
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13522  | https://doi.org/10.1038/s41598-023-33554-9

www.nature.com/scientificreports

Numerical analysis 
for tangent‑hyperbolic micropolar 
nanofluid flow over an extending 
layer through a permeable medium
Galal M. Moatimid 1, Mona A. A. Mohamed 1*, Ahmed A. Gaber 1,3 & Doaa M. Mostafa 1,2

The principal purpose of the current investigation is to indicate the behavior of the tangent-hyperbolic 
micropolar nanofluid border sheet across an extending layer through a permeable medium. The 
model is influenced by a normal uniform magnetic field. Temperature and nanoparticle mass 
transmission is considered. Ohmic dissipation, heat resource, thermal radiation, and chemical impacts 
are also included. The results of the current work have applicable importance regarding boundary 
layers and stretching sheet issues like rotating metals, rubber sheets, glass fibers, and extruding 
polymer sheets. The innovation of the current work arises from merging the tangent-hyperbolic 
and micropolar fluids with nanoparticle dispersal which adds a new trend to those applications. 
Applying appropriate similarity transformations, the fundamental partial differential equations 
concerning speed, microrotation, heat, and nanoparticle concentration distributions are converted 
into ordinary differential equations, depending on several non-dimensional physical parameters. The 
fundamental equations are analyzed by using the Rung-Kutta with the Shooting technique, where the 
findings are represented in graphic and tabular forms. It is noticed that heat transmission improves 
through most parameters that appear in this work, except for the Prandtl number and the stretching 
parameter which play opposite dual roles in tin heat diffusion. Such an outcome can be useful in many 
applications that require simultaneous improvement of heat within the flow. A comparison of some 
values of friction with previous scientific studies is developed to validate the current mathematical 
model.

List of symbols
n	� Power law index
ui	� Velocity components (m . s−1)
xj	� Model coordinates (m)
fi	� Body force (N = kg . m . s−2)
N	� Microrotation vector (kg . m2/s)
k	� Vortex viscosity coefficient
T	� Temperature of fluid
DB	� Brownian diffusivity
C	� Nanoparticles concentration (Mol . m−3)
DT	� Thermophoretic diffusion (m2 . s−1)
T∞	� Temperature at infinity (K(Kelvin))
qr	� Radiative heat flux
Ji	� Electric current density components
Q0	� Heat source/sink parameter
R1	� Chemical reaction parameter
L	� Permeability parameter (H/m)
Tw	� Temperature at wall (K(Kelvin))

OPEN

1Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt. 2Department of 
Mathematics, College of Science, Qassim University, P. O. Box 6644, Buraidah 51452, Saudi Arabia. 3Department 
of Mathematics, College of Science and Humanities at Howtat Sudair, Majmaah University, Majmaah 11952, Saudi 
Arabia. *email: monaali@edu.asu.edu.eg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-33554-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13522  | https://doi.org/10.1038/s41598-023-33554-9

www.nature.com/scientificreports/

Cw	� Nanoparticles concentration at wall (Mol . m−3)
C∞	� Nanoparticles concentration at infinity (Mol . m−3)
Pr	� Prandtl numeral
Le	� Lewis’s numeral
NT	� Thermophoresis factor
Nb	� Brownian motion factor
We	� Weissenberg parameter
Q	� Heat source parameter (m3 . s−1)
Ec	� Eckert numeral
R	� Thermal radiation factor
Da	� Darcy numeral
b1	� Thermal slip parameter
b2	� Nanoparticles slip parameter
R1,R2	� Chemical reaction parameters (Mol/(m3 . s))

Greek symbols
τ 	� Tensor of extra stress
µ∞	� Endless shear rate viscosity
µ0	� Zero-shear rate viscosity
Ŵ	� Time-dependent material continual
ρ	� Fluid density (Kg/m3)
γ	� Microrotation parameter
(ρc)f 	� Heat capacity of the flow (J . K−1)
(ρc)p	� Heat capability of the nanoparticles (J . K−1)
α	� Coefficient of thermal diffusivity
σ	� Electrical conductivity (S/m)
ν	� Kinematic viscosity (m2/s)
β1	� Coefficient of heat slip
β2	� Coefficient of mass slip
�	� Stretching parameter
α	� Velocity slip

