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Predictive biosignature of major 
depressive disorder derived 
from physiological measurements 
of outpatients using machine 
learning
Nicolas Ricka 1*, Gauthier Pellegrin 1, Denis A. Fompeyrine 1, Bertrand Lahutte 6 & 
Pierre A. Geoffroy 2,3,4,5

Major Depressive Disorder (MDD) has heterogeneous manifestations, leading to difficulties in 
predicting the evolution of the disease and in patient’s follow-up. We aimed to develop a machine 
learning algorithm that identifies a biosignature to provide a clinical score of depressive symptoms 
using individual physiological data. We performed a prospective, multicenter clinical trial where 
outpatients diagnosed with MDD were enrolled and wore a passive monitoring device constantly for 
6 months. A total of 101 physiological measures related to physical activity, heart rate, heart rate 
variability, breathing rate, and sleep were acquired. For each patient, the algorithm was trained on 
daily physiological features over the first 3 months as well as corresponding standardized clinical 
evaluations performed at baseline and months 1, 2 and 3. The ability of the algorithm to predict the 
patient’s clinical state was tested using the data from the remaining 3 months. The algorithm was 
composed of 3 interconnected steps: label detrending, feature selection, and a regression predicting 
the detrended labels from the selected features. Across our cohort, the algorithm predicted the daily 
mood status with 86% accuracy, outperforming the baseline prediction using MADRS alone. These 
findings suggest the existence of a predictive biosignature of depressive symptoms with at least 
62 physiological features involved for each patient. Predicting clinical states through an objective 
biosignature could lead to a new categorization of MDD phenotypes.

Major depressive disorder (MDD) is a prevalent, disabling, chronic, biologically based disorder that impairs 
social, occupational, and educational  functioning1. The World Health Organization estimates that MDD affects 
280 million people  worldwide2. By the age of 65, one in three women and one in five men will have experienced 
an episode of major  depression3. MDD is associated with increased suicide risk, morbidity, and mortality and 
is the leading cause of disability  worldwide2,4. By 2030, MDD is projected to be the leading cause of disease 
burden  worldwide5. Therefore, it is vital to identify MDD as early as possible and to predict how the course of 
the disease will progress over time.

MDD is characterized by wide variability in disease presentation and response to  treatment6. Individuals with 
MDD experience a range of symptoms, which can change over time, and include a persistent state of sadness 
and hopelessness, anhedonia, fatigue, sleep disturbance, circadian rhythm disruptions, indecision, inability to 
concentrate and recurrent suicidal  ideation7–9. Major depressive episodes have a median time to recovery of 2 to 
3 years and are highly variable at the individual level. Approximately 30% of patients are resistant to treatment 
and 60% cycle through treatment discontinuation and resumption; moreover 70% of relapses are not detected 
in  time10. This heterogeneity contributes to the difficulty in establishing a diagnosis. Additionally, an MDD 
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diagnosis currently relies solely on subjective markers, (e.g., declarative administered by a clinician, based on 
the patient narrative) which presents numerous challenges in terms of predicting treatment response, remission, 
risk of relapse, recovery and, consequently, in prescribing personalized treatments.

Many studies have shown that various physiological measurements are linked to MDD. For instance, predic-
tors of depressive relapse include irregular physical activity, slow motion, physiological changes in breathing and 
heart rates, and disrupted  sleep11. Indeed, psychomotor retardation is often considered the cornerstone of  MDD12, 
as it reflects a fundamental asthenia of patients intricately associated with avolition. Psychomotor retardation 
fluctuates over a 24-h period, and manifests especially during the first hours after waking. Evaluation is important 
in patient follow-up since psychomotor retardation is correlated with the severity of  MDD13 and its evolution can 
be considered an indicator of the therapeutic  effect12. Recording of physical activity (e.g., by actigraphy) can be 
used to assess psychomotor disturbances in patients with  MDD14–17. Cardiovascular disorders in patients with 
MDD may reflect dysregulation of the autonomous nervous system and can manifest as a decrease in heart rate 
 variability18,19 (whereas an increase would constitute an indicator of the therapeutic effect)20,21, respiratory sinus 
 arrhythmia22, or worsening of sympathetic reactivity to stress, which can create paroxysmal reactions responsible 
for symptoms such as heart palpitations or tachycardia and  dyspnea23. Sleep is another core element of MDD that 
influences position in the pathophysiology, phenomenology, history, and evolution of  episodes7,24–28. Sleep altera-
tions are part of the DSM-56 criteria of MDD and are reported by more than 90% of  patients7,29. Bidirectional 
associations have been observed between mood episodes and sleep  disturbances7,24,30. Sleep alterations worsen 
depressive  symptoms31 and are associated with an increased risk of  suicide25. In terms of objective markers, 
actigraphy studies have reported alterations in sleep–wake cycles during depressive symptoms with less activity 
during the daytime and increase wakefulness after sleep  onset32. Polysomnography (PSG) studies have reported 
several alterations associated with depression, including a reduced duration of slow wave sleep (SWS), increased 
duration of rapid eye movement (REM) sleep, reduced REM sleep latency, prolongation of the first REM period, 
and increased REM  density33–38.

