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Statistical control of structural 
networks with limited 
interventions to minimize cellular 
phenotypic diversity represented 
by point attractors
Jongwan Kim , Corbin Hopper  & Kwang‑Hyun Cho *

The underlying genetic networks of cells give rise to diverse behaviors known as phenotypes. Control 
of this cellular phenotypic diversity (CPD) may reveal key targets that govern differentiation during 
development or drug resistance in cancer. This work establishes an approach to control CPD that 
encompasses practical constraints, including model limitations, the number of simultaneous control 
targets, which targets are viable for control, and the granularity of control. Cellular networks are 
often limited to the structure of interactions, due to the practical difficulty of modeling interaction 
dynamics. However, these dynamics are essential to CPD. In response, our statistical control 
approach infers the CPD directly from the structure of a network, by considering an ensemble average 
function over all possible Boolean dynamics for each node in the network. These ensemble average 
functions are combined with an acyclic form of the network to infer the number of point attractors. 
Our approach is applied to several known biological models and shown to outperform existing 
approaches. Statistical control of CPD offers a new avenue to contend with systemic processes such as 
differentiation and cancer, despite practical limitations in the field.

Abbreviations
SC	� Statistical control
CPD	� Cellular phenotypic diversity
NoPA	� Number of point attractors
NoPAtrue	� NoPA of unknown true Boolean model
NoPAavg	� Average NoPA
NoPApred	� Predicted NoPA
PBPA	� Probability of being a point attractor
f avg	� Ensemble average function
〈s〉	� Ensemble average value
FVS	� Feedback vertex set

Cellular phenotypes characterize cellular responses to their environment. Due to the complex dynamics under-
lying gene expression, cells can induce and maintain remarkably diverse phenotypes from a single genome1–3, 
referred to as cellular phenotypic diversity (CPD). CPD allows cells to react differently to a wide variety of envi-
ronmental signals. Stem cells tend to have higher CPD than differentiated cells, which may be critical to forming 
distinct cell fates from genetically identical cells4,5. Conversely, CPD in cancerous cells impedes treatment. The 
existence of multiple phenotypes in a tumor enables certain subpopulations with drug resistant phenotypes to 
survive treatment6,7. Moreover, increased CPD in a healthy cell can be an early warning sign of cancer5. The 
pivotal role of CPD in these processes suggests that control of CPD may reveal novel therapeutics. For instance, 
control that reduces CPD of cancer cells may undermine drug resistance. However, the major challenge is that 
CPD is highly unpredictable since it emerges from complex interactions among many cellular components.
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Network control theory based on systems biology is a powerful framework to analyze CPD since it specializes 
in complex interactions. In network control theory, network models are utilized to untangle complex interactions 
by describing each cellular component as a node, and interactions between nodes as edges. Network models can 
be primarily categorized into two frameworks: dynamical models and structural models8–10. Dynamical models 
quantify the states of nodes over time, but quantifying the interactions between components may be prohibi-
tively difficult in practice due to the excessive number of experiments required. In contrast, structural networks 
are simpler to construct, since they only consider which cellular components interact without quantifying their 
details. This can be confirmed by comparing the size of typical databases: the OmniPath11 database of structural 
models is much larger than the Cell Collective12 database of dynamic models. However, landmark structural 
control approaches have been criticized as overlooking dynamics that are key to control13. Moreover, due to their 
limited detail, there exist fewer control techniques using structural models than dynamic models, and few of them 
are applicable to CPD. In response, this study takes a pioneering step in leveraging structural network models 
to control, and more specially reduce, CPD. Although our approach only requires a given structural network 
model, dynamical properties are key to CPD. Hence, a practical control approach for CPD should infer dynamical 
properties from a structural network, and be evaluated by its performance on an unknown dynamical model.

A Boolean model, a type of dynamical model, is assumed to accurately depict the underlying cellular dynam-
ics. We focus on Boolean models since they are known to successfully describe numerous biological phenomena, 
while making minimal underlying assumptions14–16. In a Boolean model, each node state is either 1 or 0, where 1 
indicates an activated state and 0 indicates an inactivated state. Over time, a node state changes due to the influ-
ence of its regulators, whose relationship is represented by a Boolean function. The network state, defined by the 
vector of node states, eventually flows into specific set of states called an attractor, within which the network will 
visit all states without leaving. Attractors are important in that one or more attractors uniquely correspond to 
each phenotype of a cell8,17. Since the phenotypes form CPD, the number of attractors tends to be proportional 
to the number of phenotypes and can be utilized to estimate CPD. A Boolean model has two types of attractors: 
a point attractor includes only a single network state, whereas a complex attractor includes at least two network 
states. In this study, the number of point attractors (NoPA) is of special interest, firstly because many phenotypes 
related to drug treatment are known to correspond directly to point attractors18–22, and secondly because point 
attractors are not dependent on the update scheme, whereas complex attractors vary depending on the degree 
of synchrony in node updates23. While complex attractors may be of interest for later studies, their sensitivity to 
the modeling framework suggests that point attractors are a better preliminary step into CPD control. As infer-
ring NoPA directly from a dynamical network model is impractical due to the difficulties of dynamic model 
construction, this study instead infers NoPA from a given structural network model.

In our study, control involves selecting a set of cellular components, represented as nodes in the network, as 
control targets and changing their states. Similar to model framework choice, control targets should be limited 
by practical considerations so that the approach is feasible in application. This study considers the following three 
constraints. First, the number of control targets used to minimize CPD is limited since multiple control targets 
can compound off-target effects and increase deleterious side-effects for the patient. Second, for the conveni-
ence of manipulation, control should constantly fix the state of a control target to either 1 or 0. In other words, 
instead of specifying time-varying control or exact degrees of control, only control where control targets are 
permanently knocked-out (KO) or constitutively over-expressed (OE) should be considered. Third, which targets 
can be controlled may be restricted. Often there are simply no drugs that target a specific cellular component, 
or making one is infeasible. Overall, a control approach for CPD that accounts for these practical constraints 
will be widely applicable.

