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Tropical lacustrine sediment 
microbial community response 
to an extreme El Niño event
Mingfei Chen 1,6*, Jessica L. Conroy 1,2, Robert A. Sanford 1, D. Allie Wyman‑Feravich 3, 
Joanne C. Chee‑Sanford 4,5 & Lynn M. Connor 4,5

Salinity can influence microbial communities and related functional groups in lacustrine sediments, 
but few studies have examined temporal variability in salinity and associated changes in lacustrine 
microbial communities and functional groups. To better understand how microbial communities 
and functional groups respond to salinity, we examined geochemistry and functional gene amplicon 
sequence data collected from 13 lakes located in Kiritimati, Republic of Kiribati (2° N, 157° W) in July 
2014 and June 2019, dates which bracket the very large El Niño event of 2015–2016 and a period 
of extremely high precipitation rates. Lake water salinity values in 2019 were significantly reduced 
and covaried with ecological distances between microbial samples. Specifically, phylum‑ and family‑
level results indicate that more halophilic microorganisms occurred in 2014 samples, whereas more 
mesohaline, marine, or halotolerant microorganisms were detected in 2019 samples. Functional 
Annotation of Prokaryotic Taxa (FAPROTAX) and functional gene results (nifH, nrfA, aprA) suggest 
that salinity influences the relative abundance of key functional groups (chemoheterotrophs, 
phototrophs, nitrogen fixers, denitrifiers, sulfate reducers), as well as the microbial diversity within 
functional groups. Accordingly, we conclude that microbial community and functional gene groups in 
the lacustrine sediments of Kiritimati show dynamic changes and adaptations to the fluctuations in 
salinity driven by the El Niño‑Southern Oscillation.

In lacustrine systems, salinity is an important stress selection factor and can influence microbial diversity, com-
munity structure, and metabolic activity in surface  sediments1–5. Lake salinity can also change abruptly, due to 
climate variability (e.g., from extreme precipitation events and drought), with substantial impacts to lacustrine 
 ecosystems6–8. Notably, previous studies on the effects of salinity on microbial communities have focused on 
spatial datasets from saline and hypersaline  lakes3,9 and estuaries with continuous salinity  gradients10,11. Although 
the temporal response of microorganisms in lacustrine surface sediments to abrupt salinity changes has been 
documented in the literature, most studies have focused on one  lake12–14, and few studies have examined temporal 
shifts in tropical lacustrine sediments.

Microbial functional groups that actively participate in element cycling also vary in response to salinity 
changes in lacustrine settings. As an example, the relative abundance of nitrogen fixation genes, coding an 
important pathway for aquatic ecosystem productivity, is often reduced with high salinity in lacustrine sediments, 
microbial mats, and estuarine  environments15–17. High salinity, on the other hand, provides favorable conditions 
for dissimilatory nitrate reduction to ammonium (DNRA) over denitrification in estuarine  sediments18–20. Sup-
porting this observation, microbial communities that perform these metabolic activities also show significant 
changes with salinity, partly due to the extreme energetic demands of osmoregulation in high salinity  conditions1. 
Thus, examining temporal changes in community composition and microbial functional groups in response 
to changes in salinity can improve understanding of functional group roles in element cycling under different 
salinity conditions in lacustrine ecosystems.

On the island of Kiritimati, Kiribati, in the central tropical Pacific, several hundreds of lakes with salini-
ties ranging from brackish to  hypersaline21 are an ideal natural laboratory to investigate salinity influences on 
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microbial communities and functional groups. Here, the interannual El Niño-Southern Oscillation (ENSO) 
phenomenon results in significant anomalies in atmospheric moisture balance (precipitation minus evapora-
tion)22. Such anomalies greatly affect groundwater, surface water area, and salinity in many of these  lakes22–24. 
Thus, Kiritimati is an excellent field site to study the temporal response of microbial communities to lacustrine 
salinity changes. During 2015–2016, a very strong central-Pacific style El Niño led to abundant rainfall over 
 Kiritimati25, increasing lake surface water  area22, and likely leading to significant lake salinity changes. Here we 
investigate lake water salinity, microbial community and microbial functional groups changes in a set of lake 
surface (0–5 cm) sediment samples from 2019 and  20149. We used samples from the same lakes taken during 
these two field seasons to explore the relationship between microbial community and microbial functional 
groups with changes in lacustrine physiochemical parameters. We hypothesize that between 2014 and 2019, 
the dominant microbial taxa changed from halophiles to more broadly halotolerant or mesohaline taxa, and 
that the relative abundance and microbial diversity of functional groups also changed as salinity decreased. We 
first present the physiochemical data of the lakes from 2014 to 2019 to identify environmental factors that have 
changed significantly between these two years and discuss the potential causes. We next compare the microbial 
community of 2014 and 2019 samples to determine the extent of the temporal changes in microbial community 
and link specific taxa showing significant changes with changes in physiochemical parameters. Finally, we analyze 
the relationship between salinity and dominant functional groups and the diversity within these groups using 
taxonomy predictions and functional gene amplicons.

