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Nonperturbative approach 
to magnetic response of an isolated 
nanoring in a strongly anharmonic 
confinement
Y. J. Ding 1* & Y. Xiao 2

It is a huge challenge in both classical and quantum physics to solve analytically the equation of 
motion in a strongly anharmonic confinement. For an isolated nanoring, we propose a continuous 
and bounded potential model, which patches up the disadvantages of the usual square-well and 
parabolic potentials. A fully nonlinear and nonperturbative approach is developed to solve analytically 
the equation of motion, from which various frequency shifts and dynamic displacements are exactly 
derived by an order-by-order self-consistent method. A series of new energy levels and new energy 
states are found, indicating an alternative magnetic response mechanism. In nominally identical rings, 
especially, we observe a diamagnetic-paramagnetic transition in the period-halving Φ0/2-current with 
Φ0 the flux quantum and a large increase in the Φ0-current at least one order of magnitude, which 
explain well the experimental observations. This work opens a new way to solve the strong or weak 
nonlinear problems.

Nonlinear science has been seen as one of the most important frontiers for the fundamental understanding 
of nature. A particularly interesting example is the isolated nanoring in a strongly anharmonic confinement. 
A persistent current (PC) was expected to flow persistently even in non-superconducting metal rings without 
dissipation1,2. A series of experiments on metallic and semiconducting rings had indeed showed the evidence for 
the existence of PC3–12. In single Au ring, a paramagnetic PC was observed4 in period of flux quantum Φ0 = h/e 
with h Planck’s constant and e the electronic charge. In collective rings or arrays of rings3,6,9, however, the cur-
rents show a diamagnetic nature in period of Φ0- and/or Φ0/2. Some experiments measured the currents3,9,10 to 
be at least 1–2 orders of magnitude larger than prediction13–15, while other several experiments5,8,11,12 observed 
the currents in closer agreement with theory. Especially, Bluhm observed11 that both the direction and the 
magnitude of PC vary between nominally identical rings. Bleszynski-Jayich et al.12 experimentally confirmed 
diffusive non-interacting electrons in normal metal rings. Recently, the exact solution of a ring lattice model 
showed16 that a repulsive interaction changes the periodicity, the amplitude, and even the sign of PC at zero-
temperature (T = 0). Therefore, the magnetic response of an isolated nanoring still remains a topic of controversy 
in condensed-matter physics16–18.

Theoretically, one-dimensional (1D) model ring predicted a priori random sign of PC13–15,19,20. Averaged over 
the electronic occupation, the Φ0/2-current shows a paramagnetic nature, in contradiction to the experiments3,6. 
Also, the period-halving Φ0/2-current was contributed to the spin degree of freedom21. Taken multi-channel 
effects into account, an analytical study on a finite width ring showed22 that a maximal paramagnetic and/or 
diamagnetic PC appears in primary Φ0- and/or Φ0/2-period with no requirement of ensemble average19,20 and 
electronic spin21, exhibiting a remarkable quantum size effect. This means that 1D model ring only represents 
an oversimplification of any real rings of finite width.

The importance of finite width was earlier recognized by Groshev et al.23 for describing the magnetic field 
dependence of PC. Subsequently, some two-dimensional (2D) model rings were widely used such as usual 
square well24–26 and parabolic potential27–29. For lack of a balance force, free electrons in a square well will be 
redistributed on the outer edge by the inertial centrifugal force, so that the potential is reconstructed and finally 
deviated from its initial one. For a parabolic potential, a local maximum exists at the ring center, which is very 
tiny for small radius of a nanoring. Only if Fermi energy exceeds this maximal value, the electrons would escape 
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from the inner edge to the open ring center, meaning an insufficient capacity of electron filling. For their natural 
disadvantage, such 2D model rings are not so realistic for modeling a finite width ring with finite work-function.

In a real experiment, the number of electrons is typically 103 in a semiconducting ring30, or much larger in 
a metallic ring3. To contain a large number of electrons, a strongly confined potential is needed for a sufficient 
capacity of electron filling. For its finite work-function, the ring-shaped potential for a nanoring changes abruptly 
from its bottom to vacuum environment, showing a strong nonlinearity. It is a huge challenge to solve analytically 
the equation of electronic motion in such a strongly nonlinear potential. This motivates us to develop a fully 
nonlinear and nonperturbative approach to explore the magnetic response of an isolated nanoring.