Predicting the evolution of MDD symptoms using machine learning (ML) is a highly active field of research, 
although other investigators have mainly focused on the evolution of MDD relative to a specific  treatment39 
or did not determine patient-specific  biosignatures40,41. A meta-analysis and systematic  review42 showed that 
predictive models integrating multiple data types performed better than models with single lower-dimension 
data types and that ML provides an opportunity to parse clinical heterogeneity and characterize moderators of 
disease risk and trajectory, both of which aligns with our current work and hypothesis. Interestingly, two recent 
preliminary studies demonstrated the feasibility of predicting MDD symptoms from longitudinal physiological 
and behavioral data using wearable devices and ML  algorithms43,44. Their objective was similar to ours, but their 
predictive model was not patient-specific, and follow-up of patient evolution was not examined since the data 
were collected over a shorter period (maximum of 8 weeks). Moreover, a direct comparison between studies 
using different clinical scales cannot be performed without large sample  sizes45, which was not the case in the 
study by Rykov et al.44. Nevertheless, the use of ML in psychiatric fields constitutes an unprecedented opportu-
nity to address the symptoms’ heterogeneity in individual, monitor disease evolution, and adapt the treatment.

To address the untackled challenges of patient heterogeneity, patient follow-up, and long term forecast of 
mood status, we propose to take advantage of advances in remote physiological data collection and ML to facili-
tate patient assessment and follow-up, giving physicians additional time to treat more patients, despite limited 
resources, which is critical for a disorder whose barriers to effective care include a lack of resources and lack of 
trained healthcare  providers2.

The aim of the current work was to develop a novel ML algorithm that can identify the symptoms biosig-
nature and provide a clinical score using physiological data from an individual. Our ML model, the Signature 
Based Model of Depression (SiBaMoD) is divided into 3 elements: a detrender cancelling out the labels auto-
correlation, a feature selection component extracting the patient’s biosignature, and a neural network predicting 
the detrended labels from the selected features. The detrending procedure facilitates learning a clinical score from 
the data, allowing to get a daily clinical score which, to our knowledge, has never been done in the literature. 
The feature selection component provides an individual biosignature of depressive symptoms, which is unique 
to our algorithm.

Methods
Study design. The data presented herein are derived from a prospective, multicenter, nonrandomized, 
open-label clinical trial (ClinicalTrials.gov identifier: NCT05547035) designed specifically for this purpose. 
Patients diagnosed with MDD were enrolled in the study by their general practitioner or psychiatrist.

The study was designed and conducted in accordance with Good Clinical Practice as defined by the Agence 
Nationale de Sécurité du Médicament et des Produits de Santé, (ANSM; ID: 2017-A00595-48) and the Declara-
tion of Helsinki. An independent ethics research committee, CPP Sud-Est 1 (ID: 2017-34), approved the protocol 
and informed consent documents. All patients provided written informed consent prior to participation.

Inclusion/exclusion criteria. The enrolled patients fulfilled the following inclusion criteria: male or female 
aged 18 to 65 years; treated for MDD according to the DSM-5 definition; presenting a Montgomery and Åsberg 
Depression Rating Scale (MADRS) score ≥ 20; French speaker; able to read and write in French; able to under-
stand and follow all study procedures; provided informed consent in writing. Patients were excluded for the 
following reasons: unable to wear a portable monitor for the study duration (6 months); subject to a severe medi-
cal pathology (e.g. neurological, rheumatological) at the investigator’s discretion; resistant depression; chronic 
depression; dysthymia; depression with psychotic features not congruent with mood, schizophrenia disorder; 
depression with catatonic features; substance use disorder in the last 6 months; extreme sports during the con-
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duct of the study; pre-existing skin infection at the wearable monitor site; pregnant or lactating woman; partici-
pation in another drug or medical device study; inability to give informed consent.

