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Assessment of the impacts 
of climat change on water supply 
system pipe failures
Xudong Fan 1, Xijin Zhang 2, Allen Yu 3, Matthew Speitel 2,4 & Xiong Yu 5*

Climate change is projected to have profound impacts on the resilience and sustainability of built 
infrastructure. This study aims to understand the impacts of climate change on water supply systems 
and to facilitate adaptive actions. A premium database maintained by the Cleveland Water Division, 
Cleveland, Ohio, USA is analyzed. It contains 29,621 pipe failure records of 51,832 pipes over the past 
30 years, representing one of the largest dataset in current literature. From the database, pipe failure 
rate models have been developed for water pipes made of different types of materials at different 
ages. The influence of climate (temperature and precipitation) on fragility of water pipes are obtained. 
Based on the developed climate-fragility failure rate models, the impacts of climate change on the 
water systems located in different geographic regions are evaluated by predicting the failure rate and 
number of failures in the water systems in the next 80 years (2020 to 2100). Climate models are used 
to predict weather under different climate change scenarios. The results demonstrate that the impacts 
of climate change on water supply system are likely complicated and are dependent upon factors 
such as the geographic location, pipe material, pipe age, and maintenance strategies. Water pipes 
in the cold regions may experience fewer number breaks due to the warmer weather and less severe 
winter, whereas those located in the hot regions may experience more failures associated with more 
corrosion. Different pipe replacement strategies are compared, which demonstrate the importance 
of considering the aging of water supply system in future maintenance decisions. This study enriches 
current understandings on the impacts of climate change on the water systems. The results will help 
water utilities to design climate change adaptation strategies.

The drinking water distribution system is a backbone infrastructure for modern communities. Failures of water 
pipes cause expensive direct and indirect costs to the community. Climate is considered one of the significant 
factors influencing pipe  failure1. Climate change is expected to alter the temperature and precipitation patterns 
in the future, which then alters the patterns of pipe  failure2,3. Additionally, pipes in the current water systems are 
continuously aging over time, which further exacerbates the failures due to limited budget and underinvestment 
over the past  decades4. The condition of drinking water system in the United States has been rated at D by the 
ASCE Report  Card5. Therefore, it is crucial to develop water pipe failure models that allow utilities to simultane-
ously consider the effects of climate change, pipe ages, and pipe materials, etc. Such models will also help utilities 
to improve long-term planning and to institute policies that lead to more climate-resilient water supply  systems6.

The temperature and precipitation have been identified as two of the most influential climate factors in water 
pipe  failures7. High failure rates were often observed in cold winters. Other factors, such as accidents and natural 
hazards, are not considered in this study due to the inherent randomness. For the impacts of temperature, previ-
ous studies have shown that most water pipe failures occur in the late autumn and winter  seasons8. Iron pipes have 
higher failure rates during cold winters, mainly due to temperature-related soil freezing and volume  expansion9. 
On the other hand, plastic pipes (PVC or PE) better withstand the effects of thermal expansion and contraction 
than iron pipes, making them less susceptible to the cold  winters10. However, plastic pipes were found to be 
more prone to fail in dry  summers11,12. Compared to the studies on the influence of temperature, fewer studies 
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have analyzed the impacts of precipitations.  Clark13 indicated that a long period of a wetting period followed 
by a long warm and dry period would let to high volume changes of expansive soils, which increased the failure 
rate of rigid water pipes. Recent studies also demonstrated the close relationship between the precipitation and 
the pipe failure  probabilities14.

Different metrics based on climatic temperature or precipitation are often used to capture their correlation 
with the water pipe failure. Because the water pipes are buried underground, there are time lapses in the dem-
onstration of effects of weather on pipes. For example, study by Laucelli,  Rajani15 considered the daily average 
minimum, daily average maximum temperature, variation of temperature, and total rain over a specific period. 
Wols and van  Thienen11 considered the rain deficit, mean temperature, and antecedent precipitation index to 
analyze the climatic effects on pipe failures. Almheiri,  Meguid16 utilized the freezing and thawing indexes in 
a vector autoregressive (VAR) model to predict the water system’s failure rates. Rajani,  Kleiner17 included 11 
variables based on the temperature data, including the intensities of temperature change, severity of extreme 
temperature, and the duration of extreme temperature. Although different metrics based on temperature and 
precipitation data have been used in previous studies, there is no consensus on the metrics to include on the 
effects of climate on water pipe failures.

Statistical models have been widely used to study the impacts of climate change on water infrastructure 
systems due to their simplicity and  interpretability3,15. It is also suitable for providing a more interpretable 
results with rich  dataset18. For example, Żywiec,  Boryczko1 calculated the failure rate at different temperatures 
in the study of water system in Poland. Wols,  Vogelaar19 used the statistical analysis to study the influence of 
temperature, precipitation, and wind speed on the water system’s failure rate. Although different models have 
been used to study the impacts of climate factors, only a few studies have used these models to predict the influ-
ence of future climate change. To the author’s best knowledge, Wols and Van  Thienen20 and Żywiec, Piegdoń21 
are the only studies that have used the statistical relationship between temperature and the water system failure 
rate to predict the long term water pipe system failure frequency to the end of this century (i.e., from 2010 to 
2100). Also, most existing studies did not consider the effects of pipe aging when analyzing the impact of climate 
changes, probably due to the limitations in the amount of data available to quantify the influence of pipe aging 
on water pipe failures.

In this work, statistical analyses are performed to develop water pipe failure models for different pipe materials 
and age groups. The water system under study is managed by the Cleveland Water Division, Cleveland, Ohio, 
USA, which contains more than 30 years of maintenance  records22. The historical weather records from the 
 NOAA23 are utilized in the analyses. Based on the developed failure models of water pipe fragility over climate, 
the impacts of climate on the water system are studied by considering different climate zones, climate projected 
models, and socio-economic paths. The future climate data is collected from the Coupled Model Intercomparison 
Project Phase 6 (CIMP6)24.