Considering the finite work-function, we propose a continuous and bounded potential for an isolated nanor-
ing, which patches up the disadvantage of the usual square-well and parabolic potentials. To explore the intrin-
sic magnetic response of PC, for simplicity, in this work we would not consider the electronic spin and the 
electron–electron interactions, which had been reported previously16,21. A fully nonlinear and nonperturbative 
approach is developed to solve analytically the equation of electronic motion in the strongly anharmonic confine-
ment, with no regular resonance divergence. The results show that the magnetic response of the isolated nanoring 
is inherently linked to the intrinsic sign of PC with barely any need of special size/disorder distributions over an 
array of mesoscopic rings. In nominally identical rings, especially, we observe a diamagnetic-paramagnetic tran-
sition in the Φ0/2-current and a large increase in the Φ0-current at least one order of magnitude, which explain 
well the experimental observations. The abrupt changes in the currents are mainly attributed to the newly found 
energy levels and energy states, revealing an alternative magnetic response mechanism.

Model and method
Strongly anharmonic confinement.  For a 2D ring of radius rc and width W with width-diameter ratio 
a = W

2rc
 , here we consider a continuous and bounded potential of strongly anharmonic confinement, 

V = Vb[Ŵ(x + a)− Ŵ(x − a)] , where Vb depicts the well depth and Ŵ(x) = 1/(1+ ex/σ) is a step-like function 
of x. Here x = r/rc − 1 is the relative radial coordinate of electron and σ is related to potential slope. For the 
later convenience of comparison, Vb =

�
2j2b

2mr2c
 is expressed to have the same form as the angular kinetic energy of 

an electron in 1D ring with m the electron mass, where the dimensionless parameter jb is equivalent to an angu-
lar quantum number. The potential has a reduced form

For an experimental ring12 of rc = 418  nm and W = 85  nm, for example, a ≈ 0.1 , Vb ≈ 20meV  and 
Va/Vb ≈ −0.49331 at σ = 0.04 and jb = 300.

As represented in Fig. 1, the potential has a static minimum of Vc = −Vbsh
a
σ
/(ch a

σ
+ 1) at r = rc (x = 0), and 

is bounded from its bottom Vc to zero far from r = rc . At ring edge, V(a) = − 1
2Vbth

a
σ
= Va at x =  ± a. Both Vc 

and Va depend sensitively on both σ and a. For large σ, the potential approximates a parabolic confinement within 
the ring region (− a < x < a). For small σ, it gets close to a 2D square well, in which the electrons are almost free. 
For the electrons filling in all cases, Fermi energy EF = Vc + �

2j2F
2mr2c

 is referred to the potential bottom Vc , where 
jF is a dimensionless parameter just as an angular quantum number in an ideal 1D ring.

Introducing u = 1
r and uc = 1

rc
 , then x = uc

u − 1 = − y
1+y with u = uc(1+ y) . The potential becomes a func-

tion of y only. For a larger σ (less slope), the potential may be well fitted by a parabolic approximation within 
the ring region. For a relatively small σ (larger slope), Fig. 1b shows V(y) for a nanoring of a = 0.1 and σ = 0.03, 

(1)V(x) = −
Vbsh

a
σ

ch a
σ
+ ch x

σ

.
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Figure 1.   A continuous and bounded potential model for a nanoring of radius rc and width W under j = 0: 
(a) V(r) with various a and σ; (b) V(y) with a = 0.1 and σ = 0.03, as well as its 2- and 4-order polynomial 
approximants, where Va ≈ −0.4987Vb and EF = Vc + 0.09Vb ≈ −0.8411Vb at jF = 90 and jb = 300, as shown by 
two horizontal dotted lines.
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as well as its 2- and 4-order polynomial approximations. The asymmetry with respect of y = 0 can be clearly seen 
from Fig. 1b at higher energies. The potential is evidently deviated from the parabolic curve, where the outside 
confinement (r > rc, y < 0) is substantially ‘harder’ than the inner one (r < rc, y > 0). Within the ring region (V < Va), 
significantly, it is seen that the four-order polynomial approximation can well fit the model potential below a 
given EF at jF = 90 and jb = 300 , despite a slight deviation at higher energies. This may simplify the later calcu-
lations and ensure the validity of the results. Especially, such a potential yields a nonlinear restoring force and 
thus the electrons will reside within the ring region, which is efficient and physically realistic for modeling the 
magnetic response of a finite width ring.