Methods
Field description and sampling. The Kiritimati Atoll (Republic of Kiribati, 1.9° N, 157.4° W), one of 
the Northern Line Island in the central tropical Pacific, is the largest coral atoll in the world with a surface area 
of ~ 360  km2. It contains hundreds of brackish to hypersaline carbonate-rich lakes, many of which are connected 
to a large lagoon (Fig. 1A)21. Nearshore sediment samples were collected from the top 5 cm of the water–sedi-
ment/microbial mat interface in the water depth of 20–50 cm from 13 lakes with salinity ranging from freshwa-
ter to hypersaline in late July and early August 2014, and June 2019 (Fig. 1A–D).

Temperature (± 0.2 °C), specific conductance relative to 25 °C (± 0.001 mS/cm), pH (± 0.2 units), and dis-
solved oxygen (DO) content (± 0.2 mg/L; ± 2%) were measured in situ using a YSI ProPlus multiparameter water 
quality sonde. Salinity was calculated in ppt from these data using the Gibbs Sea Water (GSW) Oceanographic 
 Toolbox26. Alkalinity was measured on-site using a Hach Company alkalinity test kit. For cation and anion 
analysis, samples were double filtered by 5 μm and 0.22 μm filters and stored refrigerated in the dark in pre-
acidified amber plastic bottles until analysis. The major cations concentrations were measured with ICP-OES 
(Perkin-Elmer, Optima 5300 DV) with a precision of ± 2%27. The concentration of major anions was measured 
with Ion Chromatography with a precision of ± 5%28. Water samples for water isotope analysis (δ18O and δ2H) 
were double filtered by 5 μm and 0.2 μm filters, collected in 30 mL brown HPDE vials without headspace and 
stored in a 4 ℃ freezer before analysis. The water δ18O and δ2H values were measured on a Picarro L2130‐i cav-
ity ringdown isotopic analyzer in the UIUC Department of  Geology29. The average precision is ± 0.1‰ for δ18O 
(VSMOW) and ± 0.8‰ for δ2H (VSMOW).

Sediment samples for nucleic acid extraction were sampled from 0 to 5 cm from the sediment/mat-water 
interface and treated with RNAlater preservative (ThermoFisher Scientific, Waltham, MA), homogenized, and 
stored on ice. Upon return, they were stored at − 20℃ freezer before DNA extraction and PCR amplification.

DNA extraction and sequencing. DNA extractions for 2019 samples were performed using a modified 
protocol to extract DNA and RNA from soil using phenol–chloroform methods (see Supplemental Materials 
S1.1) in Urbana, IL. Details for DNA extractions methods for 2014 samples are given in detail in Schmitt et al. 
(2019). The quality and quantity of extracted DNA were determined by agarose gel electrophoresis and fluorom-
etry (Qubit 4.0). Primer sets for bacterial- and archaeal 16S rRNA genes, N- and S-cycle genes of interest (narG, 
nxrB, nirK, nirS, nosZ, nifH, amoA, amoB, nrfA, dsrB, aprA, soxB) were used to generate sequence libraries 
(Table S1). Specific gene-targeted amplicons for downstream sequencing were generated for all samples using 
a Fluidigm microarray system through services available in the Functional Genomics Unit of the University of 
Illinois Urbana-Champaign Carver Biotechnology Center (Fluidigm Array details in Supplemental Materials 
S1.2). Paired-end sequencing (2 × 250 base pairs) was performed on one lane of a MiSeq Nano (v2) (San Diego, 
CA, USA) for 2014 samples and one lane of an Illumina NovaSeq 6000 platform (San Diego, CA, USA) for 
2019 samples. Raw sequence data were deposited in MG-RAST (2014 samples, project number MGP82583) and 
NCBI (2019 samples, BioProject ID PRJNA76940).

