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Model‑independent quantum 
phases classifier
F. Mahlow *, F. S. Luiz , A. L. Malvezzi  & F. F. Fanchini 

Machine learning has transformed science and technology. In this article, we present a model-
independent classifier that uses the k-Nearest Neighbors algorithm to classify phases of a model 
for which it has never been trained. This is done by studying three different spin-1 chains with some 
common phases: the XXZ chains with uniaxial single-ion-type anisotropy, the bond alternating XXZ 
chains, and the bilinear biquadratic chain. We show that the algorithm trained with two of these 
models can, with high probability, determine phases common to the third one. This is the first step 
towards a universal classifier, where an algorithm can recognize an arbitrary phase without knowing 
the Hamiltonian, since it knows only partial information about the quantum state.

The interest on quantum phases and phase transitions has been recently renewed due to new physics uncovered 
by experiments on cuprate superconductors, heavy fermion materials, organic conductors, and other strongly 
correlated materials1. From a theoretical perspective, low-dimensional quantum lattice models can capture many 
aspects of these new phenomena2,3. Therefore, determining the quantum (i.e., groundstate) phase diagrams of 
these models is an important challenge in condensed matter and statistical physics4.

Concerning quantum phases classification, many alternatives have been highlighted as promising5–9 with spe-
cial emphasis on machine learning (ML). The main difference between ML and other statistical models is the fact 
that an algorithm can improve its performance, that is, learn, without the need for such explicit programming10,11. 
ML is a form of applied statistics, where computers use data (usually in large quantities) to estimate functions 
with a high degree of complexity, which can be used to make predictions and observe patterns in these data 
sets12,13. ML has been widely used in the physical sciences, including cosmology14–16, quantum information17–19, 
many-body physics8, and also to classify quantum phases and detect their transitions20–27.

In this manuscript, we analyze the correlation between spins in a closed chain for three distinct spin-1 mod-
els. We show that these correlations hold information about the phases of these distinct models, and there is 
considerable overlap between phase information of different models. This explains how ML algorithms, training 
a known model, are capable of detecting some phases of another unknown model. To illustrate this, we use a 
machine learning classifier, fed with correlation and phase labels of two known models, to detect the phases of 
a third unknown model. We show that the prediction succeeds when the overlap of the information about the 
different phases is minimal. Also, we show that it is possible to apply a transformation in the dataset of the cor-
relations, which allows minimizing the overlap of the information about the different phases, making the ML 
predictor more accurate.

Physical models
To develop our studies, we use three well-known distinct spin-1 models, where the phase diagram of these 
models and their central features are well established in the literature28–30. The first model, we present is the (1) 
XXZ chains with uniaxial single-ion-type anisotropy, whose Hamiltonian is given by:

where Sl is a spin-1 operator acting on site l of a one-dimensional lattice (chain) with N sites, D represents uniaxial 
single ion anisotropy, and J(= 1), Jz are spin couplings. For Hamiltonian Eq. (1), the phase diagram consists 
of six distinct phases, namely, Haldane, Large D, XY1, XY2, Ferromagnetic, and a Néel, and several different 
transitions can occur28. The next model is the (2) bond-alternating XXZ chain, whose Hamiltonian is given by:
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where � is the strength of the Ising-type anisotropy that originates from the spin-orbit interaction in magnetic 
materials and δ is the alternation of the bond that describes dimerization. The phase diagram of the model Eq. 
(2) shows the Ferromagnetic phase, XY1, Néel, Haldane, and Dimerized29. Finally, the last model analyzed was 
the (3) bilinear biquadratic chain, whose Hamiltonian is given by:

where θ ∈ [0, 2π) quantifies the amount of coupling between the nearest neighboring spins. The model Eq. (3) 
presents four phases, namely, Haldane, Trimerized, Ferromagnetic, and Dimerized30.

To illustrate and summarize the phases and the common phases contained among these models, we prepare 
Table 1. As we can note, all phases of H2 are contained in the combined phases of H1 and H3 , being the only 
phase diagram in which this occurs. The union of H1 and H2 contains three of four phases of H3 , and the union 
of H2 and H3 contains four of six phases of H1 . In total, we have five phases that are shared by at least two models 
(Haldane, Néel, Ferromagnetic, XY1, and Dimer) and three phases unique to a single model (Large-D, XY2, 
and Trimer).