Data and methods
Figure 1 shows the flowchart used to study the impacts of climate change. The whole diagram includes three 
major steps, i.e., development of pipe failure rate models for climate fragility, prediction of future failure numbers 
of the Cleveland water system under different climate change patterns (by assigning it to different geographic 
regions), and comparison of the consequence of water pipe maintenance schema. "Data sources" and "Pipe 
failure fragility over climate" sections introduce the data sources and definition of the failure rate. "Simulation 
and comparison of climate change impacts on water supply system" section elaborates the procedures for future 
failure prediction and compares the consequence.

Data sources. Data from different sources are firstly acquired and organized for this study, which includes 
the following dataset: (1) dataset of the system inventory of the Cleveland water system and historical water pipe 
failure  records22, (2) Historical weather data from the related climate stations from the National Oceanic and 
Atmospheric Administration (NOAA)  database23, and (3) Future climate data from different models of  CMIP624.

Figure 2(a) shows the overall map of the assembled dataset, and Fig. 2(b) shows an example of the locations 
of recorded water failures and water pipes. The physical information of each pipe is stored as ‘Polyline’ in the 
Geographic Information System (GIS), and the failure information is stored as ‘Point’. Four critical information 
is extracted from the failure records and inventory dataset, i.e., the (1) pipe material, (2) pipe installation date, (3) 
pipe length, and (4) failure recorded to date. The temporal resolution of the pipe installation date and pipe failure 
date is ‘day’, and the unit of pipe length is feet. To reduce the uncertainty, only pipes from three most common 
classified categories in the database, i.e., the ‘Cast Iron pipes’, ‘Ductile Iron pipes’, and ‘Unknown’, are studied. 
The total number of these three pipes is 59,303, accounting for 96.01% of the total system. The corresponding 
number of maintenance records is 28,520, accounting for 96.28% of the total maintenance records. The Cleve-
land Water Department began to keep the record the pipe failures in 1985. Since there are significant amount of 
missing records in the early stage, only failure records from 1990 to 2019 are analyzed to ensure the accuracy.

The historical daily minimum temperature and daily precipitation are selected from the NOAA dataset. The 
daily minimum temperature is used because water pipe is more sensitive to the low temperatures based on the 
field observations by experienced engineers at the Cleveland Water Division. The unit for the temperature is 
Celsius (°C), and the unit for the precipitation is millimeters (mm). Previous studies have found the time-lag 
effects of climate on the pipe failure, since pipes are buried  underground17. In this study, we considered the 
climate data 30 days before the failure occurred as recommended  by15,17. From our analyses, this time span also 
shows a more coherent trend with water pipe failures, whereas use of the other periods results in more scattered 
results. The moving average values were computed for both the daily minimum temperature and daily precipita-
tion over 30 day period before water pipe failed (Eqs. 1–2).
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where Td indicates the average temperature value of day d,Td−i is the daily minimum temperature on the ith 
day before day d, Pd indicates the average precipitation value for the day d. Pd−i is the daily precipitation on the 
ith day before day d.

(1)Td =
1

30

29∑

i=0

Td−i

(2)Pd =
1

30

29∑

i=0

Pd−i

Figure 1.  Flow diagram to study the impacts of climate change on the water system.

Figure 2.  Overview map of the water pipes and failure records (map is generated by CWD data and ArcGIS Pro 
version 3.1.0 (https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew)).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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It is known that the climate models and projections for the future have range of uncertainties. Therefore, 
multiple climate models need to be considered to reduce and account for the  uncertainty25. We considered three 
models for the future climate data, namely the community earth system model version 2 (CESM2), the Canadian 
earth system model version 5 (CanESM5), and the sixth version of the Model for Interdisciplinary Research on 
Climate (MIROC6)26–28. These models are selected based on the recommendation of a recent  publication6. For 
each model, three Shared Socioeconomic Pathways (SSPs) are considered, i.e., SSP1-2.6, SSP3-7.0, and SSP5-8.5. 
The different SSPs represent the different future socio-economic  assumptions29. For example, the SSP1-2.6 repre-
sents the scenario when global  CO2 emission is cut significantly, and the anticipated global warming is less than 
2 °C at the end of this century. On the other hand, the SSP 5–8.5 represents the high  CO2 emission to produce 
a radiative forcing of 8.5 W  m−2 in 2100. The SSP 3–7.0 is in the middle of these two models, whose anticipated 
radiative forcing in 2100 is 7 W  m−2 30. Similar to the data preprocessing in historical climate data, the moving 
average values (Eqs. 1–2) are computed for the future climate.

Single-factor failure rate model. The standard unit for the failure rate or failure frequency in the water 
system is the number of failures (or failure numbers) per unit time per unit  length31. In this study, we defined 
the failure rate as failure numbers/day/100 miles. We studied three different failure rate models respectively, i.e., 
the pipe’s failure rate model for ages, temperature, and precipitation. It is important to note that the pipe lengths 
increased annually for the Cleveland water system in the past 30 years, as shown in Fig. 3(a). Especially for the 
ductile iron pipes, whose lengths have significantly increased from around 250 miles to 800 miles. The lengths of 
pipes at each age also dynamically changed each year when considering the pipes’ ages. Therefore, it is important 
to compute the pipe failure rates considering the temporal influence. Based on the definition of failure rate, the 
historical failure rates of pipes made of different materials are shown in Fig. 3(b). It shows that while cast iron 
pipes typically have higher failure rates than the ductile iron pipes before 2005, in the years since then their 
failure rates are generally comparable. This is possible because most ductile iron pipes are in the relatively young 
stage (below 25 years old) before 2005. The earliest installation date of the ductile iron pipes is 1960, most were 
installed between 1980 and 2000. The pipes with ‘unknown’ material have the higher failure rates compared to 
the pipes made of cast iron or ductile iron materials. This is possibly because the ages of pipes with unknown 
materials are older.