In the presence of magnetic flux Φ piercing through the ring center, the Hamiltonian of non-interacting 
electron in spinless case is given by H = p2r

2m + Veff  , where pr = −J dudϕ = −Ju̇ is a radial momentum and 

Veff = J2u2

2m + V(y) is an effective potential. Here J = j� = (l + φ)� is the generalized angular momentum, l is 
the angular quantum number, and φ = �/�0 is a dimensionless flux. Using extreme value condition on Veff, the 
dynamic equilibrium point is relocated by

at x = uc/u0 − 1 = β , where u0 = uc/(1+ β) and w0 = ch a
σ
+ ch β

σ
 . Then we get the extreme value 

V0 = J2u20
2m − Vb

w0
sh a

σ
 at u = u0 . By  a  simple  iteration, it follows that β ≈ χ2j2(1− 3χ2j2) , where 

χ =
√
2σ
jb

(ch a
σ
+ 1)/(sh a

σ
)
1/2 is a structural factor, determined only by the characteristic parameters of σ, a and 

jb. Obviously, the value of χ is very tiny at large jb and little σ (e.g., χ ≈ 5.47× 10−4 ≪ 1 at σ = 0.04, a = 0.1 and 
jb = 300).

For a motion of small amplitude, the electron oscillates radially around u = u0, following in u = u0(1 + y). The 
Hamiltonian can be expressed in a Taylor series of y,

with γ1 ≈ 1+ 4β , γ2 ≈ 3+ 6β + β w0−6
2σ 2w0

 , and γ3 ≈ 6+ w0−6
6σ 2w0

+ β(10+ 3
2σ 2 − 15

σ 2w0
) . Upon the initial condition 

of y(0) = 0 and ẏ(0) = η, the electronic energy E is simply given by

depending sensitively on the initial conditions of both J and η. The quantized solutions for η follow in a semi-
classical description from the Bohr-Sommerfeld quantization rules22,30,

with n the radial quantum number. Then we get from Eq. (4) the quantized energy levels En,l(φ ), each carrying 
a current in,l = − 1

�0

∂En,l
∂φ

 . The total current Itot is finally obtained by

summing over En,l below Fermi energy EF at T = 0. Fourier harmonics Ak of a current I are derived by 
Ak =

∫ 1/2
−1/2dφIsin(2πkφ).

To examine the quantized solutions for η , the rest key task is to find the radial function y under its initial 
conditions. From Newton’s law, to the first order of β, we get the equation of motion,

where f acts as a nonlinear driving force. In a regular iterative method31, it is noticed that the even-order terms 
develop a constant average force (zero frequency), leading to a dynamic displacement, while the odd-order terms 
contain a base-frequency component, giving rise to a resonant divergence. That is, only if f ~ sinφ, y ~ φcosφ 
becomes divergent with φ → ∞. It is physically evident that the magnitude of the oscillation cannot increase of 
itself in a closed system with no external source of energy32. For the strong nonlinearity, it is a huge challenge to 
solve Eq. (7) analytically. One needs to develop a fully nonlinear and nonperturbative approach.

Fully nonlinear and nonperturbative approach.  To avoid the resonant divergence, we express the 
solution y as y = ∑yi in a series of all-order trial solutions yi, meeting the initial conditions y1(0) = 0 and ẏ1(0) = η 
while yi(0) = ẏi(0) = 0 at i > 1. Equation (7) is then rewritten into 

∑

(β ÿi + γ1yi) = f2 + f3 + . . . , where f is clas-
sified by the power series into f2, f3, …, with f2 = γ2y

2
1 and f3 = 2γ2y1y2 − γ3y

3
1 . Taking into account the non-

linear contributions of both the constant average force and the base-frequency component, we consider a gener-

ally trial solution of y1 = ε + η
γ
sinγ ϕ − εcosγϕ = ε + Asinθ with y1(0) = 0 and ẏ1(0) = η. Here A = (

η2

γ 2 + ε2)

