation of depth: t(119) = 12.17, 
p < 0.0001; softness: t(119) = 13.20, p < 0.0001), and the same was true for the phase-randomized images (glossi-
ness: t(119) = 7.46, p < 0.0001; variation of depth: t(119) = 14.59, p < 0.0001; softness: t(119) = 14.51, p < 0.0001).

These results indicate that the perception of surface properties is substantially impaired in the synthetic 
images, especially in the phase-randomized images, which is consistent with findings demonstrating the insuf-
ficiency of image statistics in material perception (e.g.20,38,39). Thus, if the perception of representative color 
depends on information beyond image statistics, it is strongly expected that the color matching for synthetic 
images would significantly differ from that for original images.

Figure 8a shows the color matching results obtained for the synthetic images. The green circles show the 
matched representative colors plotted on the a*–b* plane for the PS-synthesized image (top) and the phase-
randomized image (bottom). The red circle connected by gray line indicates the representative color matched 
for the original image. Figure 8b shows a replot of the data in the L-chroma plane. Considering the errors across 
observers, these plots show that the matched representative colors for both synthetic images, especially for the 
PS-synthesized image, are not much different from those for the original images. In fact, the Pearson’s correlation 
coefficients were [L, a*, b*] = [0.97, 0.98, 0.99] (t(118) = 45.31: p < 10–76, t(118) = 60.61: p < 10–91, t(118) = 90.96: 
p < 10–111) for the PS-synthesized images, and [L, a*, b*] = [0.95, 0.95, 0.97] (t(118) = 31.56: p < 10–59, t(118) = 32.60: 
p < 10–61, t(118) = 40.71: p < 10–71) for the phase-randomized images, respectively.

Figure 6.   Examples of synthetic images generated from the originals. The top row shows the original image 
(OG). The middle row shows an image synthesized based on the Portilla–Simoncelli model (PS). The bottom 
row shows phase-randomized images (PR).
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More strictly, for each surface, we statistically tested the difference in the matched representative color 
between the synthetic image and original image, using the T2 test based on the Mahalanobis distance of data in 
the La*b* space. As a result, we found no images whose matched color was significantly (p < 0.01) different from 
the original for the PS-synthesized images, and four images for the phase-randomized images. Applying multiple 
comparison correction [Benjamini–Hochberg’s FDR (0.05)], we found only one image showing a significant dif-
ference among 240 pairs. Thus, we failed to find clear evidence that observers judged the representative color of a 
natural surface in different ways than they do for synthetic textures with similar image/color statistics. Instead, the 
results support the idea that the perception of representative colors depends on low-level image measurements, 
in contrast to the perception of the other material properties. It should be noted that these results are obtained 
for 120 real-world surfaces with much larger variations and higher ecological validity than those used in most 
of the previous studies5,7,8,13,19,30,31,36,37.

Experiment 3: image‑based model
The results of two experiments show that perceived representative colors of natural surfaces were generally higher 
in lightness and saturation than the mean of the image, and were not different from those for the synthetic images, 
except for one phase-randomized image. This supports the idea that the human visual system utilizes simple 
image features to estimate the representative color of a natural surface. What image features are diagnostic of 
the representative color?

As noted earlier, previous studies, although with a limited class of objects, support the notion that the per-
ceived representative color corresponds to the brightest and most saturated color in the image area, excluding 
dark shadows and bright specular highlights25,28–30,35,37,40. Given the present finding that the perceived representa-
tive color did not differ in synthetic images (except 1 out of 240 images) where shadows and glossy highlights 
were not properly perceived, it is more reasonable to assume that the visual system merely excludes the outliers 
with extremely high intensity, irrespective of whether they are specular highlights or not. In addition, in accord 
with the fact that the saturation of the matched representative color was often higher than the maximum satura-
tion in the image, it is likely that the visual system overestimates saturation in the judgement of the representative 
color; similar oversaturation has been reported in previous studies24,30,37,40. With reference to these findings, we 
have developed a simple model in which the perceived representative color is determined solely by (1) the (L, 

Figure 7.   Surface properties ratings for the original and the synthetic images. Each panel shows the relationship 
between the ratings obtained for the original and the synthetic image. The left, middle, and right columns show 
the results for glossiness, depth variation, and softness, respectively. The upper panel shows the relationship 
between the original image and the PS-synthesized image, and the lower panel shows the relationship between 
the original image and the phase-randomized image. Error bars indicate the ± 1 s.e.m. across observers.
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a*, b*) value of a pixel with the highest L within the image excluding the higher outliers in the image intensity 
(L) distribution and (2) the saturation (chroma) enhancement.

Specifically, the model extracts the region in which the contrast value C(x,y) = L(x,y)/Lmean − 1 of the image 
L(x,y) is not higher than the threshold Cthreshold, and picks the La*b* value of a pixel with the highest L within 
the region, then multiplies a* and b* by M. The resulting (L, a*, b*) value is then assumed to be matched as the 
representative color of that surface image. We conducted a numerical simulation in which the two parameters 
(Cthreshold, M) were optimized to minimize the distance between the La*b* value predicted by the model and the 
average La*b* value by each human observer. We found that the optimized parameters were (Cthreshold, M) = (0.20, 
1.26).

