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Physically informed 
machine‑learning algorithms 
for the identification 
of two‑dimensional atomic crystals
Laura Zichi 1, Tianci Liu 2, Elizabeth Drueke 1, Liuyan Zhao 1* & Gongjun Xu 2*

After graphene was first exfoliated in 2004, research worldwide has focused on discovering and 
exploiting its distinctive electronic, mechanical, and structural properties. Application of the 
efficacious methodology used to fabricate graphene, mechanical exfoliation followed by optical 
microscopy inspection, to other analogous bulk materials has resulted in many more two‑dimensional 
(2D) atomic crystals. Despite their fascinating physical properties, manual identification of 2D 
atomic crystals has the clear drawback of low‑throughput and hence is impractical for any scale‑up 
applications of 2D samples. To combat this, recent integration of high‑performance machine‑learning 
techniques, usually deep learning algorithms because of their impressive object recognition abilities, 
with optical microscopy have been used to accelerate and automate this traditional flake identification 
process. However, deep learning methods require immense datasets and rely on uninterpretable 
and complicated algorithms for predictions. Conversely, tree‑based machine‑learning algorithms 
represent highly transparent and accessible models. We investigate these tree‑based algorithms, 
with features that mimic color contrast, for automating the manual inspection process of exfoliated 
2D materials (e.g.,  MoSe2). We examine their performance in comparison to ResNet, a famous 
Convolutional Neural Network (CNN), in terms of accuracy and the physical nature of their decision‑
making process. We find that the decision trees, gradient boosted decision trees, and random forests 
utilize physical aspects of the images to successfully identify 2D atomic crystals without suffering 
from extreme overfitting and high training dataset demands. We also employ a post‑hoc study that 
identifies the sub‑regions CNNs rely on for classification and find that they regularly utilize physically 
insignificant image attributes when correctly identifying thin materials.

Since the first realization in 2004 that graphite could be mechanically exfoliated into graphene in ambient 
conditions using a simple piece of Scotch  tape1, the study of graphene in the two-dimensional (2D) limit has 
demonstrated a rich landscape for interesting physical phenomena, ranging from Dirac electrons in  graphene2 
to unconventional superconductivity in twisted graphene moire  superlattices3. This simple yet effective meth-
odology used for fabricating graphene, scotch tape peeling followed by optical microscope imaging, has been 
exploited to greatly expanded the 2D atomic crystal pool, discovering 2D transition metal dichalcogenide (TMD) 
 semiconductors4 2D  magnets5 and many on. However, many of these materials show deterioration in ambient 
 conditions6–8. This has prompted researchers to innovate fabrication environments that prevent degradation of 
samples. Further improvements to current fabrication and visualization techniques to produce large 2D mate-
rials remain imperative for their fundamental research and commercial-level applications in next generation 
electronics, optoelectronics, and energy  storage9,10.

Isolation of 2D materials involves cleaving the bulk material on a wafer, usually oxidized Si. Current visualiza-
tion techniques, including atomic-force, scanning tunneling, and electron microscopies, exhibit low-throughput 
of locating the resultant relevant thin materials of only several nm in diameter known as  flakes11. Raman Micros-
copy, which can realize accurate 2D structures, has not been automated and relies on experienced  users12. With 
the recent surge of successful high-performance machine-learning algorithms for object classification within 
images, many have applied these methods to locate exfoliated 2D materials in optical  images13–16. Usually the 
machine-learning algorithms used for flake identification are deep neural networks due to their great success with 
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object  recognition17–20. The integration of machine-learning and optical microscopy techniques can accelerate 
flake identification. This can then expedite innovations within the flake fabrication process to promote practical 
2D material applications and research.

