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Super‑resolution of X‑ray CT 
images of rock samples by sparse 
representation: applications 
to the complex texture 
of serpentinite
Toshiaki Omori 1,2,3*, Shoi Suzuki 1, Katsuyoshi Michibayashi 4 & Atsushi Okamoto 5

X-ray computed tomography (X-ray CT) has been widely used in the earth sciences, as it is non-
destructive method for providing us the three-dimensional structures of rocks and sediments. Rock 
samples essentially possess various-scale structures, including millimeters to centimeter scales of 
layering and veins to micron-meter-scale mineral grains and porosities. As the limitations of the 
X-ray CT scanner, sample size and scanning time, it is not easy to extract information on multi-scale 
structures, even when hundreds meter scale core samples were obtained during drilling projects. As 
the first step to overcome such barriers on scale-resolution problems, we applied the super-resolution 
technique by sparse representation and dictionary-learning to X-ray CT images of rock core sample. 
By applications to serpentinized peridotite, which records the multi-stage water–rock interactions, we 
reveal that both grain-shapes, veins and background heterogeneities of high-resolution images can be 
reconstructed through super-resolution. We also show that the potential effectiveness of sparse super-
resolution for feature extraction of complicated rock textures.

X-ray computed tomography (X-ray CT) is non-destructive method for providing us the three-dimensional 
structures. In decades, the applications of X-ray CT to geomaterials have been widely increasing, including 
rocks, sediments, and meteorites. In particular, the X-ray CT scanner is commonly applied to rock core samples 
by scientific drilling and/or developments of underground resources1,2. The downhole profiles of the X-ray CT 
values is used to extract the basic information on the physical properties of geological formations, and thus CT-
value profiles lend themselves to geological interpretations1,3–5. For example, during the Oman drilling projects 
in 2016-2019, that drilled the crust and mantle sections of Oman ophiolite, the continuous X-ray CT images in 
total length exceeding 1000 m have been obtained by the onboard operation; the D/V Chikyu using a Discovery 
CT 750HD (GE Medical Systems)2,6. Crustal and mantle rocks taken from the Oman drilling projects showed 
various-scale structures that formed during igneous processes and water–rock interactions, including meter-scale 
igneous layering to millimeters scale veins to micro-scale mineral grain shapes, and nano-scale pores. However, 
as the voxel size of CT images at the D/V Chikyu is several hundreds micrometers, it is difficult to obtain the 
grain-scale information2. In contrast, more detailed CT images are obtained by the micro-CT at laboratories 
or synchrotron-based nano CT scanners at high energy acceleration institutes, although the size of analyzed 
samples is restricted. The hydrothermal experiments coupled with repeated CT imaging reveals the generations 
of porosity and evolution of fluid pathways during water–rock reactions7,8.

Traditionally, interpolation techniques are used to enhance the spatial resolution of images9, including bilin-
ear interpolation and higher dimensional interpolation methods such as bicubic interpolation method. Bicubic 
interpolation uses a simple mathematical cubic function to interpolate data points on a regular two-dimensional 
grid. These interpolation methods can be applied to various images with low computational cost because they 
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use common simple functions regardless of the target subject. Since these interpolation methods do not consider 
the characteristics of specific subjects, their simplicity limits their capability to enhance image quality, and they 
tend to generate excessively smooth images with artifacts9.

Super-resolution is a data-driven method based on machine learning for estimating a high-resolution image 
from a recorded low-resolution image10,11. In particular, learning-based super-resolution, which learns informa-
tion about the subject in advance, is able to reconstruct images with higher accuracy by tailoring the learning 
process to the target image. Recently, super-resolution methods using deep learning methods have been proposed. 
Various types of deep learning methods have been applied to super-resolution, ranging from convolutional neu-
ral networks12,13 to generative adversarial networks14. However, the complexity of neural network architectures 
and the large numbers of network parameters mandate the need for a large amount of data to realize successful 
learning in most deep learning-based methods15–18. Sparse super-resolution is the another method that uses 
sparse coding to learn image characteristics for super-resolution. Sparse modeling is a framework that is suitable 
for applications with a sparsity of big data, where there is only a small number of explanatory variables19. It has 
been applied in many scientific fields including physics20, astronomy21, neuroscience22–24, and earth sciences25. 
In sparse super-resolution, an image is represented by the product of a dictionary obtained by learning and a 
coefficient vector so that the number of extracted basis images in the dictionary is minimized10. Thus, the image 
is represented under the constraint of a sparse coefficient vector.

