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CBCT‑based synthetic CT 
generated using CycleGAN 
with HU correction for adaptive 
radiotherapy of nasopharyngeal 
carcinoma
Chen Jihong 1,4, Quan Kerun 2,4, Chen Kaiqiang 1, Zhang Xiuchun 1, Zhou Yimin 3 & 
Bai penggang 1*

This study aims to utilize a hybrid approach of phantom correction and deep learning for synthesized 
CT (sCT) images generation based on cone‑beam CT (CBCT) images for nasopharyngeal carcinoma 
(NPC). 52 CBCT/CT paired images of NPC patients were used for model training (41), validation (11). 
Hounsfield Units (HU) of the CBCT images was calibrated by a commercially available CIRS phantom. 
Then the original CBCT and the corrected CBCT (CBCT_cor) were trained separately with the same 
cycle generative adversarial network (CycleGAN) to generate SCT1 and SCT2. The mean error and 
mean absolute error (MAE) were used to quantify the image quality. For validations, the contours 
and treatment plans in CT images were transferred to original CBCT, CBCT_cor, SCT1 and SCT2 for 
dosimetric comparison. Dose distribution, dosimetric parameters and 3D gamma passing rate were 
analyzed. Compared with rigidly registered CT (RCT), the MAE of CBCT, CBCT_cor, SCT1 and SCT2 
were 346.11 ± 13.58 HU, 145.95 ± 17.64 HU, 105.62 ± 16.08 HU and 83.51 ± 7.71 HU, respectively. 
Moreover, the average dosimetric parameter differences for the CBCT_cor, SCT1 and SCT2 were 
2.7% ± 1.4%, 1.2% ± 1.0% and 0.6% ± 0.6%, respectively. Using the dose distribution of RCT images 
as reference, the 3D gamma passing rate of the hybrid method was significantly better than the 
other methods. The effectiveness of CBCT‑based sCT generated using CycleGAN with HU correction 
for adaptive radiotherapy of nasopharyngeal carcinoma was confirmed. The image quality and dose 
accuracy of SCT2 were outperform the simple CycleGAN method. This finding has great significance for 
the clinical application of adaptive radiotherapy for NPC.

Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in Southeast Asia and  China1. 
In modern intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), 
adequately delivering dose to the target volumes while sparing the critical organs at risk (OAR) is key to the suc-
cess of radiation therapy for  NPC2,3. Adaptive radiation therapy (ART) may be crucial for radiotherapy of  NPC4. 
Accurate acquisition of 3D volume images to monitor patient-specific variation in the radiotherapy process is 
essential in ART. Repeated scans with fan beam based CT are potentially most accurate image acquisition for 
ART. However, it will increase radiation exposure, delay or prolong treatment course, add logistic burdens to 
the patients and also increase the workload of the clinic. Recently, Cone-beam CT (CBCT) image acquisition 
with an on board imaging system equipped on the treatment delivery has been widely used in patient setup 
and monitoring of anatomical changes during the  treatment5. However, the inferior image quality compared to 
conventional CT images and the uncalibrated Hounsfield Units (HU) of CBCT have been limiting its usage in 
ART due to the poor target and OAR delineation and incorrect dose  calculation6.
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Improving CBCT imaging quality and HU fidelity has been extensively  studied7–10. A primitive method is 
to calibrate the electron density (ED) value of the CBCT images using the HU-ED curve obtained from a com-
mercial  phantom7. More robust methods, such as histogram-matching based  solutions11, voxel-to-voxel mapping 
using deformable image registration (DIR)8 and Monte-Carlo (MC) based  methods9, have been proposed for 
CBCT correction. It was reported that the dosimetric accuracy of CBCT corrected by an automated patient-
specific calibration method was comparable to recalculation on conventional CT data sets for head-and-neck 
 patients10.

More recently, deep learning (DL) methods such as U-net  CNN12–14 and  GAN15,16 have already been imple-
mented widely in the generation of synthetic CT (sCT). In particular, Cycle-consistent adversarial network 
(CycleGAN) is one of the most commonly used methods for CBCT to CT transformation, as it does not require 
paired information of the training  data17–21. Liang et al. developed a CycleGAN network to synthesize CT images 
from CBCT images for head-and-neck cancer patients, and the sCT images were both visually and quantitatively 
similar to real CT  images17. Kida et al.18 indicated that CycleGAN could produce high quality CT-mimicking 
images from CBCT images while preserving anatomical structures for prostate cancer patients. Sun et al.19 
proved that 3D CycleGAN improved electronic density and anatomical structure delineation accuracy, from 2D 
CycleGAN. DL generated sCT images have been reported useful in dose calculations in ART  applications22–24. 
Their accuracy in clinical dose calculations for  NPC16 and prostate cancer radiation  therapy22 were preliminar-
ily verified.