Although the neural networks attain high accuracies, their high computational complexity and large dataset 
requirements can render them difficult to employ in laboratory settings which require manual collection of 
training data. Furthermore, critiqued as “black boxes”, no comprehensive theoretical understanding of neural 
networks’ inner layers  exists21. In certain environments, accuracy can be sacrificed for more accessible and trans-
parent algorithms. Therefore, we propose coupling optical microscopy techniques with tree-based algorithms 
as an alternative to deep learning methods for a more accessible and transparent method for accelerating the 
identification of 2D materials. We employed, for comparison, tree-based methods—decision trees, gradient 
boosted decision trees and random forests—and deep Convolutional Neural Networks (CNNs) for identification 
of exfoliated  MoSe2 under different optical settings. The tree-based algorithm’s features mimicked the physical 
method of identifying flakes using color contrast, a technique currently used throughout the 2D materials com-
munity, giving them a more understandable physical motivation than the  CNNs11. We compare the physicality of 
these algorithms through tree visualizations and Gradient-weighted Class Activation Mapping (Grad-CAM), a 
post-hoc study that identifies the sub-regions CNNs rely on for classification, and their accuracies to understand 
their potential  application22,23. We find that the CNN’s fortuitous ability to locate 2D atomic crystals when cor-
rectly classifying images emphasizes their unphysical and opaque decision-making process.

Methods
Optical images used in this study include transition metal dichalcogenide (TMD) flakes on  SiO2/Si substrate, 
TMD flakes on Polydimethylsiloxane (PDMS), and TMD flakes on  SiO2/Si and PDMS (if any). The usage of 
multiple types of substrates models more realistic flake fabrication environments and strengthens algorithm 
robustness. All these samples were mechanically exfoliated in a 99.999%  N2-filled glove box (Fig. 1a). The optical 
images were also acquired in the same environment with no exposure to ambient conditions occurring between 
fabrication and imaging processes (Fig. 1b). The 83  MoSe2 images used throughout this study were taken at the 
100× magnification by various members of the Hui Deng group who selected different amounts of light to illumi-
nate the sample (Fig. 1c). These images are divided into four smaller symmetric images containing randomized 
amounts of flake and bulk material which were then manually reclassified (Fig. 1d).

The extremely time-consuming process of locating a flake renders these datasets small, a common occurrence 
in many domains such as medical sciences and physics. However, deep learning models, such as CNNs, usually 
contain numerous parameters to learn and require large-scale data to train on to avoid severe overfitting. Data 
augmentation is a practical solution to this  problem24. By generating new samples based on existing data, data 
augmentation produces training data with boosted diversity and sample sizes, on which better performing deep 
learning models can be trained (see Supplementary methods). The benefit of applying data augmentation is 
two-fold. First, it enlarges the data that CNNs are trained on. Second, the randomness induced by the augmen-
tation of the data encourages the CNNs to capture and extract spatially invariant features to make predictions, 
improving the robustness of the  models24. In fact, augmentation is quite common when using CNNs even with 
large datasets for this reason. Typically, different augmented images are generated on the fly during the model 
training period, which further helps models to extract robust features. Due to limited computing resources, we 
generated augmented data prior to fitting any models, expanding the data from 332 to 10,292 images (Fig. 1e).

Once augmented, we applied color quantization to all images (Fig. 1f). The quantization decreased noise and 
image colors to a manageable number necessary for extracting the tree-based algorithms’ features. The color 
quantization algorithm uses a pixel-wise Vector Quantization to reduce colors within the image to a desired 
quantity while preserving the original  quality16. We employed a K-means clustering to locate the desired number 
of color cluster centers using a single byte and pixel representation in 3D space. The K-means clustering trains 
on a small sample of the image and then predicts the color indices for the rest of the image, recreating it with the 
specified number of colors (see Supplementary methods). We recreated the original  MoSe2 images with 5, 20, 
and 256 colors to examine which resolution produced the most effective and generalizable models. Images were 
not recreated with less than five colors because the resulting images would consist of only background colors and 
not show the small flake in the original image. Images recreated with 20 colors appeared almost indistinguish-
able from the original while still greatly decreasing noise. To mimic an unquantized image, we recreated images 
with 256 color clusters. We compare the accuracies of the tree-based algorithms and CNNs on datasets of our 
images recreated with 5 and 20 colors. We also compare the tree-based algorithms’ performance on our images 
recreated with 256 colors to the CNNs on the unquantized images (it is not necessary to perform quantization 
for CNN classification).