Equation 3 shows the failure rate equation of different pipe ages. The failure rate is computed for each year 
by dividing the failure numbers by the total pipe length at that age. It should be noted that there may not have 
sufficient pipe samples at a specific age for certain years. For example, there only existed a few ductile iron pipes 
older than 30 years before 2000 as shown in Fig. 4. It is because ductile iron pipes were only used since 1970. The 
years before 2000 will not give representative samples to analyze. Therefore, only the years with sufficient number 
of pipe samples are considered valid in the analyses. In this study, the valid years for a specific pipe material 
and age group is defined as the years when the total pipe lengths of pipe made of that material and within the 
specified age group are larger than 1 mile.

where FRa is the failure rate at age a, FNn
a  is the failure number of pipes of age a at year n, Lna is the total length 

of pipes of age a at year n. N is the number of valid years.
The failure rate models of temperature or precipitation are studied under different pipe age brackets. Four 

age brackets are used so that enough pipe samples fall into each age group, i.e., 0 to 25 years, 25 to 50 years, 50 to 
75 years, and 75 to 100 years. With three materials and four age brackets, a total of 12 pipe groups are partitioned. 

(3)FRa =
1

N

∑(
FNn

a

Lna

)

n ∈ (1990, . . . , 2019) if Lna > 1mile

Figure 3.  Historical pipe lengths and failure rate of different materials.
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The climate factors, i.e., the temperature or precipitation, are divided into 10 brackets over their typical ranges. 
In this study, the temperature ranges from −10 to 20 °C, and the precipitation ranges from 0 mm to 5.5 mm. The 
pipe age and climate brackets are determined in a trial-and-error process to minimize abnormal failure rates. A 
smaller range of brackets would decrease the number of samples belonging to each bracket and therefore increase 
the probability of outliers. A wider range of brackets would decrease the generality of the proposed model.

Equations 4 and 5 are used to calculate the pipe failure rate of a specific age-material group at the specific 
climate bracket. Similar to calculating the failure rate against pipe ages, the failure rate must be computed annu-
ally since the total length of the pipe system changes over years. The failure rate of a specific group of pipe each 
year equals dividing the number of failures by the number of days in that climate bracket and then by the total 
length of the pipes (Eq. 4). It is noted that the cohort groups analyzed include different site-specific character-
istics. Therefore, the influences of these site-specific factors, such as the accidents, soil types, etc. are averaged 
in certain sense. The study primarily focuses on the influence of climate factors. Fan et al. (2022) describes the 
analyses of the influence of engineering, geology, climate and socio-economic factors on pipe failures.

where FRn
(t,a) is the pipe failure rate at temperature bracket t and age bracket a at year n, FN is the number of pipe 

failures, D is the number of days, L is the total length of pipes. t is the temperature bracket whose unit is °C. The 
failure rate of precipitation can be calculated similarly by replacing the t with precipitation p.

Also, considering the influence of insufficient pipe samples, only the years whose total pipe length is larger 
than 25 miles are considered the valid year. Be aware that this threshold is larger than that used in the failure 
rate mode for the effects of age. This is because the failure rate model of climate considers a 25 years-period. 
This threshold is selected to guarantee that the recorded failures are observed in at least five climate brackets. 
Lastly, the final failure rate at a specific climate bracket and age bracket is the weighted mean value of the failure 
rate at each year (Eq. 5).

where N is the number of validated years. A validated year means the total length of the pipe group at this year 
is larger than 25 miles.

Pipe failure fragility over climate. It is known that both climate factors (i.e., temperature and precipita-
tion) impact the water system’s failure frequency. However, previous failure rate models, especially statistical 
ones, were only developed to consider one climate  factor11. Single-factor failure rate models may not be enough 
for prediction of future climate effects since the climate change will alter both the temperature and precipita-
tion patterns. In this study, we computed the failure rates of the water pipes, or climate fragility of water pipes, 
considering both temperature and precipitation. The concept of failure rate map was used. Figure 5 illustrates 
the computing process of computing the 0–25 years cast iron pipe’s climate fragility, which utilized 1997–1998 
to illustrate. For each year, the pipes belonging to a specific pipe group were first selected. Then, the climate days 
and number of failures were partitioned into each temperature and precipitation brackets. The annual failure 
rate is computed by dividing the number of breaks by the number of days and the total length of the pipe group 
(Eq. 7).

(4)FRn
(t,a) =

FNn
(t,a)

Dn
t ∗ L

n
a

(5)FR(t,a) =
∑

n

(
FRn

(t,a) ∗ w
n
t

)

(6)wn
t =

Lnt
Lt

if Lna > 25miles

Figure 4.  Pipe lengths of 30-years ductile iron pipes at each year.
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where the FRt,p,a,n is the failure rate of pipes at age a when temperature at t and precipitation at p for year n. The 
FN, D, and L are the same as (Eqs. 4–5).

The final climate fragility map (which indicate the failure rates versus climate) are computed by the mean 
value of the climate fragility map for valid years between 1990 to 2019 (Eq. 8).

where N is the total number of valid years.
Many specific combinations of temperature and precipitation have not been recorded in the historical data, 

but a regression model allows to recognize the probable outcomes for those inputs. Thus, a regression model 
is necessary for computing the impacts of climate change in the long-term  future11. The Kriging algorithm is a 
spatial interpolation technique that has been widely used for geospatial and hydrogeologic discipline  analysis32. 
It estimates the unknown value by using the weighted average of nearby samples. Therefore, it simultaneously 
considered the spatial locations in the regression process. The kriging algorithm is demonstrated to provide the 
best linear unbiased estimator in the perspective of  statistical33 for a 2D spatial interpretation.

Different Kriging models have been developed in previous  studies34. The Ordinary Kriging algorithm is 
firstly explained in the following. As shown in Eq. 9, it estimates a location’s value by using the weighted sum. 
The weight of each point, �i , is determined by using the  semivariograms35 and Lagrange multiplier method. 
The empirical semivariogram used in this study is the sum of squared differences between values separated by 
a distance h (Eq. 10). The key idea of the Kriging algorithm is to minimize the mean squared perdition error of 
the predicted values. The detailed calculation process of the Ordinary kriging algorithm can be referred to Van 
Beers and  Kleijnen36.

where Ẑ(s0) is the predicted value at s0 , �i is the weight for the measured value at climate bracket i. Z(si) is the 
measured value at i location. N is the number of measured values.

where N(h) denotes the number of pairs of sites separated by a distance h. zuα and zuα+h are two points that are 
separated by the distance h.