Because of the continuous advancements in manufacturing, non-Newtonian fluids have attracted academic 
attention during the last decades. Coal–oil paints, intelligent coatings and formulations, cosmetics, and physi-
ological liquids are only a few examples of such fluids. Non-Newtonian fluids do not have a specific fundamental 
correlation involving strain rate and stress. This is because of the wide range of properties of these liquids in 
the environment. These fluids have much more challenging mathematical problems than viscous fluids due to 
dangerous higher-order nonlinear differential equations. Although numerical approaches are normally essential 
to solve the mathematical combinations that emerge in the non-Newtonian prototypes, analytically restricted 
approaches have been found in a few instances. Exact and numerical outcomes provide valuable support for 
experimental investigations. A tangent hyperbolic fluid surrounding a sphere subjected to a convective boundary 
condition and a Biot number was the subject of discussion in regard to Brownian motion and thermophoresis 
consequences1. There hasn’t been much research done on concentration boundary conditions involving a wall 
normal flow of zero nanoparticles. Investigations were done into how the mixed convection tangent hyperbolic 
flow was affected by radiation absorption and activation energy2. When the radiation absorption and activation 
energy parameters were raised, it was discovered that the velocity improved. The movement and temperature 
transmission of an incompressible tangent hyperbolic non-Newtonian flow through a normal porous cone and 
a magnetic strength was analyzed in a nonlinear non-isothermal steady-state border sheet3. In the existence 
of thermal and hydrodynamic slip, the thermostatic sphere’s nonlinear continuous border sheet flow and tem-
perature exchange of an incompressible tangent hyperbolic non-Newtonian liquid were studied4. A tangent 
hyperbolic nanofluid flowing cylinder with Brownian movement and thermophoresis influences in an unstable 
MHD free convection flow was explored5. The motivation of this study was to keep coming up with numerical 
formulations for a time-responsive incompressible tangent hyperbolic fluid as well as nanoparticles in the con-
text of a moving cylinder. The movement of a tangent hyperbolic liquid along a flow of an expanding layer was 
studied6. The use of nonlinear radiation was used to enhance heat transfer properties. The energy was used to 
characterize additional aspects of mass transfer. By incorporating the relevant laws, the situation was modeled 
from the perspective of boundary layer equations. The impact of changing thermal conductivity on the MHD 
tangent hyperbolic liquid in the existence of nanoparticles through a stretched surface was investigated7. The 
combined stimulation of slip and convection circumstances with heat generation, viscous dissipation, and Joule 
heating was inspected for heat and mass transmission processes. Recent work has used an appropriate rheologi-
cal model to investigate the stagnation point movement and thermal properties of a tangent hyperbolic liquid 
across a normal border8. A tangent hyperbolic liquid movement prototype was used to simulate the physical 
circumstance. A new approach for translating the important formulations of a double-diffusive MHD hyper-
bolic tangent liquid prototype hooked on a set of nonlinear fundamental formulae was proposed, using the Lie 
group analysis procedure9. In accordance with the previous aspects, the current work is conducted through the 
tangent hyperbolic fluid flow.
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Because of the numerous applications of micropolar fluid motion in plasmas, furnaces design, and nuclear 
power plants over the past several decades, have attracted a lot of attention. Micropolar fluids including an 
asymmetric stress tensor that can really continue rotating according to the conservation laws of the reflecting 
non-Newtonian fluid description were a subclass of micropolar fluids. Fundamentally, such substances were 
defined as fluids made up of colloidal matter with random orientations in a viscous medium. The movement of 
infected animals, liquid crystals, suspending treatments, and heterogeneous liquids can all be better understood 
using this fluid approach. The unsteady flow of a micropolar fluid over a curving stretched surface was taken 
into consideration with regard to heat and mass transfer10. It looked at the consequences of thermophoresis and 
Brownian motion. On the curved surface, the impacts of suction/injection situations were also discussed. Ther-
modynamic limitations have also been thoroughly examined11. In the conclusion of his book on the hypothesis 
and presentations of micropolar liquids, it was outlined a number of interesting characteristics. Using a verti-
cally nonlinear Riga stretched sheet, a comparative investigation of the flow of micropolar Casson nanofluid was 
examined12. Under thermophoresis and Brownian movements, the influences of temperature and velocity slip 
were taken into consideration. The fluid velocity distribution curves were discovered to exhibit rising behavior 
as a result of micropolar parameter changes. The hydromagnetic radiative peristaltic blood phenomena of a 
micropolar fluid along a channel using the Adomian decomposition method was explored13. The effects of dif-
ferent settings were visually shown. Additionally, the micropolar liquid model seems to be more appropriate 
for biofluids like blood. Peristalsis has received a great deal of interest in the field of fluid mechanics in recent 
years due to its importance in physiological technologies and advanced implementations. Therefore, a model of 
a micropolar-Casson fluid following the peristaltic processes involving radiant heat in a symmetrical channel 
was created, using the lubricating approximation theory14. Micropolar fluids included a wide variety of polymeric 
formulations, lubrication liquids, colloidal extensions, and complexes. Significant applications such as viscous 
dissipation, heat generation, and slipping situations have an impact on the MHD micropolar liquid flow and 
temperature transmission over a stretched surface examined15. Flow and heat transfer of micropolar fluids via an 
extended layer in a Darcy permeable material was studied16. The Rolex boundary conditions, and the isothermal 
wall were mostly used to analyze the heat exchange event.

Permeable media were solid matrices with voids (pores) that frequently overflow through water. It was under-
stood that rigid and open-cell porous media were saturated when all of the pores were filled with fluid, allowing 
the fluid to pass through the voids. Lately, the method of employing nanofluid and permeable media has drawn 
a lot of interest and has stimulated a lot of studies in this discipline. The surface area of interaction between 
liquid and solid surfaces was increased by porous media, and the effective heat conductivity is increased by 
nanoparticles dispersed in a nanofluid. It followed that mixing porous media with nanofluid can greatly boost 
the effectiveness of conventional thermal systems. An in-depth discussion of the hybrid nanofluid of natural 
convection was introduced17. They tried to determine which nanoparticle model, mono or hybrid, produced a 
better fluid flow behavior. An evaluation of the nanofluid movement in permeable media was done18. It looked 
at some findings of an MHD liquid in permeable media. Several scientists worked to enhance temperature trans-
mission in free, forced, and mixed convection using nanofluids in porous media19. The convection of nanofluids 
in thermally unstable permeable media embedded in microchannels was studied20. For both the liquid and 
solid stages, temperature distributions in two dimensions were determined. A mixture of permeable media and 
nanofluids was employed to increase the temperature transmission across a normal cylinder that produced a high 
heat flux21. This process indicated that the electrical apparatus functions intended within the parameters set by 
the manufacturer. Yirga and Shankar22 investigated Soret interactions, viscous dissipation, chemical processes, 
and convective thermophysical properties in a nanofluid movement across permeable media generated by an 
extending layer according to a magnetic strength. The mathematical statements were converted to ordinary dif-
ferential equations using similarity transformations, and the Keller box approach was then used to numerically 
solve them. The impact of an inclined magnetic field on the Casson nanofluid across an extended layer enclosed 
in a saturating permeable matrix in the existence of heat transfer and a non-uniform convectively heated layer 
was investigated23. The numerical Runge–Kutta solution using a shooting strategy was used to reach the main 
conclusions. The effect of thermal radiation dissipation on nanofluids in an unsteady MHD occupied by a per-
meable medium only along the upstanding conduit was examined24.