After processing the optical images, we employ tree-based and deep learning algorithms for their classifica-
tion. Tree-based algorithms are a family of supervised machine learning that perform classification or regression 
based on the value of the features of the tree-like structure it constructs. A tree consists of an initial root node, 
decision nodes that indicate if the input image contains a 2D flake or not, and childless leaf nodes (or terminal 
nodes) where a target variable class or value is  assigned25. Decision trees’ various advantages include the abil-
ity to successfully model complex interactions with discreet and continuous attributes, high generalizability, 
robustness to predictor variable outliers, and an easily interpreted decision-making  process26,27. These attributes 
motivate the coupling of tree-based algorithms and optical microscopy for the accelerated identification of 2D 
materials. Specifically, we employ decision trees along with ensemble classifiers, such as random forests and 
gradient boosted decision trees, for improved prediction accuracies and smoother classification  boundaries28–30.

The features of the single and ensemble trees mimic the physical method of using color contrast for identifying 
graphene crystallites against a thick background. The flakes are sufficiently thin so that their interference color 
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will differ from an empty wafer, creating a visible optical contrast for  identification11. We calculate an analogous 
color contrast for each input image. The tree-based methods then use this color contrast data to make their 
decisions and classify images.

This color contrast for the tree-based methods is calculated from the 2D matrix representation of the input 
images as follows. The 2D matrix representation of the input image is fed to the quantization algorithm which 
recreates the image with the specified number of colors. We then calculate the color difference, based on RGB 
color codes, between every combination of color clusters to model optical contrast. These differences are sorted 
into different color contrast ranges which encompass data extrema. To prevent model overfitting, especially for 
the ensemble classifiers, only three relevant color contrast ranges were chosen for training and testing the models: 
the lowest range, a middle range representative of the color contrast between a flake and background material, 
and the highest range (see Supplementary methods). This list of the number of color differences in each range 
is what the tree-based methods use for classification.

Once these features are calculated, we employed a k-fold cross-validation grid search to determine the best 
values for each estimator’s hyperparameters. The k-fold cross-validation–an iterative process that divides the train 
data into k partitions–uses one partition for validation (testing) and the remaining k − 1 for training during each 
 iteration31. For each tree-based method, the estimator with the combination of hyperparameters which produces 
the highest accuracy on the test data was selected (see Supplementary methods). We employed a five-fold cross-
validation with a standard 75/25 train/test split. After finetuning the decision tree’s hyperparameters with k-fold 
cross-validation, we produced visualizations of the estimator to evaluate the physical nature of its decisions. The 
gradient boosted decision tree and random forest estimators represent ensembles of decision trees so the overall 
nature of their decisions can be extrapolated from a visualization of a single decision tree since they all use the 
same inherently physical features.

Along with the tree-based methods, we also examined deep learning algorithms. Recently, deep neural net-
works, which learn more flexible latent representations with successive layers of abstraction, have shown great 

Mechanical exfoliation Optical microscopy

SCOTCH TAPE

GLASS SLIDE

a. b.

Divided into four Images Data augmentation Color quantization

c.

d. e. f.

Figure 1.  MoSe2 flake fabrication and image collection and processing. (a) Mechanical exfoliation of  MoSe2 
with scotch tape to produce flakes which are then (b) imaged with optical microscopy. (c) A typical optical 
image of a flake and surrounding bulk material with a masked version of the image below which only displays 
the flake in white. (d) The four resulting images when the original image in (c) is divided with the masked 
version below. (e) The resulting 30 images produced through the augmentation methods of padding, rotating, 
flipping, and color jitter. (f) The image recreated with 20 colors again with the masked version below.
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success on a variety of tasks including object  recognition32,33. Deep convolutional neural networks take an image 
as input and output a class label or other types of results depending on the goal of the task. During the feed 
forward step, a sequence of convolution and pooling operations are applied to the image to extract visuals. The 
CNN model we employ is a  ResNet1834, and we train new networks from scratch by initializing parameters with 
uniform random  variables35 due to the lack of public neural networks pre-trained on similar data. The training 
of ResNet18 is as follows. We used 75% original images and all their augmented images as the training. This can 
further be split into training and validation sets when tuning hyper-parameters. We used a small batch size of 4 
and run 50 epochs using stochastic gradient descent method with  momentum36. We used a learning rate of 0.01 
and momentum factor of 0.9. Various efforts work to produce accurate visualizations of the inner layers of CNNs 
including Grad-CAM which we employed. Grad-CAM does not give a complete visualization of the CNNs as 
it only uses information from the last convolutional layer of the CNN. However, this last convolutional layer is 
expected to have the best trade-off between high-level semantics and spatial information rendering Grad-CAMs 
successful in visualizing what CNNs use for  decisions22.