Among the limited number of control approaches for structural models, no studies consider all three practi-
cal constraints described above. This tendency can be observed in the two most well-known structural control 
studies. The first study utilizes a subset of nodes referred to as a feedback vertex set (FVS) to control all states to 
a desired attractor24. An immediate consequence of a FVS is that if the nodes of FVS are removed from the net-
work, the network loses all cycles. The study suggests that by controlling the state of a FVS, the network model is 
driven to be in the corresponding attractor. One result is that fixing the states of the FVS nodes limits the model 
to a single global attractor, which is ideal for reducing CPD. However, the approach can violate the first and 
third constraints mentioned above. The first constraint is violated when the size of FVS exceeds the limit of the 
number of control targets. The third constraint is violated when every possible FVS happens to contain certain 
nodes that cannot be selected as a control target. Subsequent approaches rank the nodes within the FVS to return 
a smaller subset, but in the context of driving to or from a specified attractor, rather than controlling CPD25,26.

The second study of control on structural models is by Liu et al.27. They argue that controlling certain nodes 
identified via a maximum matching algorithm from the network structure alone can drive the model state from 
any initial state to a desired state, which we refer to as the maximum matching approach. As the original approach 
was only used to control between two states, it remains unclear if the approach can be extended to reduce CPD. 
However, subsequent studies have repeatedly shown these maximum matched nodes play a pivotal role in the 
dynamics of a cell, which suggests they may also be relevant to CPD28,29. Notably, the maximum matching 
approach also falls short of satisfying all constraints mentioned above, meaning that control may be limited to a 
subset of the maximum matched nodes. Although these two approaches can be utilized to evaluate the efficacy 
of our proposed approach, both require control that may be difficult to implement in practice.

In this study, we develop a statistical control (SC) approach that reduces CPD with practical constraints. The 
primary challenge remains to infer NoPA from the structural network information of a cell. To overcome this 
challenge, we first develop an exhaustive approach that is informative, but computationally impractical. The 
exhaustive approach calculates the exact average NoPA over all Boolean models that could correspond to the 
structural network. We then develop the SC approach, whose basic idea is similar to the exhaustive approach but 
more computationally efficient. Rather than an exact average, this approach predicts NoPA with a value referred 
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to as NoPApred . SC first constructs an acyclic form of the network, which eases NoPA calculation by exploiting the 
connection between positive feedback and point attractors30,31. Specifically, each source state of the acyclic form 
that matches the sink state is sufficient to sustain a positive feedback across the whole network, which implies a 
distinct point attractor. A novel ensemble average value is then designed to estimate the state of each node using 
only structural information, by averaging over all possible functions for each node independently. For each source 
state in the acyclic form, the ensemble average values of the sink nodes are utilized to calculate the probability 
that the source state is likely to lead to a new point attractor for the unknown logic. NoPApred is then given as 
the sum of the probabilities that each source state results in a point attractor. Finally, by comparing control 
candidates based on their NoPApred reduction, our SC approach can infer control targets that minimize NoPA.

To evaluate the performance of the SC approach, we utilized biological networks from literature with known 
Boolean functions, including cortical area development, T cell differentiation, and aurora kinase A neuroblastoma 
networks. SC utilizes only the structure of the model, while the actual logic is utilized to calculate the true NoPA 
to evaluate its performance. SC is then compared to existing structural control approaches, where it consistently 
produces a larger reduction in the true NoPA. The proposed method successfully infers structural properties 
unique to NoPA reduction, further confirmed by the inability of traditional structural metrics to identify SC 
targets. Our approach opens the door to therapies that reduce CPD, such as subduing cancer heterogeneity to 
subvert drug resistance, and research to detect novel structures that reduce CPD in natural processes, such as 
differentiation.

Methods
Problem setting.  To represent interactions among cellular components, a structural network model G(V, 
E) is given, where V is a set of nodes and E is a set of directed edges. Each edge is of the form (X, sign, Y) where 
sign ∈ {‘+’, ‘−’} and X, Y ∈ V. If the sign is ‘+’, then node X activates node Y. Conversely, if the sign is ‘−’, then node 
X inhibits node Y. Although it is not given, we also assume there exists a hidden true Boolean model that accu-
rately describes the dynamics of the cell. In addition to the structure of G, this true Boolean model also specifies 
Boolean functions for each node to best reflect the dynamics of the cell.

The problem is to find control that minimizes NoPA of the true Boolean model ( NoPAtrue) , given several 
practical constraints on control. The similarity between the cell and the true Boolean model, along with the 
importance of point attractors described above, ensures that minimizing the NoPAtrue will reduce the CPD 
of the cell. The efficacy of an approach will be evaluated by comparing the similarity between the reduction in 
NoPApred from the structural model, to that of the true Boolean model that cannot be utilized by the approach.

A control is defined as a set of nodes (control targets) and the corresponding control states that the nodes will 
be forced to. The following three constraints on control ensure that the approach is applicable in practice. First, 
the number of simultaneous control targets is limited. Second, only control methods fixing the state of control 
target to 0 or 1 are considered. Third, a set of nodes that cannot be controlled may be specified. These constraints 
ensure that the control method remains practical.

The possible candidates of the true Boolean model are trimmed by imposing certain constraints that ensure 
the Boolean functions are consistent with the structural model and are biologically realistic. The constraints 
on the Boolean functions are as follows. First, all regulators of all functions are non-spurious, meaning that 
each node is dependent on all of its parent nodes32. For example, assume that node X has regulators R1 and 
R2, the state of each node is sX , sR1 , and sR2 , respectively. If the function that specifies the state of X , such that 
sX = f (sR1, sR2) , satisfies

then sX = sR1 regardless of the state of R2. Although R2 is said to be a regulator of X, it has no influence on sX . 
In this case, R2 is a spurious regulator for the function of X, which we assume never occurs.

Second, the Boolean functions are sign-compatible33. This means that if an activating (inhibiting) regula-
tor changes from 0 to 1, the return value of the Boolean function of the node it regulates should not decrease 
(increase). For example, assume that node X has regulators R i(i ∈ {1, 2, . . . , n}) and a function fX . Then sX is 
determined by sX = fX(sR1, sR2, . . . , sRn) . If regulator R1 is an activating regulator of X (i.e. (R1,’+’, X) ∈ E) , sign-
compatibility ensures that any Boolean values ri(i ∈ {2, 3, . . . , n}) cannot satisfy the equations

Sign-compatibility ensures that the regulator R1 never acts as an inhibiting factor, meaning that the effect of 
R1 is consistent with the given structural model.