The high-order differential equations of boundary value problems (BVPs) are one of the most important 
models that describe many scientific phenomena in diverse areas of physics and engineering. Many researchers 
have been interested in discovering and developing many mathematical methods for solving these equations25. 
One of these methods is the shooting method, which was developed to solve high-order BVPs easily by divid-
ing the high-order differential equivalence into a structure of first-order differential equalities. The shooting 
approach can be simply used for nonlinear second order BVP in general. This is the benefit of utilizing the 
shooting technique over the finite difference method, which requires the solution of finite difference equations26. 
Therefore, this method proved to be effective for solving this type of equation. In recent decades, many research-
ers have utilized the shooting method to solve BVPs equations. Seddeek et al.27, for example, analyzed the flow of 
magneto micropolar liquid under the effect of radiation. Aurangzaiba et al.28 also solved a model of micropolar 
fluid including temperature transmission. Ibrahim et al.29 scrutinized the movement of a viscoelastic nanofluid. 
Further, Preeti and Ojjela30 studied MHD boundary layer flow for a hybrid nanofluid.

The focus of the current work is on understanding how a nanoparticle-containing fluid flows through an 
extending horizontal sheet at the bottom of a micropolar non-Newtonian fluid. The objective of the current 
work is to illustrate a coupled-model fluid consisting of the tangent-hyperbolic and micropolar types in addition 
to dissolved nanoparticles. This model is extremely useful in technologies and production operations, such as 
rotating metal, making rubber sheets, making glass fibers, producing wire, extruding polymer sheets, produc-
tion polymers, etc. The discussed problem is thought to give a new orientation to these applications by adding 
new categories of practical fluids. Within those situations, the rate of cooling and the procedure of extending 
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determine the final desired qualities of the product. As a result, temperature transfer should be taken into con-
sideration, in addition to nanoparticle volume fraction distribution across the tangent-hyperbolic micropolar 
fluid. Additionally, this work investigated ohmic dissipation, temperature production, magnetic strength, and 
chemical processes. Ohmic heating dissipation has many applications such as; lightning, melting, recognition 
of starch gelatinization, cracking, vaporization, dryness, extraction and fermentation, so many of references and 
the work in hand interest to illustrate its involvement with liquid flows. Situations involving speed, heat, and 
nanoparticle sliding are designated for the surface. The new findings of the current study are compared with 
those established in the literature.

The current study attempts to answer the following questions:

•	 How does the speed of a tangent-hyperbolic micropolar nanofluid respond in the extending layer?
•	 How are the distributions of temperature and nanoparticles throughout the treated flow organized?
•	 What are the frequent relationships between the distributions of nanoparticles and microrotation velocity, 

velocity, and heat?
•	 What effects do the relevant parameters have on the aforementioned distributions, and what uses are there 

for them?

The rest of the manuscript is planned as follows to crystallize the demonstration: "Prototype formulation" 
Section explains the issue approach. The regulating equations of motion, the physical quantities of interest, and 
the suitable similarity transformations are included in this section as subsections "Description of the boundary-
value problem", "Important physical quantities", and "Convenient conversions of relationship", correspondingly. 
"Mathematical technique" Section is dedicated to introducing the methodology of the shooting method as the 
numerical utilized technique. "Findings and interpretation" Section presents the findings and discussions. Finally, 
in "Concluding remarks" Section, the significant findings are summarized as concluding observations.

Prototype formulation
The present model illustrates a non-Newtonian laminar hydrodynamic two-dimensional nanofluid movement 
in the neighborhood of a broadening surface, and obeys the tangent hyperbolic prototype31 and32. The novelty of 
this work lies in identifying and modeling the thermal and volumetric nanoparticle distributions of the tangent 
hyperbolic micro rotating liquid across an extending layer. The Cartesian coordinate model is employed, where 
the expanding border is horizontally aligned along x−axis that has a spreading speed Uw = cx , and the y−axis is 
vertically directed along with the plate as shown in the sketching model Fig. 1. Therefore, the stretching surface 
is located at y = 0 , which stretches along with the x−path with a steadily stretched parameter, see31 and33. The 
flow is supposed to be restricted to the boundary layer region y > 0 , which is adjacent to the linear spreading 
border through a permeable medium with permeability K  . The sheet is maintained at a fixed heat and nano-
particles concentration Tw and Cw , correspondingly. Meanwhile, as y goes to endlessness, the ambient amounts 
of heat and concentration approaches T∞ and C∞ , correspondingly. In this configuration, the flow exhibits the 
velocity, heat, and mass slip at the surface wall. Along with the normal axis to the stretching surface, a uniform 
magnetic strength of intensity B0 is considered. For the purpose of simplicity, the influence of electric strength 
can be overlooked. The non-existence of the induced magnetic intensity is produced by the hypothesis of a small 
Reynolds numeral31 and32. Because of the presence of the Lorenz force, the fluid is magnetized. One of the most 
important applications of our model is the flowing fluid over the stretching sheet inside the parabolic trough solar 
collector which is used in solar cell systems like solar water pumps, solar aircraft wings…etc. Jamshed et al.34 
and Jamshed et al.35 observed that the application of nanofluids and hybrid nanofluids improved thermal trans-
fer, and hence improved the efficiency of the solar cell. The relationship between our discussed model and this 

Figure 1.   Physical model of the problem.
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real application is that the current flow is studied on a stretching sheet utilizing nanoparticles such as Jamshed. 
Moreover, the assumed fluid is tangent hyperbolic and micro rotating one under effects of the magnetic field, 
Ohmic dissipation, heat resource, thermal radiation, and chemical reaction.