In recent years, super-resolution methods have been developed for medical imaging techniques such as CT 
and magnetic resonance imaging. For the super-resolution of medical images, sparse modeling approaches have 
been developed, which is a white-box type (i.e., explainable) of machine learning26. For example, basis images, 
which explain the characteristics of target subject, are explicitly obtained and can be analyzed in sparse modeling 
approaches. In contrast, most deep learning approaches are the black-box type of machine learning. This means 
that for scientific purposes, the deep learning approaches have some disadvantages such as low explainability and 
interpretability owing to their complex mathematical frameworks27–29. For medical CT images, a previous study 
based on sparse modeling demonstrated that sharp and clear structures such as the sharp and clear boundaries 
between organs and clear structures in blood vessels are emphasized in the estimated super-resolution images 
as well as the super-resolution of natural standard images by assuming that only specific frequency elements 
are considered in the formulation of the super-resolution26. For CT images of rocks, however, it is important 
to estimate complex structures at high-resolution images such as rough, fine structures as well as macroscopic 
sharp boundaries such as the boundaries between open cracks and host rocks.

To overcome the scale-resolution problem for rock CT imaging, we propose a super-resolution technique 
using sparse representation and dictionary-learning. The proposed method can estimate the complex structure of 
rock rather than sharpening and smoothing the image like conventional interpolation methods. We demonstrated 
the effectiveness of the proposed method by applying it to the super-resolution of CT images of serpentinized 
dunite from the Oman ophiolite.

Methods
Serpentinized dunite of Oman ophiolite.  In this study, we perform super-resolution of X-ray CT images 
for serpentinized dunite within the crust-mantle transition zone of the Oman ophiolite, which were suffered 
from the various stages of hydrothermal alteration. The Oman ophiolite is the best exposed section of oceanic 
lithosphere, and is located at the southearstern margin of Arabian Peninsula. The ophiolite is composed of pillow 
to massive submarine basalt, sheeted dike complex, cummulates and gabbros, and upper mantle rocks (dunite 
and harzburgite30,31). Hole CM1A was drilled at Wadi Zeeb, northern Sharqiyah ( 22◦54.435′ E, 58◦20.149′ N ) 
in 2017 and the CM1A core was described aboard the D/V Chikyu in July to August in 2018. From 0 to 160 m 
depth, the core consists mainly of gabbroic rocks (olivine gabbro and troctolite), and from 160 to 310 m depth, 
the CM1A core consists mostly of dunite, which is classified as part of the crust- mantle transition zone. From 
310 to 404 m depth, the core consists mainly of harzburgite, which is classified as part of the mantle sequence. 
Various stages of alteration reactions and veining that occurred over a range of temperatures and fluid infiltra-
tion conditions32,33.

X‑ray CT images.  We used the X-ray CT images of a serpentinized dunite sample (CM1A-90z02-48-53) 
taken from the crust-mantle transition zone at the drill site CM1A of the Oman Drilling Project2,32,34. The core 
sample of serpentinized dunite used in this study was scanned using a micro-focus X-ray CT scanner (Scan 
Xmate D225RSS270; Comscantecno) at Tohoku University (Fig.  1a, see Ref.8 for detailed information). The 
voltage was 120 kV, the current was 150 µA , and the X-ray spot size was  9 µm (approximately half of 18 W). 
The pixel matrix was 1856× 1856 , and the voxel size was 10 µm (Fig. 1b). As the low-resolution images used in 
the super-resolution of this study, we also made the artificial degradation figures by averaging the sixteen pixels 
(Fig. 1c).