Lastly, each Boolean function is a nested canalizing function34. Each regulator of a nested canalizing function 
has a Boolean canalizing input value p and a Boolean canalizing output value q . Regulators are hierarchical, where 
Ri ≺ Rj implies that Ri has a higher priority than Rj . Higher priority regulators may determine the canalizing 
output value independent of the states of lower priority regulators. Specifically, if the regulator state sRj matches 
its canalizing input value pj , and the state of each higher priority regulator sRi (with Ri ≺ Rj ) does not match its 
canalizing input value pi , then the function returns the canalizing output value qj dictated by regulator Rj regard-
less of the other regulator states. Node X has nested canalizing function fX , if fX can be written in the following 
form, where the regulators Ri(i ∈ {1, 2, . . . , n}) are ordered such that Ri ≺ Rj if and only if i < j.

f (sR1, sR2) = (sR1 and sR2) or (sR1 and not sR2)

fX(sR1 = 1, sR2 = r2, . . . , sRn = rn) = 0 and fX(sR1 = 0, sR2 = r2, . . . , sRn = rn) = 1.
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Previous research has shown that canalizing and sign-compatible Boolean functions can accurately describe 
biological phenomenon33.

Exhaustive control approach.  We first develop an exhaustive approach to infer control targets minimiz-
ing NoPAtrue . Since the exhaustive approach requires high computational complexity, the effectiveness of the 
method is only tested on a few examples, but the underlying idea motivates the SC approach, which is the main 
algorithm of this study. The basic idea of the exhaustive approach is to construct an ensemble model over all 
possible Boolean functions from the given structural network, and utilize its average behavior to infer control 
for the unknown true model.

First, an ensemble model is constructed by aggregating all possible Boolean models that conform to the given 
structural network model and obey the three constraints on Boolean functions in the true model (non-spurious, 
sign-compatible, and nested canalizing). The NoPA is calculated for each Boolean model in the ensemble model 
and the resulting average NoPA ( NoPAavg ) is calculated. We predicted that NoPAavg reduction and NoPAtrue 
reduction, for the same control target, would be correlated such that control that maximizes the NoPAavg reduc-
tion would tend to produce a large NoPAtrue reduction. We refer to this process as the exhaustive approach and 
provide more detail in Supplementary Fig. S1. This procedure incurs a high computational complexity due to 
the size of the ensemble model. The exhaustive approach suggested control targets which tends to produce large 
reductions in NoPAtrue for a few example networks. However, since its application is limited by its computational 
complexity, a modified method is needed for practical application to more complex network models.

Overview of statistical control approach.  The statistical control (SC) approach is developed to remedy 
the inefficiency of the exhaustive approach. The SC approach calculates NoPApred and utilizes it to estimate 
NoPAavg from the exhaustive approach. For each control target the reduction of NoPApred is calculated and 
utilized to compare control target candidates, since we predict that NoPApred reduction and NoPAtrue reduction 
will be correlated. The SC approach selects the control with the largest NoPApred reduction.

The process of calculating NoPApred is summarized in Fig. 1. In this example, the structural network model 
is assumed to be a strongly connected component (SCC), such that there exists a directed path between every 
pair of nodes35. First, the acyclic form, which will be defined below, is constructed from the given structural 
network model (Fig. 1a, b, c, d). This simplifies NoPA prediction while preserving the FVS node information, 
which uniquely defines point attractors. Specifically, each point attractor corresponds to a network state in which 
the source states match the sink states of the acyclic form. Second, the ensemble average function ( f avg ) , which 
will also be defined below, is calculated for each node. f avg of a node returns the expected state, averaged over 
all possible Boolean functions the node can have, to infer dynamics of the unknown true model (Fig. 1e, f, g). 
f avg is then applied to the nodes in the acyclic form to estimate the probability of having a point attractor when 
the FVS nodes of the unknown true Boolean model have specific states. The probability for a specific FVS node 
state to be a point attractor is referred to as the probability of being a point attractor (PBPA) (Fig. 1h). Finally, 
the sum of PBPA forms NoPApred , which will be used to infer NoPAtrue of the unknown true Boolean model. 
Each step is explained in detail below.

Acyclic form of the network model.  The acyclic form is a modified network constructed from the origi-
nal structural network (Fig. 1a). The process of constructing an acyclic form is as follows. First, the FVS nodes24 
of the network model are derived (Fig. 1b). Next, each FVS node X is separated into a corresponding source node 
Xsrc , a node with all out-going edges of the original node, and a corresponding sink node Xsnk , a node with all 
in-coming edges of the original node (Fig. 1c). If the FVS node has a self-loop, then the source node and the sink 
node are connected by that self-loop edge. For example, if the original network contains the edge (X,’+’, X), and 
X is a FVS node, then the edge ( Xsrc,’+’, Xsnk ) exists in the acyclic form. The final acyclic form ends up having no 
cycle, due to a property of the FVS (Fig. 1d)24.

This structure retains the influence a FVS node has on itself, represented in the paths between the sink and 
source nodes corresponding to the same FVS node. Notably, in each point attractor of a model the set of FVS 
node states are unique24. Hence, the acyclic form eases point attractor inference: if the states of the source nodes 
match those of the corresponding sink nodes, i.e. sXsnk

= sXsrc for all nodes X in FVS, then that state is a point 
attractor in the original Boolean model. Moreover, since a Boolean model with acyclic form is free from feedback 
influence, the calculations become far simpler compared to those on the original model. The state of each node 
can be inferred once, without the risk of subsequent change due to feedback. Hence the acyclic form preserves 
the relations that are crucial for point attractors, while simplifying their prediction.

Ensemble average function and ensemble average value.  We define a novel ensemble average 
function f avg and ensemble average value 〈s〉 for each node to approximate the average of a node state in the 
ensemble model from the exhaustive approach. When regulators states of a node are given, the state of the node 
depends on the Boolean function, which can be different for each model in ensemble model. 〈s〉 of a node is the 
approximate state of the node, averaged over all possible models in the ensemble model, given a specific state for 