1
2 , 

(2)j2u30 =
j2bu

3
c

2σw2
0

sh
a

σ
sh

β

σ
,

(3)H = V0 +
J2u20ẏ

2

2m
+

J2u20
mβ

(
1

2
γ1y

2 −
1

3
γ2y

3 +
1

4
γ3y

4 + . . . ),

(4)E = V0 +
J2u20
2m

η2,

(5)
∮

prdr =
∮

Jẏ2dϕ
(

1+ y
)2

= 2πn�,

(6)Itot =
∑

in,l = −
1

�0

∑ ∂En,l

∂φ
,

(7)βÿ + γ1y = f = γ2y
2 − γ3y

3 + · · · ,
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θ = γϕ + θ0 , and tanθ0 = −εγ /η . Two preset parameters of both ε and γ are introduced for the dynamic dis-
placement and the frequency shift, which can be conveniently obtained by the order-by-order self-consistent 
approach.

At the linear approximation ( f ≈ 0), it simply follows that ε = 0 , γ = γ0 =
√

γ1
β

 and y ≈ y1 = η
γ0
sinγ0ϕ . 

For small β ( γ0 ≫ 1 ), the solution exhibits a low-amplitude and high-frequency oscillation. From this, the ampli-
tude of high-order terms above the fifth in Eq. (3) can be roughly estimated by y51/β ∼ β3/2 ∼ χ3 , which may 
be very small and thus may be neglected. This means that we can obtain better accuracy only by considering the 
first few items. As a reference, the quantized solution for η is analytically obtained by 

2

γ 2
0
= 1− 1/(1+ n

γ0j
)
2 ≈ 2n

γ0j
 

at the linear approximation. The quantized energy levels are then given by En,l ≈ V0 + nJu20
m

√

γ1
β

 , in approxi-
mately proportional to n, which is similar to that in a 2D parabolic potential27–29. For the higher-order approxi-
mation, the detailed derivations are given in Supplementary Information file.

Neglecting the higher-order terms, to the third-order approximation, the nonlinear driving force of 
f ≈ f2 + f3 involves not only the orbital-coupling-like effect (e.g., 2γ2y1y2) but also the self-energy-like effect 
from the odd-order terms ( e.g.,−γ3y

3
1 ), both contributing to the average force and the base frequency. Defining 

z = γ2/γ20 , both ε and γ (i.e., z) are exactly derived by

The dimensionless coefficients κ and μ are given by

with �0 = 1
2
γ 2
2

γ 2
1
+ γ3

γ1
(z − 1

4 ) , both of which are only determined by variable z. Only if η  = 0 , it is necessitated 
that z  = 1 , z  = 1/4 , and z  = 1/9 , so that κ  = 0 , and µ  = 0 . This means that the frequency shifts, the dynamic 
displacement, and even a series of new energy levels and new energy states can be expected due to the nonlinear 
resonance levels in such a confinement32, with no regular resonance divergence.

In essence, Eq. (9) is reducible to a ninth-order equation of z, which cannot be solved analytically. For a tiny 
amplitude of η/γ0, using an iterative approximation, we can solve Eq. (9) for z (i.e., γ) separately by sub-region 
at about z ~ 1, z ∼ 1

4, and z ∼ 1
9 . Furthermore, ε can be obtained from Eqs.(8) and (10). The radial function of 

y ≈ y1 + y2 + y3 is specified by y ≈ �0 + �1Asinθ + �2A
2cos2θ + �3A

3sin3θ , of which the parameters of both 
A and �0,1,2,3 depend on ε and γ (or z) and thus on η/γ0. Ignoring higher-order effects, η can be simply quantized 
by Eq. (5), and the quantized energy is then given by Eq. (4).

The total current can be further decomposed into three partial currents I1,2,3, originated from the levels 
contributions respectively at about z ~ 1, z ∼ 1

4, and z ∼ 1
9 . The first current I1 just corresponds to PC in a 

parabolic potential, and the latter two currents I2,3 are induced by the newly found nonlinear resonance levels 
at about z = 1/4 and z = 1/9. While it is difficult to distinguish one from another, experimentally, three partial 
currents are measurable as a whole. Theoretically, the signs and the relative sizes of three partial currents will 
reveal the intrinsic magnetic response mechanism, which is different from that in the 1D ring, 2D square well, 
and parabolic potential.

In even higher approximations, nonlinear oscillations may also appear at other frequencies. As the degree 
of approximation increases, however, the oscillating strength decreases so rapidly that in practice only the first 
lower-order contribution can be observed31.