The serpentinized dunite sample was completely serpentinized, and no relic of olivine or pyroxenes. The 
sample is mainly composed of serpentine minerals, brucite, magnetite and Cr-rich spinel34. The matrix parts of 
the sample show the mesh textures composed of lizardite+ brucite+magnetite , showing the heterogeneities in 
scales of the original olivine grain or less. The matrix is cut by the later stage serpentine ( antigorite+ chrysotile ) 
veins with thickness of 1 mm. Around this veins, bright brucite-rich reaction zone is developed with fine grained 
magnetite34. Cr-rich spinel is a subhedral grains with a size of 30 µm . Around the serpentine veins, the rims of 
the spinel grained are replaced by magnetite and trails of magnetite formed within the blanches of the serpentine 
veins.
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Super‑resolution method by sparse expression of rock CT images.  Here, we describe the frame-
work of sparse super-resolution for rock CT images. The detailed mathematical formulation is given in the 
Supplementary Material. In sparse image representation, natural images are expressed by a small number of 
basis images19,23,35. Each small area of a natural image called a patch, yi ∈ {1, 2, . . . , P} (P: the total number of 
patches), which can be expressed by basis images {d1, d2, . . . , dD} with a sparse vector (D: the total number of 
basis images):

where xi =
{

xi,1, xi,2, . . . , xi,D
}

 is a sparse vector in which most of the elements are zero. In both high-resolution 
and the corresponding low-resolution images, a sparse vector is assumed to be common as follows (Fig. 2a):

The super-resolution based on sparse representation comprises two steps (Fig. 2b): dictionary learning to obtain 
basis images by using high-resolution images, and super-resolution to reconstruct a high-resolution image by 
transferring sparse coefficients obtained from the low-resolution image representation image.

The dictionary learning step obtains a dictionary comprising the basis images Dhigh =

{

d
high
1 , d

high
2 , . . . , d

high
D

}

 
from a set of patch images Yhigh =

{

y
high
1 , y

high
2 , . . . , y

high
PDL

}

 where PDL is the total number of patch images used 
for dictionary learning. We simultaneously optimize a the high-resolution dictionary Dhigh and a matrix with 
sparse vectors X as follows:

where the first term represents the discrepancies between the high-resolution patch images Yhigh and the 
corresponding reconstructed images DhighX , and the second term is an L1 regularization term for sparsity 
condition36,37. � is a regularization parameter that controls the sparsity. Note that the dictionaries are assumed 
to have arbitrary frequency elements in the proposed method by Eq. (4), whereas only specific high-frequency 
elements are considered for the reconstruction in pre-existing methods10,26. This generalized framework in 
the proposed method is formulated since various frequency elements should be considered for understanding 
rock textures, which include both low- and high-frequency elements, whereas specific high-frequency elements 
are rather important for efficiently obtaining face and object images with clear edges in computer graphics. 
The low-resolution dictionary Dlow

est  is derived from the obtained high-resolution dictionary Dhigh
est  by using the 

downsampling matrix L as follows: Dlow
est = LD

high
est .

In the super-resolution step, a sparse vector is estimated that can reconstruct the low-resolution patch images 
Ỹ
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}

 ( PSR : the total number of patch images for super-resolution) in terms of a small 
number of basis images. For appropriate reconstruction, a matrix with sparse vectors, X̃ , is optimized by mini-
mizing the following expression:

By assuming that high- and low-resolution images have the weight matrix X̃ in common, high-resolution patch 
images Ỹhigh
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follows:
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Figure 1.   (a) X-ray CT images of the serpentinized dunite obtained by a medical CT scanner at Chikyu. The 
area of the patch area is indicated by the red square. (b) High resolution X-ray patch image of CM1A. Srp 
serpentine, Spl spinel, Mag magnetite. (c) Artificially created low-resolution X-ray patch image. Voxel size of the 
high-resolution image was 10 µm.
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The high-resolution reconstructed image is further refined by considering reconstruction in both the high- and 
low-resolution domains. See the Supplementary Material for further details.

Settings for dictionary learning and super‑resolution.  The dictionary learning involves first creating 
a high-resolution dictionary. For this study, PDL = 4964 patches were prepared from six rock CT images used to 
conduct the dictionary creation. Individual CT images were 1856× 1856 pixels.