fX(sR1, sR2, . . . , sRn) =
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Figure 1.   The predicted number of point attractors ( NoPApred ) calculation from a structural network model. 
For a given structural network model, NoPApred reduction is calculated. (a) The given structural model specifies 
the interactions between nodes as activation or inhibition, but not the precise logic. (b) First, the acyclic form 
of the structural network model is built. To do so, FVS nodes are identified. (c) Then the identified FVS nodes 
are split into sink (snk) and source (src) nodes. Sink nodes only retain the in-coming edges of the original 
FVS node, whereas source nodes only retain the out-going edges. (d) The acyclic form is the resulting network 
after splitting all FVS nodes. (e) Meanwhile, the ensemble average function for each node is calculated. For 
each node, all possible Boolean logic functions are generated, assuming non-spurious, sign-compatible, and 
nested canalizing functions. (f) For each Boolean input state, the ensemble average function ( f avg ) of a node 
returns the average output over all its possible Boolean logic functions. (g) f avg is calculated for all nodes, and 
then generalized to take real-valued inputs between 0 and 1, such as the f avg outputs of its regulators. (h) The 
probability of being a point attractor (PBPA) is derived by combining the acyclic form and generalized f avg . For 
each possible set of Boolean source states, the ensemble average value ( 〈s〉 ) of each node is calculated as f avg of 
the states of its regulators. If a regulator is not a source node, its 〈s〉 is passed as input to f avg instead of a Boolean 
state. PBPA is calculated as the probability that the sink node is equal to its source, where the output of the sink 
node is interpreted as the probability that it takes a value of 1. Finally, NoPApred is calculated as the sum of 
PBPA over all possible source states.
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each regulator. 〈s〉 can be understood as a generalization of a state: it is possible to calculate 〈s〉 of a node when 
the regulator states are expressed as 〈s〉 instead of states. A novel function called the ensemble average function, 
symbolized as f avg , is derived from all possible Boolean functions of a node to calculate 〈s〉 of that node. f avg of 
a node receives the states or 〈s〉 of its regulators and returns 〈s〉. f avg is built through the following process. First, 
for each node, all possible Boolean functions are generated, which obey the three constraints about Boolean 
functions in the true model (non-spurious, sign-compatible, and nested canalizing). Continuing with the exam-
ple network from Fig. 1a, node N1 has 8 possible Boolean functions that satisfy the constraints described as 
f iN1(i ∈ {1, 2, . . . 8}) (Fig. 1e). Other nodes of the example network also have a list of possible Boolean functions. 
The value of f avg for each set of regulator states is the average function value over all possible Boolean func-
tions. The following equations express f avg when the inputs of the function are comprised of Boolean states. Let 
sNi ∈ {0, 1}(i ∈ {1, 2, . . . ,m}) be the regulator states of the node. If the node has a list of possible Boolean func-
tions {f 1, f 2, f 3, . . . , f n} , then,

For the case of node N1 in the example network, f avg of N1 has symbol f avgN1  and is described on the right of 
Fig. 1f. The return value of f avg becomes 〈s〉, which has a real value between 0 and 1.

The domain of f avg can be generalized to encompass 〈s〉, which is a generalization of a Boolean node state 
to a real value between 0 and 1. The generalization is explained here and further formalized by Supplementary 
Algorithm S1. Let 0 ≤ �sNi� ≤ 1 be the ensemble average value of the regulators Ni(i ∈ {1, 2, . . . ,m}) . For Boolean 
states r = (r1, r2, . . . , rm)(ri ∈ {0, 1}, i ∈ {1, 2, . . . ,m}) , the ratio p of the Boolean states becomes

This means that when ri = 1 , multiply by the fraction that regulator i is active 〈sNi〉 , whereas when ri = 0 , 
multiply by the fraction that regulator i is inactivate instead (1− �sNi�) . Let R be all possible Boolean state com-
binations of Boolean variables r, such that R = {r = (r1, r2, . . . , rm)|ri ∈ {0, 1}, i ∈ {1, 2, . . . ,m}} . Then Eq. (2) 
can be used to generalized Eq. (1):

Note that if each 〈sNi〉 is 0 or 1, then only one p(〈sN1〉, 〈sN2〉, . . . , 〈sNm〉, r) for r ∈ R becomes 1 and all other 
p(〈sN1〉, 〈sN2〉, . . . , 〈sNm〉, r) become 0, reducing Eq. (3) back to Eq. (1).

To give a concrete example, let f avgN1  be the f avg of N1 in the example network. Let 〈s〉 of the regulators of N1 
be ( 〈sN3〉 = 0.4, 〈sN4〉 = 0.5, 〈sN6〉 = 0.7). Then the value of f avgN1 (0.3, 0.4, 0.7) becomes

The values of f avgN1  on the right side of Eq. (4) is the result of Eq. (1), and the value of p can be calculated using 
Eq. (2). As a result, f avgN1 (0.3, 0.4, 0.7) is calculated to have the value

The ensemble average functions are used with the acyclic form to calculate NoPApred . Once the acyclic form 
is constructed, each node except source nodes is assigned f avg and used to calculate 〈s〉 (Fig. 1g). Then 〈s〉 are 
used to calculate NoPApred , as explained below.

NoPApred calculation.  NoPApred is designed to approximate NoPAavg in a computationally efficient man-
ner using the acyclic form and 〈s〉 . NoPApred is calculated as the sum of PBPA over all FVS states. Let the PBPA 
defined on FVS state S be PBPAS , where S specifies the Boolean node state of each source node in the FVS. The 
process of PBPAS calculation is as follows. First, the acyclic form of the given structural network model is con-
structed. Then f avg are built for each node except the source nodes, since the source node states are determined 
by the FVS state S instead. The FVS state is specified as S = (sN1, sN2, . . . , sNk) , where {N1,N2, . . . , Nk} are FVS 
nodes and sNi ∈ {0, 1}(i ∈ {1, 2, . . . , k}) . S is then assigned to the corresponding source nodes of the acyclic form, 
such that for a FVS node N, the state of source node sNsrc is sN . Next, the 〈s〉 of each node in the acyclic form is 
calculated. First, 〈s〉 of nodes whose regulators are all source nodes are calculated using the states of source nodes 
and f avg of the node. Then 〈s〉 is calculated for each remaining node whose regulators have all calculated their 
〈s〉 or are FVS source nodes. This is repeated until 〈s〉 of all nodes has been calculated. Finally, PBPAS becomes

(1)f avg (sN1, sN2, . . . , sNm) =
1

n

n
∑

i=1

f i(sN1, sN2, . . . , sNm)

(2)p(�sN1�, �sN2�, . . . , �sNm�, r) =

m
∏

i=1

�sNi�
ri · (1− �sNi�)

(1−ri)
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p(0.3, 0.4, 0.7, (1, 1, 1)) ∗ f
avg
N1 (1, 1, 1)











f
avg
N1 (0.3, 0.4, 0.7) =











((1− 0.3) ∗ (1− 0.4) ∗ (1− 0.7)) ∗ 0+
(0.3 ∗ (1− 0.4) ∗ (1− 0.7)) ∗ 2/8+

...
(0.3 ∗ 0.4 ∗ 0.7) ∗ 1











= 0.4605
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PBPAS effectively estimates the probability that each FVS node ending state 〈sNsnk
〉 matches its starting state 

sN , after the effect of the other nodes in the network, which would imply a point attractor for that specific FVS 
state S11. Finally, NoPApred is calculated as the sum of PBPAS over all possible FVS states:

where k is the number of FVS nodes. Hence, by summing PBPAS over all S, NoPApred estimates the average 
number of point attractors.