Results and discussions
Self‑consistent iteration for ε and γ.  From Eqs. (8)–(11), we can simply get all solutions for ε and γ by 
using self-consistent iteration. Defining z − 1 = s at about z ~ 1, we get κ ≈ 4

3
 and µ ≈ 3

2
γ1γ 3

γ 2
2

− 5
3 . Only a solu-

tion of s ≈ η2

γ 2
0
( 34

γ3
γ1

− 5
6
γ 2
2

γ 2
1
) is derived by an iteration, and ε is then given by ε ≈ 2

3
η2

γ 2
0

γ2
γ1

 . The quantized solution 

for η can be approximately obtained by η
2

γ 2
0

≈ 2n
γ0j

(1− s
2
) . Neglecting higher-order terms, this solution can be 

degenerated to that in the linear approximation.
Defining z − 1

9 = s at about z ~ 19 , Eq. (9) is simplified into a cubic equation of s

(8)ε =
1

2

η2

γ 2
0

γ2

γ1
,

(9)(z − 1)(z −
1

4
)(z −

1

9
) =

1

3
µ
η2

γ 2
0

γ 2
2

γ 2
1

.

(10)κ =
1

z
(z −

1

4
)(z −

1

9
)/

[

(z −
1

4
)
2

(z −
1

9
)+

5

6
�0

η2

γ 2
0

]

,

(11)µ = 1+ 2(z −
1

4
)
γ1γ 3

γ 2
2

−
9

4
2z2(z −

1

4
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9
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(
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w it h  �1 = 9
5
γ2
γ1

− 1
2
γ3
γ2

 .  In  a  s i m i l ar  w ay,  t h re e  s o lut i ons  o f  s = s1 ≈ 3
2�1

η2

γ 2
0

γ2
γ1

 an d 

s = s2 ≈ −12�1
η2

γ 2
0

γ2
γ1
(1± 18

√
3

5
η
γ0

γ2
γ1
) are newly obtained, having an additional contribution to PC, which 

are entirely absent in the usual 2D square well and parabolic potential. Then, ε is accordingly given by 
ε = ε1 ≈ − 18

5
η2

γ 2
0

γ2
γ1

 and ε = ε2 ≈ ∓3
√
3 η
γ0
(1± 18

√
3

5
η
γ0

γ2
γ1
) . The quantized solutions for η can be approximately 

obtained by η
2

γ 2
0

≈ 2n
γ0j

(1− 9

2
s) and η

2

γ 2
0

(1± 9
√
3

2

η
γ0

γ2
γ1
)
2

≈ 2n
γ0j

(1− 9

2
s) . To a η3-order approximation, obviously, 

the new energy levels appear a triple splitting at z ~ 1/9. Such a splitting is observable in high-precision spectral 
experiment, which may provide a check for validity of this model.

Defining z − 1
4 = s at z ∼ 1

4 , Eq. (9) is reduced to a quintic equation of s

with �2 = η2

γ 2
0
(
γ 2
2

γ 2
1
+ 2s γ3

γ1
) . This means more new energy levels and new energy states appearing there, all of 

which are absent in the usual 2D square well and parabolic potential. From Eq. (13), we easily find its first solu-
tion of s = s1 ≈ − 16

5
η2

γ 2
0

γ 2
2

γ 2
1

 . In this case, we get ε ≈ − 32
15

η2

γ 2
0

γ2
γ1

 , and the lowest-order response function is then 

derived by y ≈ 5
4

η
γ0
sinθ + 1

4
η
γ0
sin3θ , similar to a superposition state. The quantized solution for η can be 

obtained approximately by η
2

γ 2
0

≈ 32

17

n(1−2s)
γ0j

 , at variance with the linear approximation. The rest four solutions for 

s are approximately given by s = s2 ∼ − η
γ0

γ2
γ1
[�s ± (�2

s − 3)
1
2 ] with �s = 3 η

γ0

γ3
γ2

± 1
2 , where �2

s ≥ 3 is required 
for a real solution. To find the new solutions possible for η , a variable � is newly introduced by defining 
�s =

√
3+�2 , from which we get η

γ0
= 1

3 (
√
3∓ 1

2 +�2)
γ2
γ3

 . This means some new energy levels existing at 
above a threshold value.