We assume that even when different models appear on the phase diagram, a given phase has a trademark 
that is model independent. Here, we propose that the spin correlations can capture such a signature. To test this 
hypothesis, we will analyze several correlations between the spins in the chain.

Data structure
The correlations between neighbors in the closed spin chain are given by the expected values of the following 
observables: 〈Sk1S

k
i 〉 and 

〈
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j S
k
j

〉

 , with k = {x, y, z} , i = [1,N/2+ 1] , j = [1,N] , and here we consider N = 12 

sites. Furthermore, 
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i |�0� , are the expected values of the correlation for the lowest energy state 

of the Hamiltonian25, where |�0� is the ground state. Notice that since the chain is closed and, consequently, the 
chain properties are cyclic, any non-redundant correlation between two spins is obtained for 

〈

Sk1S
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〉

 with 
i = [1,N/2+ 1] . The choice of these features is justified because, while two-point correlators identify simple 
local orders, string correlators captures non-local orders, which is important for the generalization of the method.

To generate the correlation dataset, we considered thousands of different values for the parameters of the 
Hamiltonians H1 , H2 , and H3 . For H1 , Eq. (1), we range the parameters Jz and D in the interval [− 4, 4] with 
a step size of 0.1, this generates a dataset with 6400 data points. For the Hamiltonian H2 , Eq. (2), we range the 
parameters, � in an interval [0, 1], and the parameters δ in an interval [− 1.5, 2.5] , with step sizes of 0.005 and 
0.0125, respectively, this generates a dataset with 6320 data points. Finally, for the Hamiltonian H3 , Eq. (3), we 
set the range of parameter θ in the interval [0, 2π] , with the step size of π × 10−3 , which results in a dataset 
with 2000 data points. The presented results have been obtained by means of the exact diagonalization of the 
Hamiltonians. The labels of the phases for the Hamiltonians H1 , H2 , and H3 , are obtained from the literature28,29, 
and30, respectively.

With the dataset of the three models, we could visualize the relation of the correlations with the quantum 
phases. Since we intend to use a classifier algorithm, the idea is to separate, in the multidimensional space, 
distinct phases in distinct positions. For 12 sites, for example, using the set of correlations described above, 
we have 24 distinct correlations (a space with 24 dimensions) and to visualize this amount of information in a 
3D space is complicated. In order to gain insight into the behavior of the data in the 24-dimensional space, we 
employed the Principal Component Analysis (PCA) algorithm to reduce the dataset to two dimensions, enabling 
visualization on a plane. PCA is a multivariate analysis technique that aims to decrease the dimensionality of 
data while retaining the majority of variation present in the data. The technique utilizes a linear transformation 
of the original data, resulting in a new set of variables known as principal components31. In Fig. 1 we show the 
two components obtained using the method. With PCA1 on the X axis and PCA2 on the Y, looking for the best 
graphical representation of what happens in the correlation space. Note that PCA1 and PCA2 are calculated for 
all dataset, where we consider different values for the parameters of the Hamiltonians H1 , H2 , and H3.

(3)H3 =

N
∑

l=1

[

cos θ(Sl .Sl+1)+ sin θ(Sl .Sl+1)
2
]

,

Table 1.   Phases contained in the diagrams corresponding to the three Hamiltonians analyzed. The filled circles 
indicate that the quantum phase is present in the model. The numbers subscribed in the circles represent the 
amount of data calculated for each phase of each model.
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One important aspect to consider when working with machine learning is a dataset transformation. In 
many cases, appropriate transformations can separate the classes in the feature space, which facilitates the clas-
sification process. In Fig. 1-a to d we plot the raw data, and in Fig. 1-e to h we plot the raw data after scaling the 
dataset, for each model, to have a unit norm. This is a well-known renormalization procedure called spatial sign 
preprocessing32. Analyzing Fig. 1, we see that even with the information contained in a single pair of correlations, 
we are able to separate, with high distinctness, states with different phases. Indeed, there is some overlap of this 
information for different phases, especially when considering several different models, Fig. 1-d and Fig. 1-h. 
Moreover, for the normalized data, Fig. 1-e to h, the overlap of information about the phases decreases for all 
models, almost disappearing for H3 , Fig. 1-g.