PBPAS calculation is visualized in Fig. 1h for the case of FVS state ( sN2 = 1 , sN4 = 1, sN5 = 0 ) and no con-
trol on the example model. 〈s〉 is calculated in the order N3, N6, N1, and finally sink nodes (N2snk , N4snk , and 
N5snk ) resulting in values 〈sN3〉, 〈sN6〉, 〈sN1〉 , and 〈sN2snk 〉, 〈sN4snk 〉 , 〈sN5snk 〉 respectively. The PBPA(1,1,0) becomes 
〈

sN2snk
〉

·
〈

sN4snk
〉

·
(

1−
〈

sN5snk
〉)

 which is the simplified form of Eq. (5) when the values of the variables sN are 
set accordingly. This calculation is repeated over all possible FVS states (from (0,0,0) to (1,1,1)) in the example 
network to calculate the final NoPApred using Eq. (6). The PBPA calculation process is also explained in the form 
of an algorithm in Supplementary Algorithm S2.

Statistical control.  The SC control approach selects control for which the reduction in NoPApred is maxi-
mal, among permitted controls. The reduction in NoPApred is measured by subtracting NoPApred calculated with 
control from NoPApred without control. NoPApred for a specific control is calculated as in the previous section, 
except f avg of all nodes that are control targets is adjusted as follows. Each node in the control returns its target 
control value for f avg , regardless of its regulators. For example, if node X is controlled by KO ( i.e.X = 0 ), then the 
ensemble average function of X ( f avgX  ) is changed such that the function always returns 0 ( f avgX (r) = 0 for any r) . 
As a result, 〈sX〉 will always match its control value.

NoPApred reduction should be positively correlated to NoPAtrue reduction. Figure 2a gives an example true 
model logic for the example network in Fig. 1. NoPApred reduction for each single-node control of the example 
network model is calculated, along with NoPAtrue reduction of the true model in Fig. 2a. The relation is shown 
in Fig. 2b. The SC approach selects the control with the maximum NoPApred reduction (shown in red) to infer 
control that minimizes CPD of a cell.

Computational complexity.  The computational complexity of SC is determined by the maximum in-
degree of nodes ( dmax) , the number of nodes (n), and the number of FVS nodes ( nFVS) . The computational 
complexity of SC is O(ndmax!2

dmax + ndmax2
nFVS ). In the process of ensemble average function calculation, the 

most computationally expensive step is to calculate and average all possible Boolean logic functions of a node 
(Eq. 1). When the in-degree of a node is d , the number of all possible Boolean functions which obey the three 

(5)PBPAS =
∏

N∈FVSnodes

�sNsnk
�sN · (1− �sNsnk

�)(1−sN)

(6)
NoPApred =

∑

S∈{0,1}k

PBPAS

Figure 2.   Statistical control (SC) using NoPApred . (a) The example network with the Boolean functions 
corresponding to the true model. The goal of SC is to reduce NoPA of the unknown true Boolean model 
( NoPAtrue ) using only the structure of the network. (b) SC searches for controls that maximize NoPAtrue 
reduction on the example network. NoPA reduction is measured for each candidate control by subtracting 
NoPApred after control from NoPApred before control, where NoPApred is described in Fig. 1. SC then picks the 
control with the largest NoPApred reduction, shown in red (N2 OE and N2 KO). The NoPApred reduction is then 
compared with that of NoPAtrue , to validate their correlation.
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constraints is at most d!2d . Since each Boolean function, which is a nested canalizing function, can have d! prior-
ity permutations among regulator nodes and 2d canalizing input values, the worst-case combination of priorities 
and canalizing inputs becomes dmax!2

dmax . Note that in practice redundancy between priority permutations and 
canalizing inputs tend to lead to fewer functions. All possible logic functions are calculated and later averaged 
over each node, leading to another factor of n and a computational complexity of O(ndmax!2

dmax ) for the ensem-
ble average function calculation. To build the acyclic form, all FVS sets are identified. Since exhaustively calcu-
lating FVS is exponential in the number of nodes36, an approximation method is used instead37, which has neg-
ligible complexity relative to the rest of SC calculation. Although the approximation may not yield the minimal 
FVS set, the increase in complexity due to larger FVS ( 2nFVS ) sets is less than the cost of exhaustively calculating 
FVS (roughly 2n ). To calculate NoPApred from the acyclic form, PBPAS is calculated for each possible FVS state 
S. There are 2nFVS states, and for each one, every node in the acyclic form is updated once by operating on the 
states of its regulators, leading to a factor of dmaxn . The complexity of NoPApred becomes O(ndmax2

nFVS) . Since 
the two processes described above are sequential, the total complexity of SC is O(ndmax!2

dmax + ndmax2
nFVS).

Networks with many FVS, input nodes, or many SCCs.  Several details complicate the above descrip-
tion, although the fundamental idea remains the same. First, a network model can have more than one FVS. 
Among the many FVSs of the model, the minimum FVS is selected to make the acyclic form. Depending on 
the network structure, the calculation of the minimum FVS incurs a high computational complexity. If so, 
an approximate algorithm can be used to find the minimum FVS set, such as the SA-FVSP-NNS algorithm37. 
However, the network can have more than one minimum FVS (or approximate minimum FVS). In this case, 
NoPApred is calculated for each minimum FVS (or approximate minimum FVS) and averaged.

The second complication is that a network may have input nodes, which have only out-going edges. Once 
the states of input nodes are determined, they are assumed to remain static. The acyclic form of a network with 
input nodes also includes the input nodes as source nodes. Let the input condition be the vector of states of input 
nodes. To calculate NoPApred on the networks with input nodes, NoPApred for each input condition should be 
calculated separately first. NoPApred for each input condition is calculated in the same way as before, except 
that the input condition is assigned to the input nodes of the acyclic form before the process. NoPApred is then 
summed over all possible input conditions.