However, the Ordinary Kriging requires a stationary assumption which means the mean and variance values 
is constant across the study  space37. Considering a trend may exist among the failure rate and climate factors, 
the Universal Kriging method is believed to get a more mathematically accurate result since it could consider 
the trend inside the  dataset38. The Universal Kriging is very similar to the Ordinary Kriging model, except a 
drift model is added. In this study, the regional-linear drift model proposed  by39 is used. The variance of the 

(7)FR(t,p,a,n) = FN(t,p,a,n)/D(t,p,n)/Ln

(8)FR
(
t, p, a

)
=

1

N

∑
FR

(
t, p, a, n

)

(9)Ẑ(s0) =

N∑

i=1

�iZ(si)

(10)γ̂ (h) =
1

2N(h)

N(h)∑

α=1

(
zuα − zuα+h

)2

Figure 5.  Illustration of the failure rate map (or fragility over climate) for cast iron pipes with age between 
25–50 years.
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Universal Kriging estimator at the location ( s0 ) is shown in Eq. (11) 40. The final prediction function Ẑ(s0) and 
semivariogram function γ̂ (h) are the same to the Simple Kriging. The PyKrige toolkit is used in this study for 
the model computation  process41.

where σ 2 is the variance of the Kriging estimator, ω,β1,β2 are Lagrange multipliers.

Simulation and comparison of climate change impacts on water supply system. The impacts 
of climate change on the water system are simulated under multiple scenarios, which include the climate change, 
replacement strategy, geographic location, as shown in Fig. 6. Three climate models were used to simulate the 
future climates under three different Shared Socioeconomic Pathways (SSPs) to consider the effects of uncertain-
ties of prediction models and social-economic development paths. Two types of pipe replacement strategies for 
the water supply system, i.e., the static replacement and dynamic replacement, were analyzed over the period of 
2020–2100 to understand the long-term influence of management policies. The static strategy assumes the pipe 
ages and materials of the water system are the same as 2020 in the following 80 years. This assumption, while not 
representing the field aging process, is made to study the impacts by climate change only. The dynamic strategy 
assumpes the pipe information is continuously updated by replacing the aged pipes with different materials. 
Pipes are assumed to be replaced when they reach 100 years old. For the materials of replacement pipes, the 
‘Original strategy’ assumes the pipes at the end of service life are replaced with pipe with the same original mate-
rials. The ‘Ductile strategy’ assumes the aged pipes are replaced with Ductile Iron pipes, and the ‘Cast strategy’ 
assumes the aged pipes are replaced with the Cast Iron pipes.

It is noted water pipe replacement strategies assumed in this study is much simplified than the real world 
scenarios. This is because that the analyses here primarily aim to examine the potential impacts and consequences 
of climate change and pipe aging. The simplifications allow to focus on these two primarily factors.

Four representative cities are selected from different climate  zones42. The climate conditions for the selected 
cities are classified as hot and humid, hot and dry, cold and dry, and cold and humid, respectively.

The failure rate and failure numbers for the water system located in the selected cities were computed for the 
next 80 years after 2020. The computation considers climate models, SSPs, replacement strategies, and locations. 
For each year, the failure rate of a specific material is computed by Eq. (12). It is a weighted sum of the failure 
rates of pipes in different age groups. The weights are determined by the proportion of the specific age group to 
the total material length at year n. The failure rate of pipes at a specific age and material group is the sum of their 
daily failure rates based on the daily forecast temperature and daily precipitation. Hence, the failure rate in the 
unit of failure numbers per year per 100 miles is determined.

where FR(n,m) is the failure rate of pipe made of material type m at year n, the m includes the cast iron, ductile 
iron, and unknown materials, and the n ranges from 2020 to 2100. L(a,n,m) is the length of pipe made of material 
m at age bracket a of year n. The range of a is the four age brackets, i.e., 0–25, 25–50, 50–75, and 75–100. The 
L(n,m) is the total length of material m at year n regardless the ages. FR

(
a,m, td , pd

)
 is the failure rate of pipe made 

of material m and age group a at day d whose temperature and precipitation are tdandpd . The day d ranges from 
1 to 365 (or 366) of the corresponding year.

(11)σ 2
=

N∑

i=1

�iγ (s0 − si)+ ω + β1x0 + β2y0

(12)FR(n,m) =
∑

a

(
L(a,n,m)

Ln,m

)∑

d=1

FR
(
a,m, td , pd

)

Figure 6.  Considered scenarios for comparison purpose.
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The annual failure number of pipe made of a certain material is its failure rate multiplied by the total length 
of pipe made of this material, as shown in Eq. (13). The water system’s total failure numbers can be computed by 
the sum of failure numbers of pipe made of each material.

where FR(n,m) is the failure rate of material m at year n as computed in Eq. (12). The Ln,m is the total length of 
material m at year n.

Results and discussion of failure rate models
This section represents the failure rate models of single and multi-climate factors. It only illustrates the pipe age 
and climate impacts on the pipe failures without considering the climate change in the next 80 years. "Evolution 
of pipe failure rate with age for pipes made of different materials" section shows the failure rate model of pipe 
ages. Then followed by the failure rate model of temperature and precipitation, respectively ("Pipe failure rate 
versus temperature and precipitation" section). "Failure rate fragility map over both temperature and precipita-
tion simultaneously" section shows the multi-climate model by using the failure rate maps.

Evolution of pipe failure rate with age for pipes made of different materials. Figure 7 shows the 
evolution of failure rates of pipes made of different materials with age computed by use the method described 
in "Single-factor failure rate model" section. Data points of pipe failure rates stopped at around 50 years for the 
ductile iron pipe because ductile iron only began to be used in water systems in the 1960s. The other types of 
pipes have been used for more than 100 years and thus have failure rate data over 100-year time span.