Description of the boundary‑value problem.  The tensor of Cauchy stress τ  is used for hyperbolic tan-
gent fluid and is defined by Ullah et al.36 as follows:

since τ ,µ∞ , µ0 , Ŵ and n denote the tensor of additional stress, the endless shear rate viscosity, the zero shear rate 
viscosity, the time related material amount and power law index number, correspondingly. The stress tensor τ  
may be formulated as given by Zakir Ullah et al.36:

where 
∏

= 1
2 trac

(

∇V + (∇V)T
)2.

For simplicity, the case µ∞ = 0 is only considered, i.e., the infinite shear rate viscosity is ignored. Further-
more, as the tangent hyperbolic liquid defines the shear weakening occurrences, thus Ŵγ < 1 is assumed. Taking 
these abovementioned assumptions into account, Eq. (1) will take the following form:

The governing equations are assumed to judge an incompressible tangent hyperbolic nanofluid in the descrip-
tion of the current model and are reduced as follows:

The preservation of mass and momentum of an incompressible non–Newtonian fluid may be described as 
follows37:

and

The microrotation momentum equation is written by Mohamed and Abou-zeid38 as follows:

The energy and the nanoparticle volume fraction equations are specified by Rehman et al.39 as:

and

Rosseland computation40 is employed to represent the radiative temperature flux as follows:

where T is heat, α is the coefficient of thermal diffusivity, Q0 is dimensional heat production, (ρc)f  is the heat 
capacity of the liquid, and (ρc)p is the temperature capacity of the nanoparticles.

The current work assumes slip velocity, thermal and nanoparticles at the surface wall. Therefore, the appropri-
ate boundary conditions can be written as follows:

where β1,β2 are the coefficients of heat and mass slip, c is a constant, cx represents the wall velocity and Tw > T∞.

(1)τ = [µ∞ + (µ∞ + µ0) tanh(Ŵγ )
n]γ
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,



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13522  | https://doi.org/10.1038/s41598-023-33554-9

www.nature.com/scientificreports/

Important physical quantities.  The important physical amounts in this analysis are the skin friction 
parameter, Cfy which acts along the y direction, the Nusselt numeral Nu and the Sherwood numeral Sh , that are 
described by Ibrahim41 as:

where the skin friction parameter indicates local amount and substantially implies the ratio between the local 
shear stress to the dynamics pressure, and

represents the Nusselt numeral is the ratio between convective and conductive temperature transmission at a 
border in a liquid. Finally, we have

where the Sherwood numeral is specified as the ratio between the convective mass transmission and the mass 
diffusivity.

Convenient conversions of relationship.  The fundamental nonlinear partial differential equations are 
transformed into other ordinary ones by an effective similarity conversion. Drawing on the work of Fatunmbi 
and Okoya42 and Ishak43, the required similarity transformations can be created as:

where F(η), θ(η), ϕ(η) and H(η) are non-dimensional speed, heat, nanoparticles concentration, correspondingly, 
and η is a non-dimensional relationship coordinate.

Under the conversions (11), Eqs. (5–8) may be formulated as:

The solutions of these equations are subjected to the border restrictions:

where
K = κ

vρ  ,  We =
√
2aŴUw√

ν
 ,  M2 = σB20(x)
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∞
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(ρc)f c
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√

c
ν
L , b1 =

√

c
ν
β1 , b2 =

√

c
ν
β2 and, 

Da = cL
ν

.

Mathematical technique
The scheme of the governing, fundamental Eqs. (13)–(15) with border restrictions (16) is numerically explained 
utilizing the shooting technique with the aid of Mathematica 11. For utilizing the method, the governing third 
important equations are converted to a scheme of first order ones. To guarantee that each numerical value 
approach asymptotic worth precisely, η∞ = 6 is considered. The governing structure of Eqs. (13–15) can be 
formulated along with the following forms:
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′,H(0) = 0, at η = 0,
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Then, we solve the ODEs with the initial conditions given by

The conditions at the regular limits (21) are not adequate to obtain the solutions of the combined system (20), 
so primary guesstimates for f ′′(0) , θ ′(0) , H ′(0) and ϕ′(0) , which expressed by z′1(0),z4(0) , z3(0) and z5(0) , respec-
tively are automatically suggested. First, the solutions begin in the location of η = 10−4 to avoid the singularity at 
η = 0 . The reasonable supposition values for f ′′(0),θ ′(0) , H ′(0) and ϕ′(0) are picked by the shooting technique, 
and then the integration process is completed. By Mathematica Software Version 11.0.0.0, the Runge–Kutta 
method is functioning, and the numerical solutions are attained. If the attained solution does not meet the 
acceptable range of convergence, then the primary guesses are re-suggested and the procedure is recurrent until 
the solution satisfies the convergence measure. Moreover, we compare the estimated amounts of f ′ , θ , ϕ and H at 
η = 6 (as infinity value) as well as the specified boundary conditions f ′(6) = 0,θ(6) = 0 , ϕ(6) = 0 and H(6) = 0 , 
then modify the values of f ′′(0) , θ ′(0) , H ′(0) and ϕ′(0) to get more iterations for solutions with further accuracy.
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Figure 2.   Variation of the radial velocity f ′(η) versus η as given in Eq. (15) to depict the effect of power law 
index n.