The rock CT image used for training was divided into patches, and the average of the CT values for each patch 
was calculated. The data obtained by subtracting the average value from the CT value for each patch was used 
for training. The patch size of the high-resolution images was set to 48× 48 pixels after some trial and error, and 
the number of basis images in the dictionary was set to D = 200 . When the initial high-resolution dictionary 
Dhigh was fixed, the sparsity coefficients X for the linear combination of high-resolution CT images were esti-
mated. Then, when the estimated sparsity coefficients X were fixed, a high-resolution dictionary Dhigh suitable 
for sparse representation was obtained by imposing constraints to normalize the scales of the bases. We iterated 
these two tasks to obtain a high-resolution dictionary Dhigh by using the result when the values converged. A 
low-resolution dictionary Dlow was created by downsampling the high-resolution dictionary by a factor of 1/4 
using a smoothing filter.

The hyperparameters ( � , c and β ) for dictionary learning were optimized by setting them to different values 
and selecting those that resulted in a small reconstruction error.

(6)Ỹ
high
est = D

high
est X̃est.

Figure 2.   (a) Schematic illustration of the sparse super-resolution. (b) Flowchart of the proposed super-
resolution algorithm for sparse representation.
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Results and discussion
Estimation from downsampled low‑resolution images.  The sparse super-resolution method was 
applied to estimating high-resolution rock CT images from low-resolution rock CT images (Fig. 1). Figure 3 
shows an example of the estimation results: (a) the low-resolution CT images artificially prepared by downsam-
pling the high-resolution CT image, (b) the estimation with bicubic interpolation, (c) estimation with the pro-
posed sparse super-resolution, and (d) the true high-resolution image. First, the fine structures around localized 
red area is considered, which correspond to spinel grains. With bicubic interpolation, the boundary between red 
and yellow areas around localized red area was smoothly curved, and the intricate structures around the bound-
ary were lost. In contrast, the proposed sparse super-resolution was able to reconstruct the complex structures 
around the boundary between the red (spinel grain) and yellow parts (magnetite rims replacing spinel).

Next, we focus on the linear structure in the upper right area of the images in Fig. 3, which corresponds to the 
serpentine veins. With bicubic interpolation, the boundary between the green and blue areas is overly smooth 
with a smooth contour. With the proposed sparse super-resolution, the intricate parts of the green and blue areas 
were reconstructed with a complex structure, which is similar to the true image. For example, some tube-like 
structures perpendicular to the serpentine veins can be observed in both the true image and image estimated 
by sparse super-resolution, while such tube-like structures were not reconstructed by bicubic interpolation. 
Therefore, the proposed sparse super-resolution accurately reconstructed the detailed structures of the serpentine 
vein and the reaction zone at its boundary.

Finally, the texture in the lower right area the images in Fig. 3 is considered, which corresponds to the mesh 
structure. The true image shows a complex texture with light blue pixels in a deep blue area. The sparse super-
resolution reconstructed such complex structures. In contrast, bicubic interpolation reconstructed smooth tex-
tures in a deep blue area. These results show that the proposed sparse super-resolution framework reconstructed 
textures more accurately than the conventional bicubic interpolation, including spinel grains, their replacement 
textures, and serpentine veins.

To evaluate the effectiveness of the proposed framework for rock CT images in more detail, histograms of 
pixels in estimated high-resolution images are shown (middle subfigures of Fig. 3). These histograms may reflect 
some physical characteristics for a specific area in the rock CT images such as the modal abundances of minerals 
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Figure 3.   (a) Artificially created low-resolution X-ray image (top: enlarged image, bottom: entire image). 
Srp serpentine, Spl spinel, Mag magnetite. (b) Estimated high-resolution image by bicubic interpolation. (c) 
Estimated high-resolution image by sparse super-resolution. (d) True high-resolution image. For (b–d), top 
panel shows the high-resolution image, the middle panel shows a histogram of the pixel values in the two 
dimensional area of image), and the bottom panel shows the pixel values in the high-resolution image as a 
function of position x for a fixed value of y [ y = 70 (red line), and y = 160 (blue line)]. Voxel size of the high-
resolution image was 10 µm.
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and porosities. Thus, it is important to evaluate histograms for the similarity between the true and estimated high-
resolution images. The histograms for sparse super-resolution showed a smooth peak with pixel values between 
1500 and 9000. The histogram for bicubic interpolation showed a sharp peak with pixel values between 2000 and 
9000. The histogram for the true high-resolution image showed a smooth peak with pixel values between 1500 
and 9000. These results suggest that the proposed sparse super-resolution method reconstructed the distribution 
of pixel values more precisely than bicubic interpolation.