Finally, if the network structure is composed of more than one SCC, an additional algorithm is needed. 
First, the network is decomposed into its SCCs. For the network containing SCC X and SCC Y, if there is a path 
from a node in SCC X to a node in SCC Y, then SCC X is said to have a higher rank than SCC Y. NoPApred is 
calculated for each SCC of the network. 〈s〉 of nodes of a SCC with a higher rank act as an input condition to any 
downstream SCC with a lower rank. The details of calculating the ensemble average influence between SCCs is 
explained in the Supplementary Information. These additional processes enable the SC approach to be applied 
to a wide range of network structures.

Results
In practice, a researcher would apply the SC approach to a biological network for which only the structure is 
known. To validate that this approach can accurately estimate NoPAtrue reduction, we apply the approach to 
several existing biological networks with Boolean logic38–40. In each case, the SC approach attempts to find con-
trols from only the structure of the network, while the given logical functions are treated as the unknown true 
model and utilized to evaluate the efficacy of control.

The controls selected by the SC approach are compared against controls selected by two structure-based 
control techniques, FVS24 and the maximum matching approach27. Since there appears to be no pre-existing 
structure-based control approach that minimizes NoPA, these foundational structure-based control approaches 
are utilized for comparison. In both FVS and the maximum matching approach, multiple sets of nodes are found. 
FVS control targets nodes in the union of all minimum sized FVS sets, and fixes the state of each to 0 or 1. The 
intersection of FVS produced too few controls to reasonably estimate the average NoPAtrue reduction, but is 
included in Supplementary Fig. S2 for a comprehensive comparison. Maximum matching control is defined as the 
set of controls targeting nodes in the union of all maximum matched nodes and fixing each state to 0 or 1. Maxi-
mum matched nodes that appear in all maximum matching sets (intersection of all maximum matched nodes) 
were calculated, but only contain the input nodes in these three biological networks, which are not considered 
valid control targets, since they typically correspond to external cues. For equitable comparison of the average 
NoPAtrue reduction, SC takes a number of top scoring controls equal to the number of nodes in the method it is 
compared against. SC control with only the top scoring control tends to exhibit a higher average (Supplementary 
Fig. S2), and may be leveraged in studies where an even smaller set of control candidates is desired.

Cortical area development.  The first biological model depicts cortical area development with 5 nodes 
and 14 edges, with no input nodes. The network structure is shown in Fig. 3a. This model analyzes the patterns 
of gene and protein expression in cortical development, especially patterns of the anterior–posterior axis. The 5 
nodes, Fgf8, Emx2, Pax6, Coup-tfi, and Sp8 are known to make gradient patterns specifying unique coordinates 
for arealisation, which form specialized areas during development38.

NoPAtrue reduction and NoPApred reduction are calculated for each control that either KO (0) or OE (1) a 
single node. The relation between NoPAtrue reduction and NoPApred reduction is plotted in Fig. 3b, which dis-
plays a positive correlation with a Pearson correlation of 0.733990 and p value of 1.565922e−2.

SC utilizes targets with the maximum NoPApred reduction: Fgf8 KO or Fgf8 OE, both of which correspond 
to the maximal NoPAtrue reduction value. The top 4 SC candidates are then compared against the 4 candidates 
suggested by FVS control, as summarized in Fig. 3c. In this case, the two methods select the same controls. 



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6275  | https://doi.org/10.1038/s41598-023-33346-1

www.nature.com/scientificreports/

Although Fgf8 KO, Fgf8 OE, and Emx2 KO exhibit the maximal NoPAtrue reduction, Emx2 OE has a NoPAtrue 
reduction of 0. As a result, the expected NoPAtrue reduction of both control methods is 0.75. Since any one node 
is a viable maximum matched node, the maximum matching approach simply selects a node from all nodes and 
fixes it to 0 or 1. This naïve random node control is included in Supplementary Fig. S2, and results in an expected 
NoPAtrue reduction value of 0.4. In this model, reducing NoPAtrue with single-node control is most effective via 
either the SC or FVS approach, and less effective with maximum matched nodes.

SC isolates Fgf8 as the optimal gene to control by selecting the node with the highest NoPApred . Fgf8 is 
known as the initiating morphogen. Its activation occurs first during development, forming spatial niches that 
trigger the other transcription factors (the other 4 nodes of this model). Although Fgf8 is also affected by the 
other 4 factors, it is thought to be a particularly important factor for cortical area development38. SC appears to 
be capable of identifying key developmental nodes that reduce the number of phenotypes as cells differentiate.

T cell differentiation.  The second biological network model depicts T cell differentiation and contains 
23 nodes and 34 edges, including 4 input nodes. The network structure is shown on Fig. 4a. T helper cells are 
lymphatic cells that support the immune system and exhibit many phenotypes. This model describes the gene 
expression pattern of Th0, Th1, and Th2 cells which are various phenotypes of T helper cells. This model repro-
duces the transition from Th0 cell phenotype to Th1 cell phenotype by a large perturbation of IFN-γ. It also 
reproduces the transition from Th0 cell phenotype to Th2 cell phenotype by a large perturbation of IL-439.

First, NoPAtrue reduction and NoPApred reduction are analyzed for single-node control (Fig. 4b). The result-
ing Pearson correlation of 0.735434 (p value 1.44524e−7) indicates that the NoPApred reduction is strongly cor-
related with NoPAtrue reduction. Next, the expected NoPAtrue reduction for each control method is calculated 
and compared (Fig. 4c). The top SC target is GATA3, which is also used in FVS control. FVS always contains 
T-bet and GATA3 due to a self-loop, as well as either JAK1 or STAT1, leading to a FVS intersection of {T-bet, 
GATA3} and FVS union of {T-bet, GATA3, JAK1, STAT1}. The expected NoPAtrue reduction is higher for SC 
than either FVS or maximum matching control, even after adjusting the number of SC controls to match the 
method it is compared to.