We now focus on the new energy levels yet to be set. Neglecting the higher-order terms, we get from Eq. (5) 

that η
γ0

≈ ( 2n
γ0j

)
1
2 [1− ( 2n

γ0j
)
1
2 γ2
γ1
(
√
3+�2 ± 12

1
4�)] . In terms of two equivalent expressions of η

γ0
 , the new vari-

able � is determined by

For real solution of � , the discriminant � is required by

with �d = �± = 3( 2n
γ0j

)
1
2 γ3
γ2

− (
√
3∓ 1

2 )−
6
√
3n

γ0j
γ3
γ1

 . The quantized solutions for η are then obtained, and the 
quantized levels are correspondingly given by Eq. (4).

Energy spectra and persistent current.  The existence of new energy states at z = 1
4 + s2 depends 

directly on the sign of the discriminant Δ. The positive Δ-bands show those new energy levels existing stably, 
while the negative Δ-bands mean some unstable states. For the nanorings of various a and σ, as a typical example, 
we show in Fig. 2 the discriminant Δ and the stable energy levels En as a function of n for z = 1

4 + s2 under j = 0. 
It is seen from Fig. 2a that some discrete positive Δ-bands are established within a finite interval of n, which may 
turn to be negative outside the n-interval. Obviously, only a positive Δ-band is observed at σ = 0.04, while two 
positive Δ-bands appear at σ = 0.036. The n-interval of σ = 0.04 becomes narrower at a = 0.1 than at a = 0.104, and 
even the total Δ-band may turn to be negative at less a and larger σ, no steady-state existing there. This shows 
that the ring’s geometry and characteristic play an important role on its energy levels and thus on its magnetic 
response.

In Fig. 2b and c, we further show the stable energy levels En for those positive Δ-bands. Fermi energy is given 

by EF − Vc = �
2j2F

2mr2c
= 0.09Vb at jF = 90 and jb = 300, which is located within the ring region (EF < Va). From Fig. 2b, 

we observe at σ = 0.04 that the positive Δ-band only for Ωd = Ω+ corresponds to two discrete energy bands, one 
conduction-like band (CLB) and one valence-like band (VLB). The newly obtained energy states can be contrib-
uted to those nonlinear resonance levels32, modulated by the ring characteristic parameters (σ and Vb). This also 
provides an intuitionistic physics image to understand the energy band theory of solid state physics. In the case 
of a = 0.104, most levels (n = 3–60) in VLB are lower than EF (EF =  − 0.77172Vb), having major contribution to 
PC, while almost all levels in CLB are higher than EF, having hardly contribution to PC. In the case of a = 0.1, 
especially, it is found that a little reduction of width from a = 0.104 to a = 0.1 results in a large rise of the energy 
levels in both CLB and VLB, of which all levels are higher than EF (EF =  − 0.75828Vb), having no contribution to 
PC. This can be easily understood by the fact that the energy levels may be approximated as those in a square 
well. As a result, the energy levels are largely enhanced by En ∼ 1/W2 ∼ 1/a2 , in inverse proportion to the square 
of the ring width, which exhibits a quantum size effect22.

In Fig. 2c, on the other hand, we explore the effect of the potential slope, where σ is changed from σ = 0.04 
to σ = 0.036. Due to two positive Δ-bands at σ = 0.036, there appear two CLBs and two VLBs for Ωd = Ω±. Most 
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levels (n = 4–52) in the upper VLB and all levels in the lower VLB are lower than EF (EF =  − 0.79293Vb), having 
additional contribution to PC. In fact, it is noticed that the coefficient γ3 appearing in Eqs.(3,7,15) for anharmonic 
confinement depends strongly on the characteristic parameters σ and a, approximated by γ3 ≈ 6+ w0−6

6σ 2w0
 . This 

leads easily to the sign variation of the discriminant � in Eq. (15), and thus leads to the appearance of the new 
nonlinear resonance levels32 in favor of PC. The results indicate the PC’s sensitivity to both a and σ.