Despite the improvement in reducing the overlap, Fig. 1-h shows that there are still overlaps of information 
from the Haldane phase with Large-D, from the XY1, XY2, Néel, and Haldane phases with the Dimer phase.

Our main goal is to classify the phases of an unknown model, given the distribution of these phases in the 
correlation space of other known models. For this purpose, we need an algorithm that, given a new quantum 
state and, consequently, a position in the correlation space, labels it with the corresponding phase based on the 
information from other known states, located in the vicinity of the new one in the correlation space. As we show 
below, even a simple algorithm is capable of performing this task with high accuracy.

k‑Nearest Neighbors classifier
In this manuscript, we use a supervised algorithm, i.e. where the learning process occurs through labeled data. 
For this task, one of the simplest machine learning algorithms is the k-Nearest Neighbors classifier (k-NN)33. 
Despite its simplicity, it presented a good result in our classification problem, which can be explained by the way 
the k-NN works. When a data point of the unknown model is inserted, the algorithm calculates the Euclidean 
distance (in this work, but the metric can be changed) of this unknown model data point to the k-nearest neigh-
bors. The unknown model data point is classified by a plurality vote of its k neighbors, with the unknown model 
data point being assigned to the class most common among them33–35. It is important to note that the proximity 
between the features in the different models observed in Fig. 1, combined with the concept of how the k-NN 
algorithm works, gives a physical meaning of how the algorithm is able to properly classify the data. The phases 
are classified given the proximity of the expected values of the observables.

With the exception of the number of neighbors k used in the k-NN algorithm, all parameters were kept 
as defaults from the Scikit-learn library34. In this work, we use k = 50 and assume that all neighbors have the 
same voting weight (it could be assumed that the closer, the greater the voting weight). Also, as stated before, it 
is necessary to use an appropriate transformation that reduces the overlap between the different phases in the 
correlation space. Once the transformation decreases the overlap between different phases (such as that made 
in Fig. 1-e to h), it increases the accuracy of the k-NN algorithm. The algorithm utilized the 24 described cor-
relations as its training dataset, while their quantum phase served as the target.

Results
To test the accuracy of the k-NN in transferring learning from the known models to the unknown model, we 
begin by training the algorithm to classify the data points of H1 . For this case, we train the k-NN with data from 
models H2 and H3 (it means that the k-NN algorithm knows the dataset of H2 and H3 and their respective phase 
labels), and predict the phases of H1 . In sequence, we do the same for H2 and H3 using the data from models 
H1 and H3 , and H1 and H2 , respectively.

It is worth noting, however, that there are phases in H1 (Large-D and XY2) that do not exist in H2 and H3 , 
and a phase in H3 (Trimer) that does not exist in H1 and H2 . Clearly, there is no way to learn from the data that 
were not provided9,36, for that reason, a transparency was introduced within the LD phase region to facilitate 
visual discernment of the algorithm-assigned phase, despite its inherent infeasibility of correct identification. 
Furthermore, when we predict the phases of H3 , we did the same with the Trimer phase. We do not account for 
these phases when calculating the accuracy of the algorithm, as they would possibly lead to misleading numbers.

In our analysis, we transformed our dataset following a renormalization procedure called spatial sign pre-
processing, where the dataset is scaled to have a unit norm32. As stated before, each ground state and its respective 
labeled phase, are represented by the correlations between a pair of spins, 

〈

Sk1, S
k
i

〉

 , which provides N/2+ 1 
features for each variable k = {x, y, z} , and global correlations 