A quadratic curve was used to fit the failure rate trends (i.e., Eq. 14). Table 1 shows the parameters and 
performance of curve-fitting results. The root mean square error (RMSE) is used to evaluate the goodness of 
fitting (Eq. 15).

where a is the pipe age, α , β , and σ are the model parameters.

where N is the total number of samples, xi is the true value of sample i, and the x̂i is the estimated value of sample 
i.

(13)FN(n,m) = FR(n,m) ∗ Ln,m

(14)FR = α ∗ a2 + β ∗ a+ σ

(15)RMSE =

√∑N
i=1

(
xi − x̂i

)2

N

Figure 7.  Failure rates at different pipe ages.

Table 1.  Failure rate models of the pipe ages.

Material α β σ RMSE

Cast iron pipe 0.002 −0.149 24.720 5.748

Ductile iron pipe 0.006 −0.125 16.364 2.433

Unknown pipe −0.002 0.304 18.111 4.019
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A ‘bathtub’ trend is observed for the cast iron pipes, indicating a higher failure rate during the early stage as 
well as late stages of pipe service life. Similar trends have been reported in previous studies. The higher failure 
rate at the early stage is possibly caused by non-uniform ground settlement after pipe installation combined 
with that cast iron pipe is brittle and prone to crack. Once the ground settlement accomplished, the failure rates 
decrease and maintain  constant43. A higher failure rate appears at the late stage of cast iron pipes, mainly caused 
by the pipe aging and deterioration under the effects of service loads, corrosion etc.

Pipes made of ductile iron show a relative low and stable failure rate compared with cast iron pipes. And then 
they gradually increase failure rates with age. There are significant scattering in the failure rate data for pipes 
over 30 years old, while overall it shows an increasing trend. This observation is counterintuitive to the general 
belief that pipe failure rate becomes stable after long service. This is possible because that ductile iron pipes are 
mostly less than 50 years old, indicating fewer samples compared to the other pipes.

From the results shown in Fig. 7, cast iron pipes have a higher failure rate than the ductile iron pipes during 
the early stage of service; they feature lower failure rate than ductile iron pipes after around 30 years old. The 
former observation is consistent with many previous studies, which indicated that the ductile iron pipes are more 
flexible and have a better ability to resist the failure due to soil  settlement44,45. However, the latter observation 
indicates that the ductile iron pipes have a higher failure rate than the cast iron pipes after 30 years old, which 
has not been reported in the current studies. The reason behind it deserves future research. It should be noted 
that the cast iron pipes are used much earlier than the ductile iron pipes in the studied dataset. Most ductile iron 
pipes were installed around 1970 and aged between 35 to 50. The documented failure records are after 2010; 
whereas the cast iron pipes with similar ages were installed after 1940 with documented records are between 
1990 and 2019. There might be differences due to installation methods, environmental conditions, and water 
service conditions, etc.

The overall failure rates For pipes with unknown materials increase with age and becomes relatively stable.

Pipe failure rate versus temperature and precipitation. Figure 8 shows the statistics of daily average 
temperature and total precipitation in Cleveland during the past 30 years. The color code indicates the density of 
the days that belong to the climate combinations of a certain daily average temperature and precipitation. That is, 
the more days fall into a specific temperature-precipitation combination, the deeper the color is. Figure 8 shows 
that in Cleveland weather, temperatures typically fell between 0 and 20 °C with precipitation range from 1 to 
3 mm per day. However, there are some data points with temperatures below 10 °C. No strong correlation has 
been observed between the average daily temperature and total daily precipitation from the historical climate 
data, with the correlation coefficient between the daily temperature and precipitation only about 0.25, as denoted 
in the right bottom of Fig. 8. The low correlation between the temperature and precipitation is possibly due to the 
unique geographical location of Cleveland, as the city is located along the southern shore of Lake Erie. Hence the 
dataset is ideal for analyzing the impact of temperature and precipitation independently.

The fragility curves over temperature and precipitation, i.e., the failure rates versus temperature or precipi-
tation, are developed for pipes made of different materials at different age groups. Pipes are categorized into 
different age groups every 25 years. For each temperature or precipitation bracket, the middle value and the cor-
responding failure rate are obtained and are plotted in Figs. 9 and 10, respectively. To account for the effects of 
climate history, the mean value of temperature and precipitation over 30 day period before the date when a pipe 
failure occurred were used. This number of days is selected based on the recommendation in previous studies as 
well as test run process during this study. Unlike previous studies that used a linear regression model to fit the 
failure rate  points1,3, a parabola shape is observed in the fragility curves (Figs. 8 and 9), which is approximated 
with quadratic polynomial equations. Table 2 shows the corresponding models, and the root mean square error 
(RMSE) between the predicted value and the ground truths (Eq. 15).

Figure 9 indicates that the failure rates increase with decreasing temperature regardless of the pipe materials 
and age groups. Lowest temperature corresponds to the highest failure rates. This is consistent with empirical 
observations that more pipe failures occurred during cold winter season.

Figure 8.  Statistic distribution of the mean daily temperature and precipitation in cleveland, Ohio, USA 
between 1990 to 2019.
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Previous studies indicated that the high failure rates are caused by soil freezing, expansion-related ground 
movement, and additional compression on the  pipes7,20. From Fig. 8a, the temperature-fragility curves of young 
cast iron pipes (0–25 years) have higher failure rates compared to old cast iron pipes, especially under cold winter 
with low temperatures. There are no significant differences in the temperature-fragility curves of cast iron pipes 
in different age groups (i.e., between 25–50, 50–75. 75–100 years). This may be caused by the combined effects 
of ground settlement after pipe installation and freezing soil expansion, and the young cast iron pipes are more 
vulnerable to displacement.