In this study, we report a hybrid use of both tradiation and DL methods in the correction of CBCT images 
for the application in ART. HU of the CBCT images for NPC patients were firstly corrected by a commercial 
phantom. SCT images were then generated by a CycleGAN from the original CBCT images, and their resulting 
image quality and dosimetric accuracy of the two sets of sCT images were evaluated.

Material and methods
Image acquisition and processing. 52 NPC patients receiving radiotherapy in Fujian Cancer Hospital 
from 2020 to 2021 were included in this study. This study has been approved by the ethics committee of Fujian 
Cancer Hospital (ethics number: SQ2020-043-01) and all patients provided written informed consent prior to 
enrollment in the study. All methods were performed in accordance with the Declaration of Helsinki as well as 
relevant guidelines and regulations. During simulation for treatment planning, CT images were obtained on a 
Brilliance CT Big Bore (Philips Medical Systems Inc., Cleveland, OH, USA), with a head neck protocol (120 kVp, 
225 mA). The CT image slice had a dimension of 512 × 512 pixels, with a voxel resolution of 1.14 × 1.14 × 3  mm3. 
All CBCT images were acquired before the patients’ first radiotherapy on XVI of an Elekta Axesse accelera-
tor, with a tube voltage of 120 kV and an exposure current of 25 mA. The dimension of CBCT image slice was 
410 × 410 pixels with resolution of 1 × 1 × 1  mm3.

CT images and CBCT images were rigidly registered with a benchmark of CBCT images, using an open 
source-software 3D-Slicer25. Then the axial aligned CT images were resampled to CBCT images voxel and size, 
called RCT as a reference standard for image evaluation. Binary masks were created based on threshold seg-
mentation and morphological processing methods to avoid the adverse impact from non-anatomical structures 
during the process of training. The voxel values of images were clipped to the range of [− 1000, 2000], while the 
voxel values of regions outside the masks were set to − 1000 HU.

Before the training of CycleGAN model, each RCT and CBCT images were cropped from the image center 
to the size of 256 × 256 and the CT value were normalized to [− 1, 1]. 41 patients were randomly chosen for the 
training set and the remaining 11 patients were used in validation. 264 slices were taken from each patient’s data-
set. Therefore the training and validation dataset consisted of 10,824 and 2904 CT and CBCT slices, respectively. 
Due to GPU memory limitations, a two-dimensional CycleGAN model is adopted in this study.

Calibration of HU by phantom. The CIRS model 062 (CIRS Tissue Simulation Technology, Norfolk, 
VA, USA) was scanned with the same Big Bore CT and the same CBCT on the linear accelerator, with the same 
acquisition parameters. For each scan, the average HU number of each material insertion (electron density 
relative to water of 1.00, 0.20, 0.50, 0.97, 0.99, 1.06, 1.07, 1.16 and 1.61) was read out in the central slice of the 
phantom. Then the average HU number in the CT scan and CBCT scan was plotted against the known electron 
density, respectively. HU of the CBCT images were corrected based on these two curves, by an in-house program 
to make the corrected CBCT images (CBCT_cor).

CycleGAN method. As shown in Fig. 1, the CycleGAN model includes two generators and two discrimina-
tors. In the forward cycle, Generator-RCT  (GRCT ) generates sCT from CBCT, and then Generator-CBCT  (GCBCT) 
generates Cycle CBCT (CCBCT) from sCT. While in the backward cycle,  GCBCT generates synthesized CBCT 
(sCBCT) from RCT, and then  GRCT  generates Cycle CT (CCT) from sCBCT. The two discriminators,  DRCT  and 
 DCBCT, were used to determine whether sCT and sCBCT were real images. Loss function of CycleGAN was con-
sisted of adversarial loss and cycle consistency loss. The adversarial losses for the two cycles are

and

The cycle consistency losses for the two cycles are

(1)LCT = ERCT
[

(1− DRCT (RCT))
2
]

+ ECBCT
[

(DRCT (GRCT (CBCT)))
2
]

(2)LCBCT = ECBCT
[

(1− DCBCT (CBCT))
2
]

+ ERCT
[

(DCBCT (GCBCT (RCT)))
2
]
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and

Thus, combining these two kinds of losses, the full objective is:

Network structure and parameters. The generator contains an encoding layer, a conversion layer and 
a decoding layer. The encoder reduces the number of spatial dimensions and identifies the features of the input 
image. The conversion layer, which consists of nine layers of ResNet  module26, will then change to its eigen-
vectors. The decoder repairs the spatial dimensions of the object and generates a synthesized image. The dis-
criminator is a binary network with outputs between [0, 1]. The mode is trained with Adam  optimizer27 from 
 Tensorflow28. The learning rate decays linearly after 20 epochs with an initial value of 0.0002, while the momen-
tum term β1 and β2 are set to 0.5. The other parameters are set as follows: λ = 10, batch-size = 2, epoch = 100. 
The original CBCT images and CBCT_cor images are used to train the model respectively. In the following 
text, SCT1 is generated by the CycleGAN model from original CBCT images while SCT2 is generated from the 
CBCT_cor.