Control analysis is then repeated for double-node control (Fig. 4d). SC prioritizes GATA3 KO and T-bet 
OE, or GATA3 OE and T-bet KO. The expected NoPAtrue reduction for SC with double-node control is roughly 
double that of the other control methods (Fig. 4e). The top SC candidates GATA3 and T-bet are not key factors 
to transitioning the cell phenotype directly. However, previous research reveals that GATA3 activates IL-4 which 
triggers Th0 cells to Th2 cells41. This activation relation is also visible from the network structure. Another study 
reveals that GATA3 acts as a mediator between the IL-4 pathway and the IFN-γ pathway, which are key factors 
for helper T cell differentiation42. T-bet is an inhibiting factor of GATA3, and hence may be crucial to regulating 
its role in differentiation. These results suggest that SC targets reducing NoPApred of the differentiation model 
may be fundamental to the differentiation process.

Aurora kinase A neuroblastoma.  The Boolean network model describing aurora kinase A neuroblas-
toma contains 23 nodes and 43 edges, including 4 input nodes. The network structure is shown in Fig. 5a. Neu-
roblastoma is an extracranial solid tumor. Aurora kinase A (AURKA) is a serine/threonine kinase, whose mRNA 
expression is related to poor prognosis in neuroblastoma. This model analyzes the role of AURKA in neuroblas-
toma mitosis40.

Figure 3.   SC of cortical area development model compared to FVS and random node control. (a) The 
structural network model of cortical area development. (b) NoPAtrue reduction for each single-node control is 
calculated and compared to NoPApred reduction. NoPAtrue reduction and NoPApred reduction for each control 
are positively correlated. SC selects among the controls with the maximum NoPApred reduction, shown in red 
(Fgf8 KO or Fgf8 OE). (c) The SC result for single-node control is compared to FVS control. NoPAtrue reduction 
of each possible control is depicted, along with a horizontal bar for the average. The top 4 SC candidates are 
utilized to fairly compare its average to the 4 FVS candidates. The average of NoPAtrue reduction of the two 
methods are the same.
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Figure 4.   SC of T cell differentiation model compared to existing structural control methods. (a) The structural 
network model of T cell differentiation. (b) NoPAtrue reduction for each single-node control candidate is calculated 
and compared to NoPApred reduction, yielding a positive correlation. SC selects among the controls with maximal 
NoPApred reduction, shown in red (GATA3 KO or GATA3 OE). (c) SC is compared to several existing methods for 
single-node control, using the same number of SC nodes as in the comparison method. Since the network has more 
than one minimal FVS, FVS control represents the union of the minimal FVSs. Maximum matching control randomly 
selects a maximum matched node, and randomly sets it to state 0 or 1. NoPAtrue reduction of each control is depicted, 
along with a horizontal bar for the average. The average NoPAtrue reduction of SC is superior to all other methods. 
(d, e) Comparison of control methods is repeated with double-node control. SC selects GATA3 KO and T-bet OE, or 
GATA3 OE and T-bet KO, and is superior to other control methods after equating the number of control candidates.
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Figure 5.   SC of aurora kinase A neuroblastoma model compared to existing control methods. (a) The structural 
network model of aurora kinase A neuroblastoma. (b) NoPAtrue reduction for each single-node control candidate is 
calculated and compared to NoPApred reduction. NoPAtrue and NoPApred reduction are positively correlated. SC 
selects the control with maximal NoPApred reduction, shown in red (PP2A KO or PP2A OE). (c) SC is compared to 
several existing methods for single-node control, as described in Fig. 4. The horizontal bar representing the average 
resulting NoPAtrue reduction is the highest for SC. (d, e) Comparison of control methods is repeated with double-
node control. SC selects randomly from all 12 controls with the highest NoPApred (AURKA Active KO or OE and 
GWL/MASTL KO or OE, AURKA Active KO or OE and ENSA KO or OE, or AURKA Active KO or OE and PP2A 
KO or OE). For double-node control, SC again has higher average NoPAtrue reduction than all other approaches after 
equating the number of control candidates.
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NoPAtrue reductions and NoPApred reductions again have a positive Pearson correlation of 0.623656 (p value 
2.87594e−5), as shown in Fig. 5b. The resulting top controls selected using the SC approach are PP2A OE or 
PP2A KO. The expected NoPAtrue reduction for SC is compared to those from other approaches. FVS controls 
consist of {AURKA Active, GWL/MASTL, CDK1/CCNB complex, spindle assembly, Centrosome Maturation, 
Cytokinesis, ENSA, PP2A}. In this model, the NoPAtrue reduction with SC was superior to that of both FVS and 
maximum matching methods (Fig. 5c).

The control methods are repeated with double-node control. NoPApred reduction is again shown to be cor-
related with NoPAtrue reduction for double-node control (Fig. 5d). For SC, one of the two targets is always 
AURKA Active. The other target is either GWL/MASTL, PP2A or ENSA, and all nodes can be either fixed to 
0 or 1. For double-node control, SC again has a higher expected NoPAtrue reduction than all other approaches 
(Fig. 5e). These results suggest that SC is more broadly applicable for finding multiple control targets or handling 
limitations regarding valid control targets.

The top SC single-node and double-node control candidates include four targets: AURKA Active, PP2A, 
ENSA, and GWL/MASTL. It is known that the AURKA Active node, which is related to AURKA gene of neuro-
blastoma, is related to poor prognosis40. Previous research reveals that PP2A induces proteasomal degradation of 
AURKA by dephosphorylating its Ser51 residue43. Both GWL/MASTL and ENSA are contained in the feedback 
loop involving PP2A, suggesting that this feedback is important for PP2A regulation44,45. SC prioritizes genes 
tied to poor prognosis, suggesting that treatment efficacy may be related to CPD and SC may be broadly useful 
for isolating important genes in cancer.

Comparison to structural centrality.  SC is compared with several metrics of centrality to test if it pro-
vides insight into dynamics that are not gleaned from traditional structural features. Positive cycles are known 
to correspond to point attractors, such that NoPA increases proportionately to the number of positive cycles46. 
Control could block a positive cycle by fixing a node to a specific value. Meanwhile, eigenvector centrality esti-
mates the influence of a node on the other nodes of the network, such that nodes highly connected to other 
highly connected nodes have a high centrality. Unlike other centrality metrics, eigenvector centrality is applica-
ble to directed networks with signed edges47. The absolute value of the eigenvector centrality is also considered, 
since a node rich in inhibitory interactions is still considered a strong driver of network dynamics.