The spatial distribution of pixel values is also evaluated as shown in the bottom row of Fig. 3. Here the spa-
tial distribution of the pixel values is considered for the high-resolution images over a horizontal distance of 
y = 70,160 . Bicubic interpolation obtained a smoother spatial distribution than sparse super-resolution. When 
compared with the true high-resolution image, super-resolution accurately reproduced not only the global 
structure of the distribution (i.e., mineral grains and veins) but also fluctuations in the distribution (i.e., mineral 
replacement textures).

For a general validation of the proposed method, Fig. 4 shows the results at different position in the CT image. 
Fine structures in true high-resolution image, such as textures in the blue area and a rough boundary around the 
red area, were reconstructed by sparse super-resolution, whereas these structures were oversimplified by bicubic 
interpolation. This tendency can be confirmed in the histogram and pixel values in the cross section with the 
different methods. For example, the histogram obtained for the sparse super-resolution showed maximal counts, 
sharpness, and pixel value for maximal counts, which are more similar to the histogram of true high-resolution 
image than that obtained for the bicubic interpolation method (Fig. 4, middle). These results show that the basis 
images extracted from rock CT images play an important role in the estimation of complex structure.

Characteristics of dictionary.  For dictionary learning, the basis images were initially set randomly. As the 
dictionary learning proceeded, the spatial features hidden in the training CT image dataset were extracted, as 
shown in Fig. 5a. Note that the analyses for the basis images can be conducted since the sparse super-resolution 
is a white-box type method, which is in cotrast to black-box type methods, such as deep learning-based super-
resolution methods27–29. All basis images showed not only with large-scale (i.e., low spatial frequency) structures 
but also small-scale (i.e., high spatial frequency) structures. The coexistence of structures at different scales 
required enhanced estimation accuracy. We evaluated the estimation accuracy of the proposed method in terms 
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of the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM)9,38,39, as shown in 
Fig. 6. See the Supplementary Material for the definitions of these indices. The PSNR increased with the itera-
tions of dictionary learning but was quite low when the initial randomly set basis images were used. The SSIM 
also increased with the number of iterations. The improvement in image quality according to these indices cor-
responds to the adaptation of basis images included in the dictionary.

The basis images were further analyzed by using clustering and dimension reduction techniques. For clus-
tering, the k-means++ algorithm was applied to vectors representing basis images40. This algorithm avoids the 
initial-value dependence of the original k-means clustering. To visualize the results in two-dimensional space, 
a dimension reduction method called the t-distributed stochastic neighbor embedding (t-SNE) method40 was 
applied to the clustering results. As shown in Fig. 5b,c, the basis vectors were separated into eight clusters. The 
basis images had localized red areas around specific regions and complex textures. The level of localization 
depended on the cluster. Red areas in cluster 6 were less localized but more dispersed, while the red areas in 
clusters 1, 2, and 4 were more localized. Cluster 1 had a localized red area (i.e., high CT number) toward the top, 
whereas cluster 2 had a similar area but toward the bottom.