Evaluation. In this study, the patients in the validation set were used to evaluate the improvement of image 
quality. The Mean Absolute Error (MAE) and Mean Error (ME) for CBCT, CBCT_cor, SCT1 and SCT2 versus 
RCT were calculated in the region of Binary masks, respectively. Meanwhile, HU profiles were also compared for 
these types of images while a side-by-side comparison was performed.

Volumetric modulated arc therapy (VMAT) plans of the patients in the validation set were generated on the 
RCT images. The prescribed dose were 69.96 Gy, 60.06 Gy and 56.1 Gy to the planning target volumes of primary 
nasopharyngeal tumor and definitive bilateral lymph nodes (PTV6996), high risk region (PTV6006), low risk 
region and bilateral low-risk nodal regions (PTV5610) in 33 fractions, respectively. The contours were copied 
from the RCT images to the CBCT, CBCT_cor, SCT1 and SCT2 images via rigid registration. Dose calculation 
was performed with the  Pinnacle3 (version 16.2, Philips Radiation Oncology Systems, Madison, WI).

The comparison of dose distribution was performed among CBCT_cor, RCT, SCT1 and SCT2 images. Several 
dosimetric parameters were collected for quantitative comparisons. For PTVs, the  D2 (the dose corresponding 
to 2% of volume),  Dmean (the mean dose) and  D98 (the dose corresponding to 98% of volume) were recorded. For 
OARs,  Dmean or  Dmax (the max dose) were compared. The global 3D gamma passing rates were also calculated 
by the radiotherapy module of 3D-Slicer with criteria of 3%/3 mm and 2%/2 mm, with 10% dose threshold, 
respectively.

(3)Lfw = ECBCT [�CBCT − GCBCT (GRCT (CBCT))�1]

(4)Lbw = ERCT [�RCT − GRCT (GCBCT (RCT))�1]

(5)Lcyclegan = LCT + LCBCT + �
(

Lfw + Lbw
)

Figure 1.  Illustration of cycle-consistent generative adversarial network (CycleGAN).
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The Wilcoxon’s signed rank test was carried out (between SCT2 and CBCT, SCT2 and CBCT_cor, SCT2 and 
SCT1,) for MAE, ME, gamma pass rate and dosimetric parameters previously described. Statistical Package for 
the Social Sciences (SPSS 21.0; SPSS Inc., Chicago, IL, USA) was used to perform these tests and P < 0.05 was 
considered statistically significant.

Results
Side‑by‑side comparison. Figure  2 shows CBCT, CBCT_cor, RCT, SCT1 and SCT2 images from one 
patient of validation set. The image quality of SCT1 and SCT2 were significantly better than that of the CBCT 
and CBCT_cor. As shown in Fig. 2A, both of SCT1 and SCT2 images generated by CycleGAN model could 
remove the scattering artifacts of CBCT images. Meanwhile, the line profiles of different areas for this patient 
were plotted. In the profile of line A which passes though soft tissue, bone and cavity areas, sCT images especially 
for SCT2 HU values were well corrected to the HU values of RCT. In the profile of line B which passes though 
brain tissue area, the SCT1 and SCT2 HU values were smooth and well corrected to the RCT HU values too. 
Nevertheless, the CBCT and CBCT_cor HU values were obvious noisy.

The MAE and ME evaluation. The results of MAE and ME comparisons between the CBCT, CBCT_cor, 
SCT1 and SCT2 images against RCT images for all 11 validation cases are listed in Table 1 and Fig. 3. For both 
MAE and ME, the result of SCT2 images was the smallest, follow by SCT1. In addition, as shown in Fig. 3, the 
MAE for each patient between SCT2 and RCT is less than that between SCT1 and RCT. The range of MAE 
improved from (79, 143) to (74, 97), which suggested that corrected CBCT images can help improve training 
results.

Dose distribution comparison. Figure 4 shows the dose distribution based on CBCT_cor, RCT, SCT1 
and SCT2 images for three validation patients. The distribution of isodose lines on SCT2 was closest to that on 
RCT, followed by SCT1. Moreover, the isodose lines of CBCT_cor such as 7350 cGy were significantly different 
from that of RCT.

Figure 2.  (A) The side-by-side comparison of CBCT, CBCT_cor, RCT, SCT1 and SCT2 for a validation patient; 
(B) the line profile of line a; (C) the line profile of line b.

Table 1.  MAE and ME results for four kinds of images against RCT images from all validation cases. MAE 
mean absolute error, ME mean error.