Figure 3.   Variation of the radial velocity f ′(η) versus η as given in Eq. (15) to depict the effect of parameter of 
the Weissenberg We.
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Findings and interpretation
A stationary, non-Newtonian nanofluid in the vicinity of a stretching surface, obeying the tangent hyperbolic 
prototype, is addressed. The model is influenced by a normal uniform magnetic field to the sheet. Heat and 
nanoparticles mass transfer is taken in account with Ohmic dissipation, temperature source, thermal radiation, 
and chemical response influences. The non-dimensional fundamental Eqs. (4)–(8) with the convenient border 
restriction (10) are numerically examined by processing the Runge–Kutta and Shooting method.

Figure 4.   Deviation of the radial speed f ′(η) versus η as given in Eq. (15) to depict the effect of the magnetic 
parameter M.

Figure 5.   Deviation of the radial speed f ′(η) versus η as given in Eq. (15) to depict the effect of the material 
parameter K.

Figure 6.   Deviation of the radial speed f ′(η) versus η as given in Eq. (15) to illustrate the influence of Darcy 
numeral Da.
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To substantially explain the problem, the findings are examined to exhibit the impacts of the restriction 
factors on the physical distributions. These factors incorporate the Weissenberg factor We , the power law fac-
tor n , the vortex viscosity factor K , the magnetic factor M , the stretching parameter � , the Darcy numeral Da , 
the Prandtl numeral Pr , the Eckert numeral Ec , the radiation factor R , the thermophoresis factor NT , and the 
Brownian movement factor NB . The study at hand concentrates on the influences of the limitations on speed, 
heat, nanoparticles distributions. These profiles are plotted in accordance with the data mentioned in Figs. 2–27.

Velocity distribution.  The non-dimensional radial speed u is mapped against the non-dimensional param-
eter η through Figs. 2, 3, 4, 5, 6 and 7 to illustrate the influences of the proper parameters that appear in this prob-
lem. It is seen that reduction of the radial speed is a general performance with the whole of η i.e., far away from 
the wall. Figures 2, 3 and 4 demonstrate the impacts of three different parameters on the fluid speed, namely, the 
power law parameter n , the Weissenberg parameter We and the magnetic field parameter M . As seen from Fig. 2, 
the rise of the power law parameter decreases the flow velocity, which reduces the hydraulic boundary area of the 
fluid. Materially, the growth of n leads to a rise in the fluid viscosity, which leads to a weak motion of the flow. 
This result accords with the works of Ibrahim32, and Hussain et al.44. The same behavior corresponds to We as 
shown in Fig. 3. Physically, the Weissenberg parameter represents the relaxation coefficient of the fluid. Moreo-
ver, the Weissenberg numeral defines the ratio between the elastic and viscous forces. Consequently, the rise 
of We means more elasticity of fluid, which implies that the growth of We yields a reduction in the fluid speed. 
The same result was concluded by Ibrahim32, and Hussain et al.44. Accordingly, the impact of the magnetism 
constraint M on the flow speed appears in Fig. 4, where the rise of the magnetic strength waves, as a measure of 
the Lorentz force, indicates a drop in the fluid velocity. Physically, the Lorentz power impedes the fluid flow and 
tends to be more prevailing with the rise of M , which causes a drop in the fluid velocity. This finding corresponds 
to that described by Zakir Ullah et al.36 and Akbar et al.45. Figure 5 signifies the impact of the vortex viscosity 
factor K on the speed outline. It is found that the rise in the microrotation parameter leads to a rise in velocity. 
From the physical standpoint, microrotation means the rotation of the microscopic parts of a fluid, crystal etc. 
Subsequently, the rise of these rotations accelerates the fluid flow, and hence increases velocity. This result cor-
responds to that described in the earlier works of Seddek et al.46 and Javed et al.47.

Figure 7.   Deviation of radial speed f ′(η) versus η as given in Eq. (15) to depict the effect of the stretching 
parameter �.

Figure 8.   Deviation of the microrotation profile H(η) versus η as given in Eq. (16) to depict the effect of 
parameter of the Weissenberg We.
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Figures 6 and 7 display the behavior of the velocity profile with η coordinate for various values of the Darcy 
numeral Da and the stretching factor � . Figure 6 shows that the rise in Darcy number yields an increase in the 
fluid speed. Actually, the Darcy numeral depends on the permeability of the medium, where the Darcy numeral 
represents the ratio between the permeability of the medium and its cross-sectional area so the rise of Da means 
a growth of the permeability of the medium and in turn a rise in the speed of the flow, so such influence turns 
out. This result is consistent with those earlier concluded in Ref.48.

Figure 9.   Deviation of the microrotation profile H(η) versus η as given in Eq. (16) to depict the effect of power 
law factor n.

Figure 10.   Variation of the microrotation profile H(η) versus η as given in Eq. (16) to illustrate the influence of 
the material factor K.

Figure 11.   Variation of the microrotation profile H(η) versus η as given in Eq. (16) to illustrate the influence of 
the magnetic factor M.
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On the other hand, in Fig. 7, it is noticed that the rise in the expanding factor � results in a rise in the fluid 
velocity. Physically, the growth of the walls stretching coefficients helps the flow to move easily in the movement 
direction, hence this velocity component increases with the rise of � . This result is consistent with the same 
outcome as given in Zakir Ullah et al.36.