Study procedures. During the enrollment visit, patients received a portable passive monitoring device 
(described in section Wearable device and physiological features) that they were asked to wear continuously (i.e., 
24 h per day, 7 days a week) for 6 months, except for battery charging and during activities that may represent a 
risk to the integrity of the device (e.g., showering or participation in contact sports). Charging time of the device 
was up to 2 h, and patients were instructed to charge it during moments they would not wear it. To minimize 
data noise, the device was to be worn on the nondominant wrist, a common practice in studies using wearable 
devices (e.g., actigraphy)46. This criterion ensures that reliable features can be derived from raw physiological 
 measurements47.

The study period was 6 months and comprised seven periods (baseline and months 1, 2, 3, 4, 5 and 6). At 
each monthly follow-up visit, physicians assessed the patients’ mood status, which included administration of the 
MADRS. The clinician administered  MADRS48 is a widely used and accepted instrument for assessing depres-
sion and evaluating treatment efficacy in patients diagnosed with MDD. The Structured Interview Guide for the 
MADRS (SIGMA) provides structured questions that are be asked exactly as written to ensure that administration 
of the MADRS is standardized. The interrater reliability of the MADRS according to the intraclass correlation 
coefficient with the SIGMA has been reported as excellent (r = 0.93)49. Appropriate for both clinical and research 
settings, the MADRS can be used to stratify the severity of depressive symptoms and to evaluate trends in the 
severity of a patient’s depressive episode and response to treatment. In this study, we stratified the MADRS  score50: 
no depression (score: 0–6), mild depression (7–19), moderate depression (20–34), and severe depression (≥ 35).

Endpoints. The primary endpoint was to compare the change in physiological variable (e.g., motor activ-
ity, cardio-respiratory activity, and sleep parameters) with the change in the clinical variable (the MADRS total 
score) over a period of six months.

The secondary endpoint was to train an algorithm to identify markers of mood disorders using six months 
of physiological and clinical data.

Wearable device and physiological features. The wearable device takes the form of a wristband (see 
Fig.  1 in the Supplementary Materials) and was custom manufactured by Éolane (Angers, France), an ISO 
13485-compliant company that adheres to medical standards, including IEC 60601 and EN 62304, for medical 
device software. The use of a custom device was necessary to obtain the raw measurements from all sensors and 
to enable the addition of new physiological feature acquisition systems if needed. The custom wearable device 
contained the following standard sensors: a photoplethysmograph (PPG) with a 50 Hz sampling rate (for deriv-
ing cardiorespiratory features), a 3-axis accelerometer with a 25 Hz sampling rate (for deriving multiple actigra-
phy features) and an electrodermal activity (EDA) sensor with a 4 Hz sampling rate.

To extract physiological features from sensors raw measurements, we proceeded as follows. Cardiorespiratory 
(such as heart rate, breathing rate, heart rate variability)18–23, actigraphy (e.g., L5, M10, etc.)46,47,51 and sleep-based 
physiological features (e.g., sleep stages such as REM/NREM/WASO)52 were extracted respectively from PPG, 
3-axis accelerometer and both sensors’ data using a combination of standard algorithms from the  literature53–55. 
These features were further grouped into physical activity (12 features), heart rate (25 features), heart rate vari-
ability (39 features), breathing rate (12 features) and sleep (13 features) and were smoothed with a mean filter 
to remove potential outliers. Missing values were imputed using interpolation, and features were normalized 

Figure 1.  Label detrending procedure. This diagram shows how data and labels are handled and partitioned 
for the machine learning algorithm. The actual MADRS score is obtained only during clinical visits, although it 
can be safely extended to 5 days on either side of a clinical visit. The physiological data are available every day. 
The residual between the output of the optimistic model and the known MADRS score is used as a label for the 
machine learning model. The data and labels are then partitioned between train and test to fit and test the multi-
layer perceptron.
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between 0 and 1 independently of one another to account for patient heterogeneity. Due to proprietary concerns, 
the full list of these physiological features cannot yet be disclosed.