Microbial community and functional gene analyses. Following sequencing, each primer pair’s 
amplicon libraries from 2014 and 2019 samples were parallelly processed using  Mothur30 and phyloseq31. For 
16S rRNA genes, amplicon libraries generated from different years were examined using the exact same pipeline 
from Mothur and phyloseq. Briefly, paired-end reads were merged for sequences obtained from each primer 
pair and filtered to the expected amplicon length using  Mothur30. For 16S rRNA genes, an OTU file based on 
97% sequence similarity that included the number of OTUs found in each sample, and a taxonomy file of the 
consensus taxonomy for each OTU was generated from the Mothur pipeline, which was later imported into R 
software using phyloseq packages for downstream analysis. For other functional gene sequences, an OTU file 
based on 97% sequence similarity that included the number of OTUs found in each sample was generated from 
the Mothur pipeline and analyzed using phyloseq packages. The recovery reads from different functional genes 
after quality trimming are listed in Table S5.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6868  | https://doi.org/10.1038/s41598-023-33280-2

www.nature.com/scientificreports/

Several methods were used to remove the potential batch effects from different primers and sequencing 
platforms used for 2014 and 2019 samples. First, the merged sequences for 16S rRNA from different years were 
aligned to the same reference sequence file (SILVA 138 database) and the same taxonomy file (see Supplementary 
Materials S1.3 for details). Second, for different years, the unique OTUs with the same taxonomy at the genus 
level were merged using tax_glom in phyloseq to correct for batch effects (this paper referred to as unique popula-
tions at the genus level). Genus-level comparisons were then used for downstream analysis to compare relative 
abundances for 16S rRNA genes in different years, and compared to another method to correct for batch effects 
(see Supplemental Materials S1.4 for details).

Statistical analysis. The physiochemical parameters of lakes in 2014 and 2019 were compared and visual-
ized using principal component analysis (PCA) to determine which parameters contribute to the variations of 
environmental data in the two sampling periods. In addition, to determine the parameters that changed sig-
nificantly from 2014 to 2019, all parameters measured in 2014 and 2019 were assessed with a non-parametric 
pairwise Wilcoxon rank-sum test, and the p-values were adjusted by the Bonferroni method.

Alpha and beta diversity analyses on the genus level (PERMANOVA, multivariate permutation analysis of 
variance; mantel test; differential abundance) were conducted in Mothur or the R programming environment 

Figure 1.  (A) Map of Kiritimati (Google Earth, 2021) indicating (B–D) locations of sample sites. Samples 
collected in both 2014 and 2019 are denoted by white circles, and samples only collected in 2019 are denoted by 
red circles. (E) Total monthly precipitation from the Kiritimati weather station. Markers indicate 2014 and 2019 
field seasons. (F) Histogram of lake salinity variations from collected 2014 (red) and 2019 (blue) lake samples.
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using packages phyloseq, vegan, and edgeR30–33 (Figure S1). Pairwise permutation multivariate analysis of variance 
(PERMANOVA) was used to determine the significance of microbial community composition differences from 
2014 to 2019. In order to test how environmental parameters influence community diversity, nMDS ordination 
plots for bacterial and archaeal communities based on 16S rRNA gene sequences were overlaid with environ-
mental variables (Spearman coefficients) listed in Table S2 using the function “envfit” from the vegan  package32. 
Environmental variables that were not statistically significant were excluded from the plot and were not discussed. 
A Mantel test with the vegan package was used to assess the relationship between the microbial community and 
the measured environmental variables using the Bray–Curtis distance matrix.

The differences in the relative abundance of the most abundant phyla (at least > 1% in one sample) in 2014 ver-
sus 2019 lakes were assessed using the pairwise non-parametric Wilcoxon rank-sum test. This test also includes 
the most abundant subclasses (at least > 1% in one sample of all subclasses) of Proteobacteria due to the diversi-
fied nature of this phylum. To further explore differences in microbial communities at a finer level, a pairwise 
comparison of families that are more abundant in 2014 lakes compared to 2019 lakes was conducted using log 
twofold changes (logFC) using edgeR33, which expresses the ratio between two quantities. The correlations of 
relative abundance of most abundant bacterial and archaeal phyla with physiochemical parameters of all sampled 
lakes were visualized by “aheatmap” from package NMF34.