The results in Fig. 8 also show that increasing failure rates occurred on days with average temperature above 
10 °C so so, especially the trend is more obvious for older pipes. The possible reason is that the high temperature 
on hot weather might cause ground soil shrinkage and accelerate pipe corrosion. Older pipes are more vulnerable 
to such effects as their remaining yield strength is close to the external  load46. Besides, hot summers typically 
cause higher water consumption that may also lead to the higher failure rates, as the internal water pressure of 
the water system is higher than for the other seasons. Among all the pipe material and age groups, the group 
of pipe with unknown material pipes have the highest failure rates at high temperatures, which is followed by 
the older ductile iron pipes. Both young ductile iron pipes and cast-iron pipes show relatively low failure rates 
at high temperatures.

Finally, regardless of the materials for the water pipes, the lowest failure rates occur on days with average air 
temperature between 8 to 12 °C. Previous studies have also demonstrated that the Spring and Autumn seasons 
have the lowest pipe failure rates because the soil moisture is consistent, which decreases the soil  movement7. 
The temperature in the middle of spring and autumn are also mild.

Figure 10 shows the impact of precipitations on the pipe failure rates. An overall decreasing trend is observed. 
The higher failure rates on days with low precipitation are probably caused by the soil shrinkage and swell effects 
due to the moisture  change47. However, an increasing trend with precipitation is observed for new cast iron 
pipes. A probable reason is that the ground deformation has not become stabilized for newly installed pipes and 
, which makes them more susceptible to high precipitation. Moreover, young cast iron pipes are more vulnerable 
to ground settlements. It is also noted that the number of water pipes between 0–25 years old and the number 
of days that have high precipitation are relatively small. The combination of these two factors generates a small 
denominator when calculating the failure rate by us of Eq. (6). This might cause inaccuracy due to sample size. 
Future analyses will be needed to further validate this observation.

Figure 9.  Failure rate versus temperatures for pipes made of different materials and in different age groups.
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Model by Eq. (14) is used to fit the observed trends in Fig. 9. The results are summarized in Table 3, which 
shows the corresponding models, and the root mean square error (RMSE) between the predicted value and the 
ground truths.

Failure rate fragility map over both temperature and precipitation simultaneously. Climate 
change will alter the future trends of temperature and  precipitation48. Predicting the impacts of climate change 
on water supply system requires a pipe fragility model that can simultaneously consider the effects of both tem-
perature and precipitation.

For this purpose, a 2-D failure rate fragility map is built via the procedures described in "Pipe failure fragility 
over climate" section. The procedures to build the failure rate fragility map resembles the process of determining 
the 2-D statistics distribution. The results of 2-D fragility map are shown in Fig. 10 for failure rates of water pipes 
of different age and pipe groups. The unit for the failure rate is failure numbers/day/100 miles. The unit for the 

Figure 10.  Failure rate versus average daily precipitation for pipes made of different materials and in different 
age groups.

Table 2.  Failure rate models of temperature brackets.

Material Age α β σ RMSE

Cast Iron

0–25 0.00013 −0.0044 0.067 0.009

25–50 0.00017 −0.0035 0.047 0.003

50–75 0.00016 −0.0035 0.047 0.005

75–100 0.00018 −0.0035 0.044 0.005

Ductile Iron
0–25 0.00017 −0.0038 0.045 0.004

25–50 0.00014 −0.0026 0.049 0.011

Unknown

0–25 0.00019 −0.0043 0.058 0.007

25–50 0.00019 −0.0043 0.055 0.006

50–75 0.00026 −0.0060 0.073 0.005

75–100 0.00027 −0.0059 0.072 0.006
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temperature is Celsius and for the precipitation is millimeters. The blank pixels indicate that there are zero days 
represented by that combination of inputs in the considered validated years (the years that total pipe length is 
larger than 25 miles). Figure 11 provides a similar but more detailed trend compared to the models in "Pipe failure 
rate versus temperature and precipitation" section. The results indicate that the failure rate is generally higher 
during period with low temperature and precipitation. Some high failure rate outliers are observed for specific 
weather combinations, possibly due to small number of days when pipe failure occurred in the combination of 
specific temperature and precipitation.

The raw failure rate fragility maps are relatively coarse in the resolution to ensure that there are sufficient 
samples in each cell to minimize outliers. The Universal Kriging algorithm is used to improve the resolution of 
fragility map, as discussed in "Pipe failure fragility over climate" section. The results are shown in Fig. 12. The 
RMSE values between the predicted values and ground truths are also calculated. Since the Kriging algorithm 
is always faithful to the ground truth, the cross-validation method is used to get the RMSE  value49. A smooth 
trend is captured by the Kriging algorithm, which makes the model suitable for studying the impacts of future 
climate change on the water systems.

Assessment of the impacts of climate change on water system performance 
and upgrade
With the water pipe climate fragility models developed in "Failure rate fragility map over both temperature and 
precipitation simultaneously" section based on data from water system, analyses are conducted on the impacts 
of climate change on hypothetic water supply system similar as Cleveland water system but located at different 
climate zones in the United States. The annual failure numbers of the whole water system are computed under 
different climate change scenarios predicted by different global climate models (GCM) and socio-economic 
assumptions. Multiple GCMs and socio-economic assumptions are used to account for the uncertainties induced 
by climate models and maintenance activities. The analyses aim to provide overall assessment on the impacts 
of climate change on water system conditions and to assist local water agencies in maintenance actions to adapt 
to the changing climate.

Considered cities and climate change patterns. Figure 13 shows the locations of the selected cities, 
i.e., Cleveland, OH, Salt Lake City, UT, Phoenix, AZ, and Miami,  FL42. Based on the temperature and precipi-
tation, these four cities represent cold-wet, cold-dry, warm-dry, and warm-wet climate conditions. The water 
system of Cleveland is used for analysis rather than the water system of each city.

To consider the effects of climate change, the climate at the four selected cities between 2020 and 2100 are 
predicted. For each year and SSP, the daily temperature and precipitation are extracted from CESM2, CanESM5, 
and MIROC6 models. Figure 14 shows the annually-averaged daily temperature and precipitation temperature 
of the selected cities between 2020 to 2100.