In the presence of magnetic flux ϕ, to explore the magnetic response of PC, we show in Fig. 3 the energy 
spectrum En,l(ϕ) of z = 1

4 + s2 for various nanorings. For the main contribution of Fermi bands to the currents22, 
here we consider the highest levels of (a) n = 60 and (b) n = 52 in VLB below EF in Fig. 2b and c. EF is defined just 
as in Fig. 2. For comparison, Fermi band of l = jF is present at n = 0 for the circle motion, similar to that in 1D 
ring. In the absence of radial motion (n = 0), it is seen that the energy level EjF = V0 < EF at l = jF and ϕ = 0, as 
indicated by dotted lines. This is due to the quantum size effect that EjF is depressed by u0 = uc/(1+ β) < uc , 
which is different from that in 1D ring of u≡uc. Interestingly, it is observed as a whole from Fig. 3 that the newly 

Figure 2.   (a) The discriminant Δ and (b, c) the energy levels En as a function of n at z = 1/4+ s2 under j = 0 for 
various a and σ. Fermi energy is defined by EF = Vc + 0.09Vb at jF = 90 and jb = 300, as indicated by dashed lines 
in (b) and (c).
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obtained energy levels show a dispersion similar to that in a parabolic potential. This may be due to the fact 
that in the presence of flux ϕ, an isolate level in an isolated nanoring behaves a similar dispersion. Thus the new 
energy states may have an equivalent or additional contribution to PC, which are entirely absent in the 1D ring, 
2D square well and parabolic potential.

In the presence of radial motion (n ≠ 0), it is observed from Fig. 3 that each l-level is widen into an l-band 
with ϕ changing, forming the nth clustered bands for a given n. Within the Fermi band of l = jF at n = 0, it is seen 
that the number of the various l-bands at a given n ≠ 0 is totally increased, while the l-band’s slopes are decreased. 
The current contribution of each l-band is accumulated to a substantial change, which cannot be ignored yet. 
Compared the σ = 0.04 and a = 0.104 ring in Fig. 3a with the σ = 0.036 and a = 0.1 ring in Fig. 3b, especially, it is 
observed that in the nominally identical nanorings, the band’s slopes and the band’s number below EF are largely 
changed only by a little variation of both σ and a. It is just the band’s slopes and the band’s number below EF that 
determine both the size and sign of PC, as defined by Eq. (6). This indicates an alternative magnetic response 
mechanism other than previous theory.

Owing to uncertainty in experimental fabrication, in nature, there exists a fluctuation in both radius and 
width of collective rings3,6 or arrays of rings9. Also, the potential slope can be affected by substrate material, 
interface potential barrier and other experimental environment3–12. To explore the dependence of PC on σ and 
a, in Fig. 4 we show the total current Itot and its partial currents I1,2,3 for various nanorings. Both Itot and I1,2,3 are 
in units of I0 = jFωc/�0 with ωc = �

mr2c
 . Here I0 ∼ 1.52nA can be estimated at jF = 90 and rc = 418nm , and the 

obtained currents are basically within observation range11,12. For the direction of magnetic response, the first 
two Fourier harmonics A1 and A2 are present together to compare with the experimental data11,12.

In the case of the σ = 0.04 and a = 0.1 ring, three partial currents are never completely lost, despite having no 
current contribution of the positive Δ-band. It is seen from Fig. 4a that there appears a paramagnetic Φ0-current 
with A1 ~ 0.957I0 > 0, while the Φ0/2-current is diamagnetic with A2 ~  − 0.751I0 < 0. All three partial currents have 
positive contributions of A1 ~ 0.382I0, 0.114I0 and 0.462I0 to the Φ0-current of A1 ~ 0.957I0 in Itot, leading to a large 
paramagnetic Φ0-current. Strangely, the diamagnetic Φ0/2-current in Itot originates mainly from the contribu-
tions of A2 ~  − 0.336I0 and − 0.525I0 in both I2 and I3, induced by the new energy levels, while the paramagnetic 
Φ0/2-current of A2 ~ 0.109I0 in I1 has been counterbalanced. This helps to explain the experimental observation 
on a diamagnetic Φ0/2-current3,6. The result is contributed to the newly found energy levels due to the nonlinear 
resonance, showing a new magnetic response mechanism.

In the case of the σ = 0.04 and a = 0.104 ring, both Φ0- and Φ0/2-currents are observed in Fig. 4b to be para-
magnetic with A1 ~ 2.20I0 > 0 and A2 ~ 1.90I0 > 0. Comparing with Fig. 4a, a diamagnetic-paramagnetic transition 
appears in Φ0/2-current only by a little increase in width a from a = 0.1 to a = 0.104, showing a quantum size 
effect22. Also, it is seen that both A1 and A2 in Itot are mainly governed by the contributions of both A1 ~ 1.612I0 
and A2 ~ 1.31I0 in I2, while both I1 and I3 have a less contribution. This is due to the additional contribution in 
I2 from the positive Δ-bands.