MAE (HU) P value ME (HU) P value

CBCT 346.11 ± 13.58 0.003 334.80 ± 13.88 0.003

CBCT_cor 145.95 ± 17.64 0.003 101.92 ± 20.39 0.003

SCT1 105.62 ± 16.08 0.004 10.07 ± 28.95 0.424

SCT2 83.51 ± 7.71 – 3.65 ± 4.20 –
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The average relative dosimetric difference for the CBCT, CBCT_cor, SCT1 and SCT2 compared to RCT of all 
validation patients were listed in Table 2. The average dosimetric difference (6.5 ± 8.7%) was considerable when 
calculated from the uncorrected CBCT images. For most targets and OARs, the relative dosimetric differences 
for SCT2 were least compared to the RCT (0.6% ± 0.6%). Respectively, the average differences for CBCT_cor 
and SCT1 were (2.7% ± 1.4%) and (1.2% ± 1.0%) respectively.

3D gamma analysis. The result of 3D gamma analysis was shown in Table 3. Regardless of the 3 mm/3% 
or 2 mm/2% criteria, the gamma passing rate of SCT2 compared with RCT (98.7% and 97.1%, respectively) was 
marginally higher than that of SCT1 (97.7% and 95.7%, respectively). Moreover, both of STC1 and SCT2 have 
significantly higher passing rates than that of CBCT_cor.

Discussion
In this study, we developed a hybrid approach using conventional phantom correction method and deep learning 
methods to generate sCT images from CBCT images acquired for NPC patients during their treatments. The 
HU values of CBCT images were firstly corrected by the HU-ED curves and then used to train the CycleGAN 
model. For comparison, the original CBCT images were also used for model training with the same parameter 
settings. Image quality and dose distribution were evaluated on the CBCT images corrected by HU-ED curves 
and sCT images generated by CycleGAN model, with RCT images as the ground truth.sCT images generated 
by the CycleGAN model successfully removed most scatter artifacts on the CBCT images. The image quality 
of SCT1 and SCT2 was visually comparable to the RCT, as Zhang et al.29 and Chen et al.30 reported. Moreover, 
the HU profile of sCT images in most regions, especially SCT2, was closer to that of RCT images. It indicated 
that the HU value of SCT1 and SCT2 images were adequately corrected to that of RCT images, consistent with 
previous  studies19,31. The MAE was significantly less in SCT2 than SCT1 (83.51 vs. 105.62, P < 0.05), indicating 
improvement was achieved by training with HU corrected CBCT images. The MAE was greater than previously 
reported because it was calculated over the structures inside the patient external contour, which was believed to 
be a better evaluation than calculated from the entire image in previous studies.

The eventual goal of this study is to improve the image quality and dosimetric fidelity for the readily avail-
able CBCT obtained during treatment to implement ART for NPC patients if their anatomy changes. Visual 
inspections of the 3D dose distributions on the sCT images proved it much closer to those calculated from the 

Figure 3.  MAE and ME comparisons for each patient in validation cases. (A) MAE, (B) ME.
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RCT images, compared to using the uncorrected CBCT and the HU correction only CBCT_cor images. SCT2 
was superior to SCT1. As shown in Fig. 4, the prescription dose level isodose line (7350 cGy) from the SCT2 
was more close to that of RCT, while the high dose area was obviously larger in the SCT1 images. The average 
relative dosimetric differences of the SCT2 was significantly lower than that of SCT1 (0.6 vs. 1.2). When evalu-
ated with the 3D gamma analysis, the dose distribution of the SCT2 was more robust than that of SCT1 with a 
smaller standard deviation (0.5 vs. 1.9) in 2%/2 mm gamma index evaluations.

Our results show that the sCT images generated from the HU corrected CBCT images is superior to that 
generated from uncorrected CBCT images with the same CycleGAN model, both in image quality and dose 
calculation accuracy. The sCT images generated by the hybrid method of deep learning and phantom correction 
could achieve adequate accuracy in ART dose calculations for NPC patients. There were some limitations in 
this study. First, due to the computational power limitation in hardwares, the current approach was only able to 
implement the 2D CycleGAN. Even results can be reasonably expected if a three-dimensional model could be 
 adopted32–34. Secondly, due to the rigid registration algorithm used for pre-processing, there is a certain differ-
ence between RCT images and CBCT images. Deformable image registration may improve the performance of 
our approach upon validations in future  research35.

Conclusion
The image quality and dose calculation accuracy on synthetic CT generated from the deep learning CycleGAN 
with HU corrected CBCT images were examined and evaluated. This method efficiently provided a 3D volumetric 
imaging dataset with improved quality and adequate dose calculation accuracy for the application in ART for 
NPC patients.

Figure 4.  The dose distributions for three validation patients on CBCT_cor, RCT, SCT1 and SCT2 were 
displayed.
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