A steadily increasing trend can be observed for the temperature regardless of location and SSPs. The SSP5-
8.5 has a higher average temperature than the other SSPs in 2100 and the SSP 1–2.6 has the lowest temperature. 
Among all the considered locations, Salt Lake City has the largest uncertainty when considering these three 
different GCMs. The precipitation trend is less significant than the temperature for the considered locations. It 
is because climate change impacts more on the precipitation intensity change than the total precipitation. The 
annually averaged value is used here just for better visualization. The precipitation change is expected to be more 
intense due to climate  change50.

The number of failures each day is computed using the climate fragility map with temperature and precipita-
tion. From these, the annual failure number is calculated as the sum of number of failures on each day within 
the year.

The impacts of climate change on a stationary water system. The impact of climate change is 
firstly studied by assuming the conditions of the water system (i.e., the size and distribution of the pipe types and 

Table 3.  Failure rate models of precipitation brackets.

Material Age α β σ RMSE

Cast Iron

0–25 0.00593 −0.0253 0.072 0.010

25–50 0.00235 −0.0214 0.082 0.002

50–75 0.00075 −0.0100 0.063 0.002

75–100 0.00092 −0.0128 0.071 0.005

Ductile Iron
0–25 0.00138 −0.0143 0.067 0.003

25–50 −0.00032 −0.0075 0.075 0.007

Unknown

0–25 0.0046 −0.0392 0.122 0.006

25–50 0.0024 −0.0224 0.086 0.003

50–75 0.0032 −0.0328 0.126 0.006

75–100 0.0012 −0.0159 0.094 0.003
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ages) and its failure rate remains unchanged in the next 80 years. This assumpition is commonly used to isolate 
the impacts of climate  change21.

Based on this assumption, Fig. 15 shows the simulated water system failures under different climate change 
scenarios assuming a stationary water system with no aging effects. The left column shows the pipe failure rates 
of different materials, which are computed by the weighted sum of failure rates of pipes at different age groups, 
as shown in Eq. (12). For each year, nine failure rates (combination of three climate models and three climate 
change scenoris corresponding to different socio-economic assumptions) are computed. The results indicate 
that regardless of the materials of replacement pipe, failure rates of the water system show a decreasing trend 
in the next 80 years under all climate change scenoris. The cast-iron pipes show a lower failure rates than the 
ductile iron pipes, and the unknown material pipe has the highest failure rate. Ductile iron pipes show a higher 
failure rate possibly due to a large number of these pipes are more than 25 years old. A similar trend can also 
be observed in Fig. 3(b), as over time we can see that the failure rate of ductile iron pipes approaches and then 
exceeds the failure rate of cast iron pipes.

Figure 11.  Failure fragility map versus temperature and precipitation for pipes made of different materials and 
within different age groups.
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With the climate fragility obtained from Cleveland Water system data, the same water system located at differ-
ent geographic locations experience different failure rates. The pipes in regions with lower average temperatures 
(i.e., Cleveland and Salt Lake City) have higher failure rates than regions with higher average temperatures (i.e., 
Miami and Pheonix). Moreover, the failure rates of ductile iron pipes are higher than those of the cast iron pipes 
in high-temperature regions. This is due to that the ductile iron pipes have higher failure rates than cast iron 
pipes under high temperatures, as shown in Fig. 9(b).

Figure 12.  Failure rate map against temperature and precipitation after Universal Kriging (* indicates the 
failure rate is assumed to be the same to the previous one).
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The right column of Fig. 15 shows the distribution of annual failure numbers for the same hypothetic water 
system located in different cities over each 20-year time span. For each box, the bottom line indicates the first 
quartile (25%), and the top line indicates the third quartile (75%) of the annual failure numbers. The two extended 
horizontal lines indicate the 1.5 times interquartile range. Data beyond the range is regarded as outliers. The 
middle line inside the box is the median value of the distribution of the number of annual pipe failures. A gen-
eral decreasing trend of the number of water pipe failures can be observed for all the cities in the next 80 years 
considering the future climate change. This is due to the lower water pipe failure rates at higher temperatures. 
The results also show that Salt Lake City may experience the largest amount of pipe failures among these cities, 
probably because of the combined impacts of colder winter and lower precipitation, both increases the water 
pipe fragility. Miami, FL, where has high temperatures and large precipitation, is predicted to experience the 
smallest number of failures.

Table 4 summarizes the mean value of the predicted annual number of water pipe failures at different cities 
over each of the 20-year period during the next 80 years. The results indicate the number of water pipe failures 
will decrease under warmer weather associated with climate change. For water system in Cleveland, the mean 
number of water pipe failures decreases from around 500 per year to around 430 per year. This implies that ris-
ing temperature due to climate change reduces water system fragility in Cleveland, a potential good news for 
local water agency. For water system located in Phoneix, the mean number of failures decreases from 598 to 480.

The impacts of climate impacts with a dynamic-evolving water system subjected to different 
replacement strategies. This section explores how the failure rates and numbers change when the water 
pipes in the water system is subjected to replacement strategies. The pipe age and failure numbers are the two key 
criteria used to determine water pipe replacement  needs51. There are also studies related to more advanced pipe 
replacement  strategies52,53. In this study, we assumed the pipes’ designed service life is 100 years and minimum 
service life is 50 years. For each pipe, it will be replaced either when it reaches 100 years old or its annual failure 
number is larger than 4. The failure number of a pipe is computed from the failure rate determined in "Evolution 
of pipe failure rate with age for pipes made of different materials" section and its pipe length. We assume this 
replacement criteria will be used over the next 80 years. Three types of replacement schema are considered, i.e., 
(1) replace damaged pipes with pipes made of the same material, (2) replace damaged pipes with cast iron pipes, 
or 3) replace damaged pipes with ductile iron pipes. It should be noted that this is a simplified assumption. In 
reality, the pipes are replaced based on more complex criteria, such as the break rate trend, pavement protection, 
fire-fighting flow requirement, water quality, etc.

With the three water pipe replacement schema, the failures of water system in the next 80 years considering 
different climate change are analyzed. For each year, nine failure rates (combination of three climate models and 
three climate change scenarios corresponding to different socio-economic assumptions) are computed.