Machine learning algorithm. A detailed description of the ML algorithm is available in the Supplemen-
tary Materials. The optimization procedure is divided into two parts: training SiBaMoD, which depends on 
hyperparameters λ and ν, respectively the recovery rate and the signature size, and an optimization scheme for 
selecting appropriate values of λ and ν for a given patient. SiBaMoD itself is composed of several parts: label 
extension and detrending processes, a feature selection, and a deep learning Multi-Layer Perceptron (MLP) 
model described below.

Label extension addresses the sparsity of the MADRS scores (collected once per month) relative to the 
abundance of physiological values (collected daily). To this end, the clinical labels were extended over a window 
of ± 5 days around each follow-up visit. This procedure is summarized in Fig. 1. The label extension methodology 
was justified by considering the test–retest reliability of the MADRS over the course of several days as described 
in the  literature56 and was confirmed by experiments conducted with our dataset.

The label detrending procedure addressed the issue of having a nonstationary label over the course of the 
clinical trial for a given patient (since most patients tend to recover due to treatment). The detrending procedure 
consisted of replacing the MADRS scores with the discrepancy of an optimistic model that estimates change 
in the MADRS score based solely on the most recent clinical visit. This model has no trainable parameters but 
rather depends solely on constant λ. On a given day, this model predicts a MADRS score given an amelioration 
rate based on the previous clinical evaluation of the patient by the physician. The difference between the actual 
MADRS score and the MADRS score predicted by this optimistic model is called the residual MADRS score. 
This choice of optimistic model is supported by known models of affective disorders in the  literature57.

The feature selection block is performed by a statistical computation on the train/validation sets. This com-
ponent of the algorithm selects the ν most correlated features with the MADRS on the train and validation sets. 
To be as general as possible and to detect non-linear correlations, this component selects physiological features 
that minimize their independence with MADRS based on the Hilbert–Schmidt Independence Criterion (HSIC)58, 
which is more adapted to non-monotonic and non-linear signals than Spearman or linear correlation coefficients. 
This set of ν features is called the individual depression biosignature and can be used to efficiently predict the 
disease’s progression with respect to the clinical scale used. Thus, for each day of recorded physiological data, we 
can extract a subvector of dimension ν by selecting only the features appearing in the biosignature.

The last component of SiBaMoD is a multi-layer perceptron (MLP) which takes as input the ν features of 
the individual biosignature selected by the feature selection component, and outputs an estimate of the residual 
MADRS. Specifically, the MLP consists of an input of dimension ν followed by 3 hidden layers of respective 
dimension 8ν, 4ν, and 2ν, and a single scalar as an output. After early experiments, the parameters chosen for 
MLP training were batch size of 16, training for 500 epochs, and early stopping callback of 5 epochs monitoring 
improvements in validation loss. To smooth out random fluctuations due to kernel initialization, and to avoid 
having inaccurate predictions because of potential local minima in the parameter space of the model, this process 
is repeated 11 times and the final output prediction is set to be the median of the predictions.

The SiBaMoD is trained to minimize the mean square error (MSE) loss using stochastic gradient descent on 
the extended clinical labels (± 5 days around the follow-up visits until month 3, resulting in 30 days) with the 
corresponding physiological features, and is evaluated on the remaining extended clinical labels and physiological 
features. Once trained, SiBaMoD can be used to predict the MADRS score daily, including unlabeled days. This 
predicted MADRS score is then further reduced into 2 classes: healthy (MADRS score < 20) and ill (MADRS 
score ≥ 20) to enable the use of a binary accuracy metric to optimize the hyperparameters of the model. Details 
of the SiBaMoD algorithm are presented in Fig. 2a.

To determine the best λ and ν values for all patients, we optimize the binary accuracy by performing a grid-
search optimization of these parameters, using a leave one patient out (LOPO) scheme on the SiBaMoD. Specifi-
cally, the SiBaMoD pipeline is repeated such that all patients in the cohort are set as the test (left out) patient to 
estimate the optimal hyperparameters (λ, ν) of SiBaMoD for all other patients in the cohort. This LOPO scheme 
prevents overfitting; in other words, it ensures a good performance generalization across the entire pipeline 
for new unseen patients, even though the SiBaMoD itself is patient specific. The hyperparameter optimization 
scheme is presented in Fig. 2b.