To check if SC can be inferred from positive feedback loops or node influence, the number of (positive) cycles 
passing through each node, its eigenvector centrality, and its absolute eigenvector centrality in all three biologi-
cal models are calculated and compared (Fig. 6). The relation between (positive) cycles and control targets are 
analyzed (Fig. 6a, b, c). Figure 6.a shows the number of cycles of each node in cortical area development model. 
In this model, all feedbacks are positive cycles. Figure 6b and c show the number of cycles in the T cell differen-
tiation model and aurora kinase A neuroblastoma model, respectively. Although SC targets tend to have a large 
number of cycles, the node with the most cycles is rarely a control target, and some control targets are involved 
in few cycles, such as GWL/MASTL and PP2A in the aurora kinase A neuroblastoma model. Hence the number 
of cycles or positive cycles cannot specify the control target of SC.

Eigenvector centrality metrics are also related, yet distinct from SC. While several SC targets exhibit the 
highest eigenvector centrality value, other targets exhibit very low eigenvector centrality values (Fig. 6d, e, f). 
Absolute eigenvector centrality exhibits higher correlation with targets of SC (Fig. 6g, h, i). However, it does not 
always specify the top SC target, implying that neither version of eigenvector centrality is sufficient to specify 
the SC targets. These structural centrality metrics suggest that, while SC is related to structural features, it can-
not be inferred from them.

Discussion
This study aims to develop a control technique to minimize CPD of a cell from a given structural network model. 
Practical restrictions may constrain the total number of control targets, which nodes are valid targets, and the 
granularity of control. Although the control technique is limited to the structural network, an unknown true 
Boolean model is assumed to describe the biological phenomenon of a cell. Although all attractors are of interest, 
as a preliminary step into CPD control we focus on point attractors for their known correspondence to biologi-
cal phenomena and robustness with respect to the choice of modeling framework18–23. In this context, control 
that minimizes NoPAtrue is sufficient to reduce the CPD of the cell. To find the control targets from the given 
network structure, NoPApred reductions in response to each candidate control are compared. We hypothesized 
that NoPApred reduction would be positively correlated with NoPAtrue reduction. If so, SC can reliably reduce 
NoPAtrue by selecting the control with the largest NoPApred reduction. To evaluate our approach, SC approach is 
applied to three biological models and compared with existing structural control approaches. Indeed, in all three 
biological examples, NoPApred reduction is positively correlated with NoPAtrue reduction (Figs. 3b, 4b, d, 5b, d).

Notably, controls targeting the same set of nodes with the opposite fixed state values for each node have the 
same NoPApred reduction. As a result, SC always selects both KO and OE for a given node. This is due to consid-
ering all possible Boolean logic functions for a node. If a node can have the Boolean logic f, then the node can 
also have a dual logic fd such that fd(x1, x2, . . . , xn) = ¬f(¬x1,¬x2, . . . ,¬xn) for all xi with i ∈ {1, 2, . . . , n}48. This 
duality can be checked in Fig. 1e. If a Boolean model X is composed of dual functions of a node of a Boolean 
model Y, then the model X will be referred to as a dual model of Y. For Boolean model state A = (a1, a2, . . . , am) , 
let the inverted state of state A be ¬A = (1− a1, 1− a2, . . . , 1− am) . By the property of dual functions, if state 
A of model X is changed to state B, then ¬A of the dual model Y is changed to the inverted state of B. Likewise, 
a point attractor of the model is an inverted state of a point attractor of its dual model. As such, KO on a node of 
the model has same NoPA effect to OE on the same node of the dual model. Since NoPApred is dependent on f avg 
which is affected by the duality of the Boolean function list, KO and OE also have same effect on the NoPApred . 
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If researchers can use prior knowledge about the dynamics of the true model, then the Boolean logic lists can 
be fine-tuned to reflect the partial information and break the Boolean logic duality to distinguish KO and OE49.

The analysis of NoPA of a model can also be interpreted using information theory. The states of the model can 
be viewed as information. However, the state history of a model is difficult to infer from the attractor, meaning 
the information outside of the attractor is mostly lost. Then, the number of attractors, or NoPA, of the model 
is its information capacity. The state of a model with larger information capacity may be more uncertain to an 
external observer, since there are more possible attractors it could occupy. The structure and logic of a network 
also contribute to information: Boolean functions tend to be irreversible in that the regulator states are not 
known from the output state. As a result, higher in-degree may contribute to information loss, whereas higher 
out-degree may contribute to information preservation by increasing redundancy. Hence, future work could 
integrate insights from information theory to improve SC, or utilize SC to provide information-theoretic insight.

SC for CPD reduction can also synergize with drug treatment for complex diseases such as cancer. Cancer cells 
typically exhibit high CPD, which is known to cause drug resistance: since each subpopulation reacts differently 
to biochemical perturbation, higher heterogeneity increases the risk of a resistant subpopulation1. Subpopula-
tions that are resistant to the drug survive and proliferate. Although other drugs can be effective against this 
resistant phenotype, in a highly heterogeneous population, another subpopulation is likely to be resistant to this 
new drug. CPD reducing control can be leveraged to reduce heterogeneity of a tumor, decreasing the probability 
of a resistant subpopulation, and rendering it susceptible to subsequent drug treatment.

SC was utilized to find NoPA reducing targets in models for development, differentiation, and cancer. Each 
target was found to have an important role in the corresponding biological phenomenon. In the cortical area 
development model, Fgf8 is an arealisation initiating morphogen. GATA3 and T-bet are critical to IL-4 and 
IFN-γ dynamics in the T cell differentiation model. Targets of the aurora kinase A neuroblastoma model are 
key to AURKA regulation, whose activation is known to correspond to poor prognosis. These results suggest 
that SC of CPD is a novel approach that can be widely applied to reveal key regulators of biological phenomena.

Figure 6.   SC targets are not identifiable from structural features of centrality. For each node of each biological 
network several structural features are measured. Targets of statistical single-node control are marked in red 
with *. Targets of statistical double-node control are marked in red with **. Targets of both are in marked in red 
with ***. (a, b, c) The number of cycles and number of positive cycles passing through each node are measured. 
In the cortical area development model, there are only positive cycles. Targets of SCs of the three biological 
models tend to be involved in more cycles. However, certain notable SCs are involved in few cycles. (d, e, f) 
Although some SCs have high eigenvector centrality, others have very low eigenvector centrality. (g, h, i) Targets 
of SC tend to have high absolute eigenvector centrality. However, the nodes with maximum absolute eigenvector 
centrality do not always correspond to SC.
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The datasets generated and analyzed during the current study are available from the corresponding author on 
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