Microrotation (Spin) Velocity distribution.  With a view to clarify the influences of the relevant param-
eters on the microrotation (spin or angular) velocity H , Figs. 8, 9, 10, 11, 12 and 13 are outlined. By these dia-
grams, the microrotation speed H is graphed against the dimensionless parameter η . As noted, the microrotation 
distribution noticeably increases until some values of η ∼= 1 after which the behavior is reversed and decreases 
rapidly. Figures 8 and 9 denote the impacts of the power parameter n and the Weissenberg parameter We on the 
microrotation velocity profile. These two figures show an opposite behavior for the values of these parameters 
with the behavior of the microrotation velocity, where the rise in the values of these factors leads to a decrease 
in the microrotation velocity profile after a period of consistency near the wall. It is noted that these effects are 
the same as those of these parameters on the fluid radial velocity and have the same physical explanations. These 
findings are in accord with those given by Zakir Ullah et al.36 and Ishak43.

Figures 10 and 11 demonstrate the impacts of K and M on the microrotation velocity. As shown from Fig. 10, 
the increase of the vortex viscosity parameter K increases the microrotation velocity. Given that the microrotation 
represents the rotation of microscopic parts of a fluid, then the growth of these rotations accelerates the fluid 
angular velocity. This result is in accord with that concluded in Javed et al.47. On the contrary, the growth in the 
magnetism factor M increases the Lorenz force that impedes the movement of the flow whether in the radial 
direction, as seen previously in Fig. 4, or in the angular direction as shown by Fig. 11. These results are found to 
be consistent with those of Zakir Ullah et al.36, Akbar et al.45, and Ahmad et al.49.

Figures 12 and 13 show the behavior of the angular velocity H for different values of the Darcy numeral Da 
and the stretching factor � , correspondingly. It is obvious from Fig. 6 that the angular velocity rises with the 
growth of Darcy number. As observed above, The Darcy numeral signifies the proportion between the perme-
ability of the medium and its cross-sectional area so the rise of Da means a growth of the permeability of the 

Figure 12.   Variation of the microrotation profile H(η) versus η as given in Eq. (16) to depict the effect of Darcy 
number Da.

Figure 13.   Variation of the microrotation profile H(η) versus η as given in Eq. (16) to illustrate the influence of 
the stretching factor �.
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medium and making the flow much easier hence increases the velocity values. From Fig. 13, one can notice that 
the spin speed also rises with the rise of the stretching factor � . The physical interpertation of this effect of � has 
been mentioned above.

Temperature distribution.  Figures 14, 15, 16, 17, 18, 19, 20 and 21 demonstrate the non-dimensional tem-
perature distribution θ versus the non-dimensional variable η to clarify the impacts of the power law parameter 

Figure 14.   Deviation of the temperature profile θ(η) against η as given in Eq. (17) to illustrate the influence of 
the power law factor n.

Figure 15.   Deviation of the heat profile θ(η) against η as given in Eq. (17) to illustrate the influence of the 
magnetic factor M.

Figure 16.   Deviation of the heat profile θ(η) versus η as given in Eq. (17) to illustrate the influence of Eckert 
numeral Ec.
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n , the magnetism factor M , the Eckert numeral Ec , the radiation parameter R , the Prandtl numeral Pr , the 
stretching parameter � , the Brownian movement factor NB , and the thermophoresis factor NT.

Figures 14 and 15 illustrate the influences of the power index parameter n and the magnetic parameter M 
on the heat profile. These two figures show that temperature transmission improves with the rise of both n and 
M . Actually, the increase of n slows down the fluid speed as shown previously in Fig. 2 due to the growth in the 
fluid viscosity, which in turn increases the fluid temperature. Moreover, the increase of M increases the Lorentz 
force and slows down the fluid flow, then the temperature grows. The physical explanations of these two effects 

Figure 17.   Deviation of the heat profile θ(η) versus η as given in Eq. (17) to illustrate the impact of the Thermal 
radiation factor R.

Figure 18.   Deviation of the heat profile θ(η) versus η as given in Eq. (17) to illustrate the influence of the 
Prandtl numeral Pr.

Figure 19.   Variation of the temperature distribution θ(η) versus η as given in Eq. (17) to illustrate the influence 
of the stretching factor �.
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are as mentioned above in speed distribution. Similar results were found in previous studies by Zakir Ullah 
et al.36, and Akbar et al.45.

Figures 16 and 17 are designed to label the performance of the heat profile θ(η) in addition to the non-
dimensional align η and under the impacts of both the Eckert numeral Ec and the thermal radiation R . As 
shown in Fig. 16, the increase of Ec increases heat transmission. Materially, the Eckert numeral Ec Ec indicates 
the structure joining the kinetic energy and the boundary sheet enthalpy change; it also defines heat transmis-
sion dissipation. This temperature dissipation produces temperature due to the collaboration of the concerning 
liquid particles, which leads to a rise in the basic liquid temperature. so its increase naturally produces a rise in 
the heat of the fluid layer. In Fig. 17, it is found that the rise in the heat radiation factor R intensifies the fluid heat. 
Acutally, the radiation is one of the heat sources that increases or leaks heat from the current medium. Here, the 
radiation leads to an increase in heat, which means that it is one of the aspects that activate heat transfer, and 
therefore it is of practical importance in several fields. The high radiation load of the fluid leads to an increase 
in its temperature. These results are found to be in accord with the works of El-Dabe et al.48, and Abou-zeid12.