Results and discussions
Both machine-learning methods proved effective for accelerating the identification of thin materials. The accu-
racies of the tree-based methods are displayed as both the average test score from the five-fold cross-validation 
(blue) as well as the accuracy on the test dataset (green) as a function of the number of quantized colors (Fig. 2). 
The CNNs demonstrated higher accuracies than the tree-based methods for every color quantization. They 
performed with accuracies between 70.0% and 76.0% and showed no discernable dependency on color quantiza-
tion. Conversely, the test and average five-fold cross-validation accuracy of the tree-based methods improved as 
the images were quantized with more colors for all three algorithms. Unsurprisingly, the ensemble estimators, 
gradient boosted decision trees and random forests, performed with the highest accuracies of the tree-based 
methods. The accuracy of these methods ranged from 64.5 to 69.5% (Fig. 2).

Although the CNNs achieved higher accuracies, they represent opaque algorithms that lack accessibility 
because of their high computational and dataset requirements. The CNNs showcased severe overfitting which 
led to relatively poor performance on unseen datasets. This is showcased by examining the performance of the 
CNNs when trained with smaller training datasets. When trained with 10% and 50% of all training data from 
a 75/25 train test split, the CNNs suffered a large loss of accuracy (up to 20%) and showcased signs of extreme 
overfitting (training accuracies range from 96 to 100%). Conversely, the tree-based methods maintained their 
performance (up to 6% loss in test accuracy) without severe overfitting (training accuracies between 61 and 
87%). This emphasizes their accessibility when working with limited data and diverse images (see Supplementary 
methods). The tree-based methods showcase further accessibility in terms of computational time. To fit the algo-
rithms, the CNNs require hours while the tree-based methods take a few seconds (see Supplementary methods).

Figure 2.  CNN and tree-based machine learning algorithms’ accuracies. The accuracy of CNN and tree-based 
algorithms depends on the number of color clusters in the recreated image. The tree-based methods and CNNs 
were trained and tested on images recreated with 5, 20, and 256 colors and 5, 20, and infinite (original image) 
colors. The CNNs’ accuracies (first panel) determined with a 75/25 train test split. Tree-based algorithms’ 
accuracies (last three panels) shown as the average test accuracy from the five-fold cross-validation used to 
select the algorithm’s hyperparameters (blue) and test accuracy from 75/25 train test split after this optimization 
(green). The standard error for the five-fold cross-validation test accuracy is represented by the shaded region.
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Moreover, visualizations of the subregions the CNNs used for classification, through Grad-CAM images, 
indicate that the decision processes may lack physical integrity. Intuitively, the Grad-CAM uses gradients of 
the label flake to features (pixels) to locate and visualize the image subregions that the CNN used for training 
and testing during classification. The final convolutional layer is used to construct a coarse heatmap indicating 
these subregions which is then overlaid onto the original image. We evaluated the Grad-CAM’s ability to locate 
the flakes in 500 correctly classified images quantized with 20 colors with flakes to ascertain the physical nature 
of the CNNs. A masking algorithm located the region of each image containing a flake (see Supplementary 
methods). We then summed the Grad-CAM heatmap’s weights (which are normalized between zero and one) 
in this region and divided by the total flake area. We summarized the results of this evaluation as an empirical 
cumulative distribution function (ECDF) shown in Fig. 3. We also showcase in Fig. 3 an example of a success-
ful Grad-CAM image with an overlap fraction of 0.95 along with an unsuccessful Grad-CAM image with 0.00 
fractional overlap. The ECDF’s median of 0.4 fractional overlap between a flake and a Grad-CAM image indicates 
that the CNN’s did not use regions near the flake for training and testing. Instead, the CNN’s regularly failed to 
locate the flake, training and testing on other potentially meaningless image features while still correctly classify-
ing images (Fig. 3). The CNN’s fortuitous ability to locate flakes emphasizes the need for caution when blindly 
applying these high-performance deep learning algorithms.