Standard statistical analyses, such as analysis of variance, cannot be conducted in ML-based analyses, which 
are not based on a distribution of a single factor in different populations. In this work, to validate each model, 
we rely on the following metrics. Firstly, we compute the 2-class and 4-class accuracies of the data. Following the 
 literature50, the 2 classes are obtained by merging the classes “recovered” (MADRS 0–6) with “mild depression” 
(MADRS 7–19), and by merging the classes “moderate depression” (MADRS 20–34) with “severe depression” 
(MADRS 35–60). True positive and true negative rates are reported for the binary classification task. Secondly, 
the mean absolute error (MAE) in MADRS, together with confidence interval with α = 0.05, are computed con-
sidering each patient as a separate sample of our true distribution. Finally, a visual inspection of the predicted 
curves and MADRS label (Fig. 3) given by the clinician is performed.

It should be noted that the easiest metric, namely the mean absolute (or mean squared) error in MADRS 
prediction is not ideal in terms of reliability and usability, since the noise in the labels themselves is important 
with respect to the signal we are detecting (concordance between different physicians ranging from r = 0.89 to 
r = 0.9740). However, the 2-class and 4-class classifications are more agreed upon between physicians since they 
are broader categories.

Considering the novelty of the database under study, we cannot directly compare our metrics to baselines 
from the literature, therefore we evaluate the performance of our model by comparison with 2 baseline models. 
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The first baseline is the constant prediction model, which always predicts the majority class when classifying 
disease severity and the mean MADRS score in regression analyses, and the second is the optimistic model that 
sets the residual MADRS score to 0.

Results
Patient demographic and clinical characteristics. Among 40 patients enrolled, 12 patients were 
dropped out, 2 patients have been included in the study for less than 4 months and 26 already completed at least 
4 months (out of a total of 6 months) necessary to train and test the algorithm. Amid the 12 dropped out patients, 
2 had side effects (e.g., skin irritation), 2 patients were lost to monitor, and 8 patients decided to stop the clinical 
trial. Therefore, these 26 patients will be included in our report and its analysis post-facto. The population was 
69.2% female, the average age was 50.4 ± 7.3 years, and the median age was 51 (range: 29–63) years. All patients 
had been diagnosed with MDD prior to inclusion. The mean number of MDD episodes at baseline was 1 ± 1.2, 
and the mean baseline MADRS score was 29.96 ± 5.44. Current treatment for MDD consisted of antidepressants 
(84.6% of patients), anxiolytics (53.8%) and psychotherapy (57.7%). These demographics and clinical character-
istics are detailed in Table 1.

The database used for the implementation of the algorithm consists of 4 to 6 months of physiological data 
and 5 to 7 MADRS labels for each patient. For each patient, the extended clinical labels and the corresponding 
physiological features up to the third month were used as a training set (totaling 30 days) and the remaining 
labelled data were used as test set. Slightly more than half (51.7%) of the dataset corresponded to periods when 
the MADRS score was ≥ 20, and the remaining data corresponded to periods when the MADRS score was ≤ 19. 
A total of 40.2% of the dataset corresponded to periods of time when the patients exhibited moderate depression.

Optimal hyperparameters. To determine the number of physiological features in the biosignature that 
optimally predicts the course of MDD in our patients via ML, we first search the hyperparameter values cor-
responding to this optimum. Table 2 presents the optimal hyperparameters identified for each patient using 
the optimization pipeline given in Fig. 2b. The number of features in the biosignature (i.e., optimal value of ν) 
and the selected parameter of the optimistic model (i.e., optimal value of λ) were relatively identical among the 
patients. An example demonstrating the evolution of the binary classification accuracy with respect to the hyper-
parameters λ and ν for a patient is shown in Fig. 4.

Prediction performances. Our model achieved 63.2% accuracy in the 4-class severity classification task 
and 86.0% accuracy in the 2-class severity classification task, the latter of which was 11.6% above the baseline 
prediction and 34.3% above the constant prediction of the majority class. For the raw MADRS prediction, the 
model reported a mean absolute error (MAE) of 6.7 (95% CI 3.4–10.1) from the actual MADRS score.