Figure 9a plots the model predictions and the human matching data in the a*-b* plane (top panel) and the 
L-chroma plane (bottom panel) for all 360 images used. Figure 9b plots the model (X-axis) and human (Y-axis) 
matching data in the L, a*, and b* dimensions individually. The Pearson’s correlation coefficients between the 
observed and predicted data were [L, a*, b*] = [0.95, 0.90, 0.95] (t(358) = 59.88: p < 10–188, t(358) = 38.35: p < 10–129, 
t(358) = 55.74: p < 10–178). A T2 test based on the Mahalanobis distance of data in the La*b* space for the individual 
images showed that for 19 out of 360 images, the predicted data were significantly different (p < 0.01) from the 
human data (no images were significant if multiple comparisons were FDR-corrected). These results suggest that 
the representative color of stimuli, including natural and synthetic images matched by human observers, can 
be predicted by very simple pixel statistics solely. Although the prediction may appear to be still inaccurate, it is 
easily expected that models incorporating the other shallow and/or deep image features34,41,42 would make more 
accurate predictions without considering high-level conceptual features such as shape, occlusion, and highlights.

Figure 8.   Matched representative colors for PS-synthesized images (upper panels) and phase-randomized 
images (lower panels). (a,b) Matched representative colors for the original and synthetic images. The green 
circle indicates the mean of the matched representative color of the synthetic images for 10 observers, and the 
red circle connected to it by a line indicates the mean of matched representative color for the originals: (a) shows 
the result in the a*–b* planes, and (b) shows the result in the L-chroma planes.
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Discussion
The present study investigated the characteristics and mechanisms of representative color perception for 120 
kinds of real-world surfaces, most of which involved highly complex structures and non-uniform material prop-
erties. The results showed that observers matched representative colors with higher lightness and saturation than 
the mean of the image, which is partially consistent with previous findings24,25,28,31,36,37. More importantly, the 
present study revealed that the perceived representative colors for the original images were not different from 
those for the PS-synthesized and from those for phase-randomized images except for one. The results support 
the idea that the human visual system utilizes simple image features to estimate the representative color of a 
natural surface. It is important to note that our observers were not asked to accurately estimate the physical dif-
fuse reflectance, but to simply indicate the "representative" color of objects. This may be the fundamental reason 
why observers referred to simple image measurements to make the judgement.

The current model is descriptive, and it is unclear how the visual system utilizes image features (i.e., the 
brightest point in the image excluding highlights) to make behavioral judgments about representative colors. 
One possibility is that the visual system serially samples representative image areas while ignoring outliers, then 
picks up the local information to make a decision about the color of the entire image. Actually, previous studies 
have demonstrated the role of such serial samplings in lightness/color perception25,43. An important finding of 

Figure 9.   (a) Matching data predicted by the model and observed data. Results for all 360 natural and synthetic 
images. A red circle represents the average of the matched representative color, and the black dot connected to 
it by a line represents the color predicted by the model. The upper and lower panels show the results in the a*–b* 
and L-chroma planes, respectively. (b) The relationship between the human data and model data. The horizontal 
axis shows the model predictions, and the vertical axis shows the human data. The top, middle, and bottom 
panels show the results for the L, a*, and b* axes, respectively. Error bars represent the ± 1 s.e.m. across observers.
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the present study is that, even in this relatively time-consuming process, the visual system makes decisions using 
low-level image features without relying on information about the shape and material properties of external 
objects. Moreover, these image features are likely to be very simple, such as maximum luminance or saturation, 
which does not require spatial pattern analysis. This supports the idea that the perception of representative 
color depends on low-level ’non-spatial’ image features, in contrast to the perception of other surface material 
properties such as gloss and bumps, which require texture statistics based on spatial frequency and orientation 
analysis and/or even higher-order information. On the other hand, the present results do not necessarily exclude 
the possibility that surface color perception involves high-level spatial processing, such as segmentation and 
contour formation. They may also be useful to ignore irrelevant parts (e.g., specular highlights, dust specks) in a 
more sophisticated fashion. Whatever the alternative model or hypothesis would be, however, it should be able 
to explain the perceptual data obtained for many ecologically valid stimuli (e.g., photos of 120 daily objects we 
used), but not only for artificially created stimuli that hardly or never exist in the real world (e.g., solid-shaped 
CG objects, flat paper).

In the present study, we did not use images for which it was too difficult to perceive one representative color. 
According to our casual observations, such images often consist of regions that obviously have more than one 
hue. Indeed, it has been shown that hues tend to be consistent within a single object in natural scenes44,45, and 
that the hue consistency can be used to segment objects in natural images46,47. The colorful mimicry found in 
the epidermis of certain animals and insects reduces the probability of perceiving themselves as a single object 
because of the different hue patterns48,49. According to these findings, it is natural for us to be unable to easily 
perceive the representative color of an image region that is not hue-consistent and therefore cannot be considered 
a single-object surface. However, this account, which is based on hue variation, cannot explain the difficulty of 
finding a single color on particular (but not rare) surfaces with distinct texture patterns that have a similar hue 
but clearly different saturation. There are also cases in which the perception of representative colors is not difficult 
by ignoring some different colors if that color has only a small area, for example, when the ground is visible in 
a small portion of a lawn. To summarize, it appears to be difficult to determine whether a surface has a single 
color on the basis of simple image features alone. Decisions may also be influenced by top-down mechanisms, 
such as spatial scaling of attention. At present, we can only rely on the subjective judgment of the observer as to 
whether a single representative color can be perceived with confidence.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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