Figures 18 and 19 show temperature distribution with the η-coordinate under the influence of different 
values of  Pr and � , where the heat distribution of the fluid increases with the increase of Pr until a certain point 
( η ≈ 2 ) after which the effect is reversed, where the increase of Pr decreases temperature. Physically, the Prandtl 
numeral characterizes the proportion of momentum diffusivity (kinematic viscosity) and thermal diffusivity, 
so it is normal that the rise in the Prandtl numeral leads to a reduction in thermal diffusion. It seems that this is 
realized, but after a period of flowing away from the surface. After the reflection change point ( η ≈ 2 ), this result 
agrees with the work of Ahmad et al.49. On the contrary, temperature distribution decreases with increase of the 
stretching parameter � until a certain point ( η ≈ 3.1 ) after which the effect is inverted. As said before, the growth 
of the walls stretching coefficients helps the flow to be easier, and hence reduces the temperature of the fluid. 
The last result before the reflection change point ( η ≈ 3.1 ) corresponds to that obtained by Zakir Ullah et al.36.

Figure 20 and 21 demonstrate the effects of the Brownian movement factor Nb and thermophoresis factor Nt 
on heat transmittion. It is noticed in Figs. 20 and 21 that the increase in the Brownian movement factor Nb and 
the thermal transfer factor Nt increases heat transmission. Materially, the thermophoresis factor Nt enhances 

Figure 20.   Variation of the temperature distribution θ(η) versus η as given in Eq. (17) to illustrate the influence 
of the Brownian motion factor Nb.

Figure 21.   Deviation of the heat profile θ(η) versus η as given in Eq. (17) to illustrate the influence of the 
thermophoresis factor Nt.
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the drive of nanoparticles from the hot plate to the adjacent liquid, which yields a rise in the temperature in the 
nearby liquid as observed in Fig. 20. Similarly, this is because of the way that the thermophoretic force produced 
by the heat slope makes a quick stream away from the extending surface. By this manner more heated liquid is 
gotten away from the surface. Furthermore, the rise in the Brownian motion parameter Nb , which is considered 
as a measure of the accidental motion of the nanoparticles, improves the temperature in the zone layers of fluid as 

Figure 22.   Deviation of the nanoparticle concentration ϕ(η) versus η as given in Eq. (18) to illustrate the 
influence of the magnetic factor M.

Figure 23.   Deviation of the nanoparticle concentration ϕ(η) versus η as given in Eq. (18) to illustrate the 
influence of the stretching factor �.

Figure 24.   Variation of the nanoparticle concentration ϕ(η) versus η as given in Eq. (18) to depict the effect of 
the coefficient of thermal diffusivity α.
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shown in Fig. 21. These findings correspond to the works of Shravani et al.33, Awais et al.50, Gbadeyan51, Nadeem 
et al.52, and Ramesh et al.53.

Nanoparticle volume fraction distribution.  For discussing the influences of the magnetism factor M , 
the stretching parameter � , the coefficient of thermal diffusivity α , the Chemical reaction R2 the thermophoresis 

Figure 25.   Variation of the nanoparticle concentration ϕ(η) versus η as given in Eq. (18) to illustrate the 
influence of Chemical reaction R2.

Figure 26.   Deviation of the nanoparticle concentration ϕ(η) versus η as given in Eq. (18) to illustrate the 
influence of the thermophoresis factor Nt.

Figure 27.   Deviation of the nanoparticle concentration ϕ(η) versus η as given in Eq. (18) to illustrate the 
influence of Brownian motion factor Nb.
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factor Nt and the Brownian movement factor Nb , on the nanoparticles concentration ϕ(η) , the solution of 
Eq. (18) is numerically discussed and plotted through Figs. 22, 23, 24, 25, 26 and 27.

In Fig. 22, it can be noticed that at first, the effect is stable to some extent, but after a while the rise of the 
magnetism factor M increases the nanoparticles concentration ϕ(η) . As seen before, the rise of the magnetic 
parameter decreases the velocity magnitude in the border region due to the enhancement of Lorentz force, hence, 
the reduction of the velocity in the boundary stratum encourages the accumulation of the nanoparticles diffusion 
near the border. The same result was obtained in Refs.37 and54.

Figure 23 shows that there is a dual role of the expanding factor � in the nanoparticles concentration ϕ(η) . 
The increase of the expanding parameter initially increases the nanoparticles concentration ϕ(η) until η ≈ 2.5 
after which the nanoparticles concentration decreases. It can be noticed that this effect is opposite to those on 
heat transfer, so this is logical because as the temperature rises, the nanoparticles concentartion decreases and 
vica versa. This result is in accord with the same one concluded in Kitetu et al.55.

Figure 24 shows that the nanoparticles volume fraction ϕ(η) increases as the thermal diffusivity parameter α 
rises, as the further stream goes away from the boundary. Physically, thermal diffusivity equals thermal conduc-
tivity, divided by density and the specific heat capacity at uniform pressure. It measures the ratio between the 
ability of a material to conduct thermal energy and its ability to store heat energy. This means that as α increases, 
the ability of accumulating energy decreases, which leads to loss in temperature and increases the concentration 
of nanoparticles.

Figure 25 demonstrates the influence of various values of the chemical reaction parameter R2 on the nano-
particles concentration ϕ(η) . It is seen that the nanoparticles concentration decreases with the increases of 
R2 . Physically, as R2 increases, a wide-ranging dispersion of mass over the surrounding fluid rises. Hence, this 
increase of R2 causes nanoparticles to spread more away over the flow and indicates a drop in the nanoparticle 
concentration. This result is the same as that obtained by Moatimid et al.56.

Figure 26 and 27 depict the impact of the thermophoresis factor Nt and Brownian movement factor Nb on 
the nanoparticle’s concentration ϕ(η) . These diagrams show that the nanoparticles concentration ϕ(η) is a rising 

Table 1.   Skin friction indices are compared to the body of available research when � = α = S = 0 for various 
values of M , n and We.