We then chose to represent the performance of the model in the classification tasks in the form of confusion 
matrices. The normalized confusion matrices of the predictions in the 2-class (depressed/not depressed) and 
4-class (recovered/mild depression/moderate depression/severe depression) contexts are shown in Fig. 5. A 
perfect prediction corresponds to a matrix with ones along the diagonal. For 2-class prediction, the sensitivity 
(i.e., true positive rate, TPR) was 79%, and the specificity (i.e., true negative rate, TNR) was 94%. For the 4-class 

Figure 2.  Overview of the full algorithm’s pipeline presented in this work. (a) The SiBaMoD pipeline with 
parameters (λ, ν) for a single given patient. The physiological features are used to train a multi-layer perceptron 
model, along with the training labels, which were detrended using the optimistic model with recovery rate 
λ. The prediction output of the model is then combined with the observed MADRS score to determine the 
predicted MADRS score. The ν features used by the model that are best correlated with the MADRS score form 
the patient specific signature. (b) In our cohort, the SiBaMoD pipeline is repeated using every patient as a test 
patient in a leave one patient out (LOPO) procedure, estimating the hyperparameters (λ, ν) for all patients 
except the test patient to determine the optimal values for these parameters.
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prediction, there was no confusion between severe depression and recovered, and low confusion between the 
recovered and other classes. Overall, the model outperforms both baselines, and its TPR is lower than its TNR. 
These results are detailed in Table 3. Even though the model is trained on extended clinical labels, it gives a daily 
MADRS score prediction provided that physiological features are available. Example of resulting prediction 
curves are displayed along with the extended clinical labels in Fig. 3.

Biosignature characteristics. The biosignature being the set of physiological variables used in the model’s 
prediction and considering the predictive power of the ML model as demonstrated in the abovementioned accu-
racies, it can be interpreted as a presentation of each patient’s MDD symptoms. Further analysis indicated that 
each patient had a unique signature composed of multiple physiological features (Fig. 6); no feature appeared 
in all patients at once, and no feature appeared solely in the biosignature of a single patient, indicating that the 
model correctly captured the physiological manifestation of symptoms. The individual biosignature detected by 

Figure 3.  Comparison of the model’s prediction with the ground truth clinical labels. Predicted MADRS 
evolution (in red) and actual MADRS scores measured by the physician during the monthly clinic visits (black 
dots) for a sample of 6 selected patients. The lines around each visit represent the extended clinical labels to 
5 days on either side of a clinical visit. The background color intensity indicates the 4 classes of depression 
symptom severity.
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our system is composed of 62 features, except for patients 6, 11, 17, 20 which have 98, 90, 78, and 68 features 
respectively (Table 2).

Furthermore, the biosignature can be individually investigated. For readability, we can group the physi-
ological features into 5 clusters according to their physiological relevance: heart rate, heart rate variability, sleep, 
breathing, and activity, and count the number of features appearing in each group. For instance, a biosignature 
almost entirely composed of sleep-related physiological features means that the corresponding patient’s symp-
tom is mostly expressed through sleep disturbances. Figure 7 shows two examples biosignatures in terms of the 
categories of physiological features included.

Table 1.  Baseline demographic and clinical characteristics.

Variables

Sex, M:F, n(%) 8 (30.8%): 18 (69.2%)

Mean (± SD) age, years 50.4 ± 7.3

Median (min–max) age, years 51 (29–63)

Prior MDD, yes:no:missing, n (%) 14 (53.8%):11 (42.3%):1 (3.8%)

Mean (± SD) number of previous episodes 1 ± 1.2

Median (min–max) number of previous episodes 1 (0–4)

Mean (± SD) age of first episode, years 45.8 ± 9.85

Median (min–max) age of first episode, years 47 (24–63)

Mean (± SD) baseline MADRS score 29.96 ± 5.44

Median (min–max) baseline MADRS score 29.5 (20–42)

Anxiolitic treatment, yes:no, n (%) 14 (53.8%):12 (46.2%)

Antidepressants treatment, yes:no, n (%) 22 (84.6%):4 (15.4%)

Psychotherapy, yes:no, n (%) 15 (57.7%):11 (42.3%)

Table 2.  Optimal values of λ and ν across patients. The value of the hyperparameters λ and ν that maximized 
the binary classification accuracy for all patients but the test patient (in the leave one patient out method) is 
selected by a grid search. Strong stability is observed among the patients in both parameters. The most frequent 
stable values are shown in bold.