To investigate the effect of source images on dictionary learning and super-resolution, we conducted diction-
ary learning using other images included in the standard image datasets called IAPR TC-12 (International Asso-
ciation of Pattern Recognition, Technical Committee 12) collection41 and SIDBA (Standard Image Data-BAse)42, 
including people, buildings, and landscapes (Fig. 7a). The dictionary obtained from standard image dataset 
(Fig. 7b) includes clearer boundaries and more straight-line structure than the dictionary obtained from the 
rock CT images (Fig. 5a). A comparison between the high-resolution images obtained from the two dictionaries 
(Fig. 8) indicates that the dictionary obtained from the rock CT images (Fig. 8b) provided more accurate high-
resolution images than the dictionary obtained from the standard images (Fig. 8c). The high-resolution image 
reconstructed using the dictionary from rock CT images reproduced fine structures including textures and the 
boundary around red regions, while the high-resolution image reconstructed using the dictionary from standard 
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images included many sharp structures not seen in the true high-resolution image. The quantitative evaluation 
indices also demonstrated the superiority of the dictionary obtained from rock CT images, which had a greater 
PSNR (30.12) than the dictionary obtained from standard images (27.32) as well as SSIM. These results suggest 
that the basis images extracted by sparse super-resolution include the essential characteristics of the rock textures.
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Figure 6.   Quantitative evaluation indices for the discrepancy between true and estimated high-resolution CT 
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Application to recorded low‑resolution images.  Here, the proposed method was applied to low-res-
olution images, which were directly recorded by the CT scanner. The high-resolution images (Fig. 9b,c) were 
estimated from a low-resolution image (Fig. 9a) directly recorded by the CT scanner. The high-resolution image 
that was estimated by bicubic interpolation (Fig. 9b) shows a rather simple and clear structure. In contrast, the 
high-resolution image that was estimated by sparse super-resolution (Fig. 9c) successfully shows more complex 
structures. For example, in Fig. 9c, the detailed structures of spinel are shown by red areas in the upper-left 
region, and complex mesh textures are shown by deep blue areas.

The high-resolution image estimated from directly recorded low-resolution image by the sparse super-res-
olution (Fig. 9c) is found to be more similar to the high-resolution image recorded at almost same position 
directly (Fig. 9d), compared with that estimated by bicubic interpolation (Fig. 9b). Note that the position of the 
high-resolution image (Fig. 9d) is almost the same as that of the low-resolution image but is not the same exactly. 
From these results, the proposed sparse super-resolution is found to be effective for estimating high-resolution 
rock CT image.

Note that there is still a discrepancy between the high-resolution image that was estimated from the recorded 
low-resolution image by the sparse super-resolution (Fig. 9c) and the high-resolution image that was recorded at 
almost the same position (Fig. 9d). This is probably due to the down-sampling matrix simply that was assumed 
in the present study. A new dictionary learning method for estimating the accurate relationship between high- 
and low-resolution images with appropriate position correspondence is required to reduce this discrepancy and 
realize more accurate estimation in future studies.

Concluding remarks
In this study, we have proposed a method to apply sparse super-resolution to rock CT images. In contrast to 
interpolation algorithms, the proposed method estimates the image by sparse representation and dictionary 
learning to reconstruct missing information in the low-resolution image. The experimental results showed that 
sparse super-resolution method was better at reconstructing details of rock CT images than bicubic interpolation. 
The superiority of the proposed method was quantified by PSNR and SSIM. These results confirmed that the 
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proposed method extracts the important features of rock CT images and obtains better results than conventional 
interpolation, which may be a significant contributions to practical applications.

The medical CT scanner used for the long geological core analyses provides low resolution images ( > 0.1 
voxel size) on the mineral-scale microstructures but is strong tool for quantitative analyses of the continuous 
geological structures over 100 m. In contrast, the researchers carry out in the detailed microstructural analyses 
from the limited samples in their labs, by using for example high-resolution X-ray CT. Therefore, if we develop 
a super-resolution techniques to link the lab micro CT scanner and medical CT in D/Y Chikyu, we can connect 
the phenomena from nano to micro scale to kilometer scales. This study only shows the super-resolution in the 
same scanner with different magnification or artificial images created by simple down sampling, it is important 
to find the way the realistic down sampling that enables to link over the images taken by the different scanners.

Data availability
The original and treated X-ray CT images are available from https://​doi.​org/​10.​6084/​m9.​figsh​are.​54586​96. Codes 
and further data can be made available by the corresponding author (T.O.) upon reasonable request.
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