〈

∏

j S
k
j

〉

 . As we note in Fig. 1, even after the dataset 
transformation, some overlap between phases is still present. For example, in Fig. 1-f, it is easy to notice the 
overlap of the XY1 phase with the Haldane and Dimer phases, and the overlap between Néel and Dimer phases. 
Figure 2 shows the phase prediction of the k-NN algorithm considering 12 sites. In Fig. 2-a we estimate the phase 
diagram of H1 given the data from H2 and H3 , in Fig. 2-b we estimate the phase diagram of model H2 given the 
data from H1 and H3 , and analogous in Fig. 2-c where we estimate the phases of the H3 given the data from H1 
and H2 . The prediction of the phase diagram of H1 , presented in Fig. 2-a, was incredibly successful with an 
accuracy of 96.77%. All phases are in the correct locations with few mistakes in the phase transitions. As in our 
two-dimensional illustrative example, the Haldane phase invades the XY1 phase space, and the confusion 
between the Néel and Dimer phases persists. The region for which the algorithm lacked training data (LD) was 
almost entirely classified as the Haldane phase. The reason can be seen thanks to the proximity of the phases in 
Fig. 1-e. and e. When considering H2 , we observe that the algorithm commits mistakes in the separations of the 
phases, which made its accuracy the lowest, about 73.53%. Despite this, one aspect needs to be emphasized. The 
training dataset contains information for H1 and H3 , which includes all 8 distinct phases. Nevertheless, the 
Large-D, XY2, and Trimer phases were not indicated by the k-NN algorithm for all data of H2 , since the algorithm 
detects all phases correctly, only making mistakes around the boundaries. Finally, the prediction for model H3 
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is presented in Fig. 2-c, where we use the H1 and H2 models for learning. In this case it incorrectly classifies the 
Haldane phase, mixing it with the Large-D, a phase that is not even present in the model. Nevertheless, even 
making this mistake, the algorithm achieves an accuracy of 88.27%. Even though good results are presented, 
different strategies can be used to increase the prediction accuracy. One is to add new models to the predictor 
dataset, as adding new information to the k-NN would help avoid incorrect phase prediction. The second is to 
find a transformation that can separate the phase information in the correlation space. Finally, different machine 
learning algorithms can certainly be implemented to increase the accuracy.

Another component taken into account in our analysis is the influence of the chain size on the accuracy of 
the algorithm. The results obtained can be observed in Table 2.

As expected, in general the accuracy of the algorithm increased as a function of the number of spins, as it is 
a better representation of the system from a physical perspective. The only exception to this behavior was with 
XXZ for 12 Spins, however, all algorithm errors were concentrated in the phase transition region, which naturally 
is a more complex task for it.

Moreover, despite unraveling phase transitions is an subject of great interest in the literature, the method 
used here is not focused on revealing information about this aspect. The closest to the transitions that this work 
touches is the idea of identifying their boundaries, given a very high precision in the classification, such as in H1 . 
Lastly, another important discussion is the relationship between the k value chosen for the algorithm (the only 
parameter specified) and the accuracy obtained. This issue is addressed in Fig. 3, which is a graphical represen-
tation of the relationship between the accuracy obtained by the algorithm and the number k of neighbors used. 
From this, our analysis show that in our case, the algorithm works better for values between 30 < k < 60 , since 
for very small values, it becomes more susceptible to noise and, in the case of large values of k, distinct phase 
boundaries are included and the classification of the phases becomes more difficult. In the inset of Fig. 3-b, we can 
observe the region where 0 < k < 100 , where we see that the precision in each individual model varies according 
to the value of k, so that the region around k = 50 was chosen because this is where the sum of accuracy when 
predicting the three combinations is the greatest.

Conclusion
We have developed a method for studying the phases of unknown magnetic systems through spin correlations. 
We show that raw correlation data carry information about the phases, which is independent of the model. With 
the spin correlation information, we use a k-NN algorithm to predict the phases of an unknown model with 
high accuracy. We present a proof of concept, showing that an ML algorithm can classify unknown phases of 
a Hamiltonian through known phases of another Hamiltonian, creating a model-independent quantum phase 
classifier. Our strategy tackles the problem with tools that are reproducible and generalizable to new Hamiltoni-
ans and, although it does not draw a sharp line to determine the transition points, it provides a faithful outline 
of the quantum phase diagram for an arbitrary model. A possible advantage of this method is that one can train 
from a set of numerically less demanding models, and the evaluation can be done on more challenging ones. 
We emphasize that no explicit use of the phase order parameters is made, so this model-independent classifier 
opens up the possibility of creating a universal classifier, as more and more model-independent information is 
added to the classifier database. For future research, we mention the use of explainable artificial intelligence, in 
an attempt to explain the key features of each phase and provide deeper physical insight.

Table 2.   Accuracy obtained by k-NN classifying the quantum phases when there is variation in the size of the 
spin chain.

H1 (%) H2 (%) H3 (%)

4 Spins 97.42 68.14 72.13

8 Spins 97.77 69.14 79.44

12 Spins 96.77 73.53 88.27
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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