Test patient number Optimal λ [%] Optimal ν

1 1.6 62

2 1.6 62

3 1.6 62

4 1.6 62

5 1.6 62

6 0.9 98

7 1.6 62

8 1.6 62

9 1.6 62

10 1.6 62

11 0.8 90

12 1.6 62

14 1.6 62

15 1.6 62

16 1.6 62

17 1.7 78

18 1.6 62

19 1.6 62

20 1.2 68

21 1.6 62

22 1.6 62

23 1.6 62

24 1.6 62

25 1.6 62

26 1.6 62
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Figure 4.  Grid search results for the choice of hyperparameters. A heatmap of binary classification accuracy 
with respect to the hyperparameters λ and ν for a single representative patient. The set of parameters λ = 1.6 and 
ν = 62 yielded to the optimal accuracy for this patient.

Figure 5.  Confusion matrices of our categorical predictions. (a) Left: Normalized confusion matrix of our 
model’s 2-class prediction for the test set. The model had a true negative rate of 94%, which can be explained by 
the tendency of the optimistic model to output a recovery prediction. (b) Right: Normalized confusion matrix of 
our model’s 4-class prediction for the test set. Errors far from the diagonal are zero or close to zero. Notably, our 
model never misclassifies recovered and severe depression or vice versa.

Table 3.  Comparison between our model and two baselines. Perturbation study of our model. The 2-classes 
test accuracy was computed for the discrimination between ‘ill’ and ‘healthy’ classes. The true positive rate 
(TPR) and true negative rate (TNR) are also reported. The predicted MADRS MAE refers to the mean absolute 
error (95% confidence interval) in MADRS scores estimated by the model on the test set. The best results are 
reported in bold font and correspond to our deep learning approach.

Method 2-class accuracy (TPR; TNR) Predicted MADRS MAE

Constant (baseline) model 51.7% 9.63 (95% CI 7.83–11.43)

Optimistic model (prediction without physiological data) 74.4% (33.3%; 97.8%) 7.21 (95% CI 4.7–9.7)

Our model (baseline + deep learning approach) 86% (79%; 94%) 6.7 (95% CI 3.4–10.1)
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Discussion
This work has validated the hypothesis that a supervised ML system can efficiently predict a patient’s clinical 
score by identifying their biosignature of symptoms during a MDD episode. We observed that, after training 
with 3 months of data, the ML algorithm could predict patient mood status over the next 3 months with good 
accuracy. The algorithm was trained with multiple physiological features collected by means of a wearable device 
from 26 outpatients with MDD (MADRS score ≥ 20) who participated in a 6-month prospective multicenter 
study. The sex distribution in our cohort (69.2% female) is consistent with the worldwide distribution of MDD, 
with a higher prevalence of depressive disorders among women than men (range 1.3–3.1:1, unadjusted mean 
sex ratio: 2.1:1 for lifetime, 1.7:1 for point prevalence  rates3).

Despite the reasonably stable number of physiological features included in each signature, each patient had 
a unique biosignature consisting of different features, which highlights the value of a multimodal approach that 
encompasses numerous physiological metrics that may differ between patients. This finding aligns with the 
known heterogeneity of MDD  manifestations9. Our ML model accounted for each patient’s deviation from the 
optimistic model according to their physiological data. While the accuracy of the optimistic model was 74.4%, 

Figure 6.  Histogram of features apparition in biosignatures. Histogram of unique features included in the 
biosignature of each patient. No feature was selected only for a single patient, and no feature was selected for all 
patients in the cohort. The colors represent the feature group to which the physiological variable belongs.

Figure 7.  Physiological features repartition in feature groups for 2 patients. Example biosignatures of depressive 
symptoms determined by our algorithm for 2 patients (see Table 2 for their optimal features number ν). The 
circular histogram represents the importance of each group of features in the patient’s signature; a group is 
considered more important if the size of its wedge is larger. The symptoms of patient 1 are more represented in 
the sleep variables, whereas those of patient 5 are visible in the breathing rate variables.
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our entire deep learning model achieved an accuracy of 86.0%. This confirms that the phenotypic expression of 
depression can be observed in physiological variables.