Conversely, the tree-based algorithms inherently relied on physical image attributes because their features 
are based on color contrast. Visualizations of the tree-based methods’ decisions demonstrate their reliance on 
the physical color contrast of flake to bulk or background material for classification. To better highlight these 
ideas, we showcase how an image with a flake and without a flake are classified based on a decision tree trained 
on data quantized with 256 color cluster centers in Fig. 4. Each image’s associated features of number of color 
differences in various ranges are shown as a bar chart below the images. The image without a flake traverses left 
from the leaf node and is classified as not containing a flake by a terminal node (Fig. 4b). Starting from the root 
node, the image with a flake traverses the tree to the right until being classified as containing a flake at a terminal 
node (Fig. 4c). The tree-based methods used the number of large color differences between pixels to identify 
images with flakes surrounded by bulk material (Fig. 4b). Similarly, these methods regularly used high numbers 
of low color differences to correctly classify optical images that are almost all background with little  MoSe2 as 
not containing flakes (Fig. 4c). Furthermore, the training accuracies ranged from 61 to 73% indicating little to 
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Figure 3.  Grad-CAM Evaluation with an Empirical Cumulative Distribution Function. For 500 correctly 
classified flake images quantized with 20 colors, the weighted fraction of flake highlighted by the Grad-
CAM heatmap is displayed as an empirical cumulative distribution function (on the right). The process 
for determining the fractional overlap for an unsuccessful image (overlap < 0.1) and a successful image 
(overlap > 0.9) are shown. In both instances, a masking algorithm locates the thin flake and determines the 
weighted fraction of overlap between this flake and the Grad-CAM heatmap.
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Figure 4.  Visualization of decision tree after training. (a) Visualization of a decision tree classifier after training 
with 256 color clusters with a train and test accuracy of 73% and 67%. Each node shows the feature (number of 
color cluster differences in each range) used to indicate if the input image contains a 2D flake or not, the Gini 
impurity (a measure of the probability of misclassifying a random element when randomly classifying it based 
on the class distribution), the node’s samples, and classification if a terminal node (blue and green as flake and 
no flake). (b) An example of the tree traversal of an image without a flake and associated bins (colored light 
green) and (c) an image with a flake and associated bins (colored light blue).
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no overfitting. However, the high Gini impurities associated with the various tree decision nodes indicate a lack 
of confidence in classification, highlighted by the tree-based estimator’s lower accuracies.

These lower accuracies result from high rates of false negatives as indicated by the confusion matrices (see 
Supplementary methods). A manual post image processing revealed that the false negatives usually contained 
very small flakes. Further evaluation of the tree-based methods with operating characteristic (ROC) curves indi-
cated that by tuning the true positive and false positive rates the tree-based methods can increase throughput of 
manual flake identification by a factor of three (see Supplementary methods). Furthermore, the most successful 
tree-based classifier, the gradient boosted decision trees trained with 256 colors, achieved a testing accuracy of 
70%. Adaption of this classifier during the identification process of the 2D materials would greatly accelerate 
locating flakes. Although tree-based methods require fine-tuning of features to increase accuracies, they rep-
resent a promising physically informed and transparent alternative to deep-learning algorithms for coupling 
with optical microscopy for rapid identification of thin materials. In future work, the features of the tree-based 
methods can be further tuned to produce higher accuracies and other methods such as unsupervised learning 
could be employed for classification of 2D materials.

Data availability
Optical images used for machine-learning training and testing are available upon reasonable request. All codes 
discussed here (machine-learning methods, masking algorithm, and Grad-CAM evaluation) are available on 
GitHub at https:// github. com/ lzichi/ Thin- Mater ials- ML.
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