In the case of the σ = 0.036 and a = 0.1 ring, a paramagnetic current appears in Fig. 4c with A1 ~ 10.86I0 > 0 
and A2 ~ 2.045I0 > 0. For A1 being 5 times larger than A2, the total current shows up in primary Φ0 period, while 
its Φ0/2-current is counterintuitive to observe. In the same reason, both A1 and A2 in Itot are governed by the 
contributions of both A1 ~ 9.989I0 and A2 ~ 2.04I0 from I2, while a weak diamagnetic current A1 ~  − 0.025I0 in I1 
is completely counterbalanced and thus is unobservable. Under an identical width of a = 0.1, interestingly, it is 
found that only a little decrease in slope σ from σ = 0.04 to σ = 0.036 results in a large increase of A1 in Itot from 
A1 ~ 0.957I0 to A1 ~ 10.86I0, the latter being at least one order of magnitude larger than the former. This is due 
to a huge contribution from two positive Δ-bands at σ = 0.036. The result can explain the difference in the PC’s 
magnitudes between the experiments3,9,10 and the predictions13–15. In nominally identical rings, especially, it is 
clearly seen that the direction and magnitude of PC depend sensitively on both ring width and potential slope, 
which explain well the experimental observation11. This further confirms the new magnetic response mechanism.
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Figure 3.   Energy levels En,l as a function of ϕ for various nanorings at z = 1/4+ s2 , where (a) n = 60 and (b) 
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With σ decreasing (the slope increasing), actually, the model potential approximates a square well one. Even 
higher-order approximations may be needed to simulate such a potential, which also increases the difficulty of 
analysis. In this case, the magnetic response can be estimated at a relatively small σ. For a nanoring of a = 0.1 
and σ = 0.032, both the paramagnetic Φ0- and Φ0/2-currents are approximately obtained to be A1 ~ 11.16I0 > 0 
and A2 ~ 3.067I0 > 0. Compared to the case of the a = 0.1 and σ = 0.036 ring, the total current is not much affected 
by the slope, no significant alteration appearing there. From Eq. (15), furthermore, it is found that there exists 
a critical value of σ = σc at β = 0, so that γ3 ≈ 6+ w0−6

6σ2w0
> 6(6−

√
3) at σ < σc . For example, σc ≈ 0.03945 is 

obtained at a = 0.1 . Then, the quadratic expression of �d(n
1
2 ) > 0 and thus the discriminant �>0, having a 
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similar contribution to PC at σ < σc . Such a result can also be related to the phase coherence length Lϕ in a metal-
lic ring of finite width, Lϕ ~ 1 μm achieved from theoretical fitting23 and Lϕ > 2 μm deduced from the experimental 
observation3, while the comparison between Lϕ and PC may be not so straightforward. From this, it is expected 
that the current may become stable in a square-well potential at σ → 0.

Conclusion
We have proposed a physically realistic potential model of a nanoring in a strongly anharmonic confinement, for 
which a fully nonlinear and nonperturbative approach is developed to solve analytically the equation of electronic 
motion, free from a regular resonance divergence. Both the frequency shift and the dynamic displacement are 
exactly derived by an order-by-order self-consistent method, leading to the findings of a series of new energy 
levels and new energy states. Also, the results of both CLB and VLB provide an intuitionistic physics image to 
understand the energy band theory of solid state physics. In nominally identical rings, especially, it is found that 
the direction and magnitude of PC depend sensitively on both ring width and potential slope, which explain 
well the experimental observations. The abrupt changes in the currents are mainly attributed to the newly found 
energy levels and energy states, revealing a new magnetic response mechanism. While the induced currents by 
the new energy levels cannot be measured independently, experimentally, the levels splitting at about z ~ 1/4 and 
z ~ 1/9 may be observable in high-precision spectral experiment. This may provide another check for the validity 
of the ring model and the new method. Considering the higher-order effects, further, some fine structures and 
even more new energy levels can be expected at other resonance frequencies32, of which the current contribution 
may be too weak to observe. In conclusion, this work opens another new way to solve the strong and/or weak 
nonlinear problems in both classical and quantum physics.
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