This was the first cohort to be extensively screened with multimodal approaches (i.e., by collecting data on 
multiple physiological dimensions such as cardiorespiratory and physical activity signals) with close patient 
follow-up for 6 months. Although the optimistic model achieved good results, by design it tends to predict 
recovery and thus performs poorly in patients with a poor response to treatment or who experience relapses (TPR 
33.3%). Adding deep learning to this baseline model allowed us to achieve better performance and reach a TPR 
of 79% for disease detection, even in patients with worse outcomes. To our knowledge, no study published to date 
has presented a model of MDD evolution validated on the MADRS score of individual patients, consequently, a 
direct comparison of the metrics obtained by our model with results from other studies is not applicable.

Most patients showed optimal hyperparameters at λ = 1.6% and ν = 62; however, those identified for patients 
6, 11, 17, and 20 were beyond the mode values. Since the hyperparameters for a given patient are determined 
by maximizing performance for all patients except the test patient (patients 6, 11, 17, or 20 respectively), these 
four patients were essential to ensure the presence of patient diversity and disease phenotype variation within 
the cohort. In other words, excluding data from these patients would decrease the diversity of the dataset and 
potentially make it impossible to accurately determine the optimal values of hyperparameters. To estimate an 
upper bound for the model’s performance on a larger cohort, we tested the accuracy of a model trained on a 
global choice of hyperparameters, optimizing the average accuracy for the full cohort of patients (i.e., without the 
LOPO scheme). In this case, our model achieved an average accuracy of 92.6%. However, this procedure suffers 
from data leakage since test data from a patient were used in the training process to estimate the hyperparameters 
of the optimistic model. This experiment shows that the model’s performance is limited by patient heterogeneity. 
Interestingly, this phenomenon can be observed in an objective and explicit manner by observing the diverse 
patient biosignatures yielded by our approach. More generally, this biosignature may be able to categorize all 
expressions of depression, known and unknown. This signature provides supplementary objective observations 
that clinicians can use to assess their patients, with the aim of eventually incorporating other information (such 
as self-report data, personal feelings and history) to reinforce the practitioner’s diagnosis.

Our study has some limitations. The sample size (26 analyzed patients, 3 months of training data per patient) 
was modest, although it provided sufficient power to construct our ML model and achieve good predictive 
performance. For this reason, we had to mitigate the risk of overfitting by implementing multiple strategies: 
the feature selection component reduces the input dimensionality of our model, the model itself is shallow, and 
early stopping was added to regularize it. Generalization of baseline algorithms can be improved by including 
patients with more varied responses to treatment (e.g., patients with relapse after a few months) and by develop-
ing a baseline model that would incorporate more diverse modeling of the disease, thus improving the general 
performance of the whole model. Moreover, as discussed above, the optimistic model tends to predict recovery, 
but adding a deep learning model mitigated this tendency. To improve further relapse detection, and more 
generally the sensitivity of our model, we should replace our optimistic model by a more complex model of the 
disease’s clinical evolution. Other limitations are due to the novelty of this work. It is impossible to compare 
our findings with another study and to replicate the experiments on another dataset, potentially leading to an 
overestimation of the model’s performance. However, our study is multicentric, and our training used a LOPO 
scheme, mitigating these limitations. Replicating the study on a dataset collected with another device could also 
strengthen our results and validate the performance of our model.

In conclusion, this study presents an ML-based approach that allows for the development of an individual 
predictive biosignature of MDD based on various physiological features obtained from passive sensors. In future 
clinical applications, psychiatrists could use this work to get access to a daily physiological assessment of their 
patients, allowing a better follow-up and therefore detect mood status deterioration earlier and establish more 
informed diagnosis. Specifically, clinicians will detect a relapse on the day it occurs, instead of 15 days late in 
average for monthly visits. Moreover, our model’s true negative rate of 94% will not increase the burden of false 
detection, but instead strengthen the physician’s diagnosis since its overall true positive rate of 79% is higher than 
the misdiagnosis rates reported in clinical  studies59–61. Furthermore, this biosignature could be analyzed to iden-
tify the most important symptoms experienced by a patient, regardless of whether the patient is aware of these 
symptoms or has reported them to the physician. The biological signature of depression generated by SiBaMoD 
could also provide new avenues of research; for instance, a clustering analysis of the biological signatures of a 
number of patients may allow for a new categorization of MDD phenotypes based on objective markers, which 
could lead to the development of precision medicine in psychiatry.

Data availability
The data are not publicly available due to privacy and ethical restrictions regarding patient privacy protection 
policies. Please contact the corresponding author for all inquiries concerning data.
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