Skin friction coefficient

n↓ M↓

Zakir Ullalh et al.36 Akbar et al.45 Present results

We = 0.0 We = 0.3 We = 0.5 We = 0.0 We = 0.3 We = 0.5 We = 0.0 We = 0.3 We = 0.5

0.0 0.0 1 1 1 1 1 1 1.0004 1.0004 1.0004

0.1 0.0 0.94868 0.94248 0.93826 0.94868 0.94248 0.93826 0.94901 0.9428 0.93858

0.2 0.0 0.89442 0.88023 0.87026 0.89442 0.88023 0.87026 0.89464 0.8804 0.87046

0.3 0.5 1.02472 0.98804 0.96001 1.09544 0.98804 0.96001 0.93543 0.9047 0.88150

0.3 1.0 1.18322 1.13454 1.09616 1.26491 1.13454 1.09616 1.18322 1.1345 1.09616

Table 2.   Nusselt numeral for � = α = S = 0 with various values of M , n and We.

n↓ We↓

−θ ′(0)

M = 0.0 M = 0.3 M = 0.5

0.0 0.0 0.31948 0.31392 0.30503

0.1 0.0 0.31261 0.30704 0.29818

0.2 0.0 0.30493 0.29939 0.29061

0.3 0.5 0.29061 0.28481 0.27568

0.3 1.0 0.28318 0.27675 0.26648

Table 3.   Sherwood numeral for b1 = b2 = 0,Nb = 1 with various values of R2 , Nt and Le.

R2↓ Nt↓

−ϕ′(0)− ϕ′(0)

Le = 0.1 Le = 0.5 Le = 0.7

0.0 0.0 0.20392 0.37315 0.45895

0.1 0.0 0.20387 0.37293 0.45865

0.2 0.0 0.20383 0.3727 5 0.45839

0.3 0.5 0.20352 0.37112 0.45612

0.3 1.0 0.20294 0.36807 0.45187
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function of the thermophoresis parameter and a decreasing function of the Brownian movement parameter. The 
increase in the thermophoresis factor Nt provides a logic and physical interpretation to the reduction in ϕ , where 
the nanoparticles scatter and accelerate in their accidental movement with the rise of Nt as displayed in Fig. 26. 
Furthermore, the Brownian motion represents a measure of the random motion of the nanoparticles scattered 
in a fluid. This random movement rises with the rise of Nb , which represents more departure of the nanoparti-
cles as obtained in Fig. 27. Moreover, the Brownian motion inclines to move nanoparticles from areas of high 
concentration to areas of low concentration. This result agrees with the findings of Ramesh et al.53, Abou-zeid12, 
Abou-zeid and Mohamed57, Alebraheem and Ramzan58.

Skin friction, Nusselt and Sherwood parameters.  Table  1 is designed to discuss the influences of 
the factors n , M and We on the skin friction coefficient Cfy and compare its values with the previous conclud-
ing data of Zakir Ullah et al.36, and Akbar et al.45 to confirm the correctness of the current numerical structure. 
As obtained in Table 1, there is a good agreement with the works of Zakir Ullalh et al.36 and Akbar et al.45. It 
is shown that the skin friction decreases with the rise of n , whereas it grows with the increase of M and is not 
affected by the change of We . Moreover, Table 2 illustrates the Nusselt numeral in the case of � = α = S = 0 for 
various values of M , n and We . Table 3 clarifies the Sherwood numeral in the case of b1 = b2 = 0, and Nb = 1 for 
various values of R2 , Nt and Le . It is found that the Nusselt numeral decays with the parameters M , n and We , as 
seen in Table 2. Furthermore, the Sherwood numeral decreases with R2 , Nt and increases with Le.

Concluding remarks
In accordance with the numerous applications of stretching sheets in manufacturing and production processes, 
the present study is prepared to introduce valuable results in this field of research. The work is concerned with 
the numerical analysis of an incompressible tangent-hyperbolic micropolar nanofluid movement past a stretching 
horizontal layer throughout a permeable medium. The novelty of the current work comes from the impact of a 
normal unvarying magnetic strength, Ohmic dissipation, temperature generation, and chemical reaction with the 
prescribed prototype of nanofluid flow. To reduce the mathematical analysis of the model, a convenient similarity 
transform is utilized to convert the partial differential equations to ordinary ones. Several non-dimensional physi-
cal numbers are explored, which play important roles and control the targeting distributions. Subsequently, a set 
of figures and numerical tables has been analyzed to demonstrate the implication of the various relevant physical 
parameters. The numerical analysis is performed in light of the shooting technique with the aid of Mathematica 
program version 11 to construct predictable distributions of all typical significant functions concerning velocity, 
microrotation (angular) speed, heat, and nanoparticles concentration. The foremost findings of the current work 
may be summarized in the following points:

•	 The impacts of the different factors on both the radial and angular velocities are similar. It is found that M , 
We and n decrease them, whereas K , � and Da increase them.

•	 The temperature transmission rises with the raise of the parameters M , n,NT , NB , Ec and R . On the other 
hand, the growth of the parameters Pr and � plays a dual role in heat transfer.

•	 The nanoparticles distribution ϕ rises with the rise in the values of M , Nt and α , meanwhile it declines with 
the rise of Nb and R2 . Like heat transfer, the parameter � plays a dual role in ϕ , but an opposite one.

•	 Some quantitative values of the skin friction factor for different values of M , n , and We are concluded and 
compared with some previous studies.

•	 Some measureable values of Nusselt and Sherwood numbers are tabulated for different parametric values.

Data availability
All data generated or analyzed during this study are included in this manuscript.
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