Figure 16 shows the statistics of failure numbers over the next 80 years categorized into 20-year bins con-
sidering the effects of climate change and three different pipe replacement schema. The annual failure numbers 
show a more complex trend since the water system changes dynamically due to replacement. The boxes show 
the distributions of the total failure numbers of every 20 years. The different colors indicates the results of the 
total water system failure using pipes made of different replacement schema (or replacement with different types 
of materials).

Figure 13.  Sates of the selected cities to analyze the effects of climate change on water system (created with 
MapChart.net (https:// www. mapch art. net/)).

https://www.mapchart.net/
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The results show that for a dynamic water system subjected to different replacement schema, the compound 
effects of climate changes on water system failure are more complex than only considering the climate change 
over a stationary water system. In colder regions such as Cleveland and Salt Lake City, the results in Fig. 16 
indicate that replacing the failed pipes with ductile iron pipes lead to smallest number of pipe failures in the 
water system among the three different replacement schema. The reason is possibly that ductile iron pipes are 
less sensitive to cold temperatures than the cast iron pipes. While for warm regions such as Pheonix and Miami, 
replacing the failed pipes with cast iron pipes lead to smaller number of pipe failures. This is possibly due to 
that aged ductile iron pipes have higher failure rates than the cast iron pipes. It is also noticed that replacing the 
pipes with pipe made of their original materials did not achieve the lowest failure numbers at any time period 
during the next 80 years.

Overall, the observations indicate for high-temperature regions such as Phoenix and Miami, replacing the 
old or failed pipes with cast iron pipes achieves a better water system performance; while for low-temperature 
regions such as Cleveland and Salt Lake City, replacing the old or failed pipes with duct iron pipes achieves a 
better water system performance.

Figure 14.  Yearly averaged daily temperature and precipitation at the selected cities.



17

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7349  | https://doi.org/10.1038/s41598-023-33548-7

www.nature.com/scientificreports/

Figure 15.  Predicted water system failure for a stationary water system subjected to climate change over 
80 years (2020–2100) : left) the failure rates of water pipes in the stationary system made of different materials; 
right) statistics of total number of failures in the water system grouped into 20-year bins.

Table 4.  Median failure numbers of the water system in 20 years period.

Location 2020–2040 2040–2060 2060–2080 2080–2100

Cleveland 498 481 459 434

Salt Lake City 615 597 576 571

Phoenix 508 499 492 480

Miami 295 281 275 265
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To break down the impacts of climate change on the water distribution system’s failures at different locations. 
The mean failure numbers of water system located at each city studied under different climate change scenorios 
(or different shared socioeconomic paths) are visualized in Fig. 17. The ‘Original’ replacement schema, i.e., the 
failed pipes are replaced with pipes made of the same materials, is assumed in the analyses. The results indicate 
that climate change has a significant impact on the overall trends of water pipe failures, especially for water 
system located in Cleveland, Salt Lake City, and Phoenix, where decreasing trends of pipe failures are predicted. 
A smaller number of pipes is projected to fail under climate scenarios SSP 585 than those under SSP 126. Com-
paratively, the climate change impacts are less significant for water system in Miami.

Conclusions
This study analyzed the climate fragility of water pipes and subsequently extended this to evaluate the impacts 
of climate change on water system failures. The climate fragility analysis was conducted using data from a large 
water supply system, which contains water system infrastructure asset consisting of more than 51,832 pipes 
and 29,621 failure records. The water system database was augmented with climate data. From these, the fragil-
ity of water pipes to the two major climate variables, i.e., temperature and precipitation are obtained. Fragility 
models of water pipes to single climate variable (temperature or precipitation) and combined climate variables 
(temperature and precipitation) are determined from the historical climate data and pipe maintenance records.

The fragility models showed that the climatic temperature and precipitation have different impacts on pipes 
depending on their ages and materials. Pipes have a higher failure rate under cold below-freezing temperature, 
which is consistent with experience by professional engineers. It is also found that old pipes also have higher 
failure rates under high temperatures, possibly due to higher corrosion rates under such conditions. The pre-
cipitation is found to correlate negatively with the pipe failures. Generally, higher precipitations will decrease 
the pipe failure rates, except for the newly installed cast iron pipes. This is possible because newly installed cast 
iron pipes are more susceptible to ground movement associated with large precipitation.

Based on the developed failure rate fragility models for both temperature and precipitation, the number of 
pipe failures in the water supply system can be estimated considering their geographic locations and correspond-
ing climate conditions. The future climate projection at different geographic locations is simulated with differ-
ent climate models and different climate change scenarios under corresponding social-economic assumptions. 

Figure 16.  Predicted number of pipe failure in a dynamic water system subjected to different replacement 
schema under the influence of climate change over 80 years (2020–2100).
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Combining the climate fragility model and future climate projection, the influence of climate change on the water 
supply system is investigated. The influence of water pipe replacement strategies is also evaluated. The results 
indicate warmer weather associated with climate change overall will decrease the number of water pipe failures. 
For high-temperature regions, replacing the old or failed pipes with cast iron pipes achieves a better water system 
performance, while for low-temperature regions, replacing the old or failed pipes with duct iron pipes achieves a 
better water system performance. Overall, water systems located in the cold regions are projected to experience 
less number of pipe failures, possibly due to warmer weather associated with climate change.

It is noted that this study only used one water system as the benchmark. The analyses of Cleveland Water data 
are conducted to determine the fragility of water pipe failure over climate factors (temperature or precipitation). 
Calibration of climate fragility of water supply system at different geographic regions will help further improve 
the analyses.

It is also noted that the analyses conducted in this study only considered the fragility due to temperature and 
precipitation. Climate change-induced natural hazards such as flooding and hurricanes are not considered in the 
analyses. These hazards can have an important impact on the water supply system, such as water system failure 
under flood in Jackson, Mississippi, USA.

Data availability
The data that support the findings of this study are available from Cleveland Water Division but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not pub-
licly available. Data are however available from the authors upon reasonable request and with permission of 
Cleveland Water Division.
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