Functional Annotation of Prokaryotic Taxa (FAPROTAX) was used to make metabolic predictions from the 
valid 16S rRNA gene sequences obtained from 2014 and 2019 lake sediment samples. The predictions made in 
correspondence to the OTUs obtained here are based on the characterized strains with putative functional tables 
in the FAPROTAX  database35. In addition, the relative abundances of different metabolic groups across the lakes 
and their relationship with environmental parameters were visualized by a heatmap.

The functional gene sequences acquired from 2019 lakes were input to R and processed using the same 
code as the 16S rRNA gene sequences. Mantel tests were used to assess the relationship between functional and 
taxonomic composition of the bacterial community based on Bray–Curtis distance. For the following analyses, 
only functional gene compositions correlated significantly with taxonomic composition were used. The alpha 
diversity (Shannon index) of functional genes of different lakes was calculated using the phyloseq package and 
correlated with the environmental factors of each lake. Mantel tests were also conducted to determine the cor-
relation between functional genes and environmental factors.

Results
Sediment and water properties. The surface water chemistry of Kiritimati lakes varies considerably, 
both spatially and temporally (Table S2). Salinity in the sampled lakes ranged from 40 ppt (Lake 14, 2019) to 
190 ppt (Lake 17, 2014), with a significantly higher median (137.4 ppt vs. 72 ppt) and mean value in 2014 lakes 
(135.2 ppt vs 74.5 ppt) (Fig.  1F). As expected, the concentrations of the most abundant cations and anions 
present in seawater, such as  Mg2+,  Na+, and  Sr2+, are highly correlated with salinity (Figures S2, S3). Despite 
some differences in temperature and pH (Table S2), the median values of these parameters measured from 2014 
(temperature: 30.6  °C, pH: 8, respectively) and 2019 lakes (temperature: 30.1  °C, pH: 7.99, respectively) are 
similar. Alkalinity,  K+, and δ18O are significantly higher (p < 0.001 for all variables) in 2014 samples, and  Ca2+ is 
significantly higher (p < 0.001) in 2019 samples (Table S3).

Bacteria and archaea communities. Using 16S rRNA amplicon sequencing, we obtained 267,289 high-
quality sequences generated for V4-515f primers from 2014 samples and 2,770,476 sequences for Arc519f-
Bac785r from 2019 samples after filtering. There were 1163 unique genera identified for bacteria, which were 
assigned to 63 bacterial phyla, and 84 unique genera identified for archaea, which were assigned to 12 archaeal 
phyla (Figure S4). For bacterial phyla, Proteobacteria (33.02 ± 20.44%) and Bacteroidota (16.09 ± 11.16%) are 
dominant in most of 2014 and 2019 samples. For archaeal phyla, Thermoplasmatota and Halobacterota domi-
nate most of 2014 and 2019 samples and Asgardarchaeota is also predominant in 2014 samples (Table 1). Nano-
archaeota shows high relative abundances in 2019 samples, however it is possible that the different PCR primers 
used with the 2014 samples would not have amplified sequences from this group. Other bacterial and archaeal 
phyla that make up at least 1% of the microbial community for at least 1 sample are listed in Table 1 and Figure 
S4.

Bacteria Shannon diversity index values range from 1.74 to 4.50, while archaeal values range from 0 to 2.8 
(Fig. 2). The sample with 0 value from the Shannon diversity index had no Archaea genera detected from one of 
the 2014 samples. The alpha diversity index has a significant negative correlation with salinity (Bacteria: r =  − 0.48, 
p < 0.01; Archaea: r =  − 0.54, p < 0.01) (Table S4). In terms of beta diversity, the pairwise PERMANOVA results 
indicate that both bacterial and archaeal communities are significantly different from 2014 to 2019 (Bacterial: 
R2 = 0.37, p = 0.0001, Archaeal: R2 = 0.17, p = 0.0001, respectively). nMDS plots also show that both bacterial and 
archaeal communities in the 2019 samples plot together and are distinct from the groupings found in the 2014 
samples (Fig. 2). When correlating the microbial communities with physiochemical parameters, mantel test 
results show that the bacterial and archaeal community compositions are significantly positively correlated with 
salinity, alkalinity,  Ca2+, and  K+ (p < 0.05), while bacterial community composition is also significantly positively 
correlated with δ18O (Table S6).

Functional group results. The FAPROTAX prediction analysis identified 35 metabolic functions based 
on 16S rRNA gene sequence data (relative abundance > 0.01%) in all sediment samples. Comparing samples 
from 2014 and 2019, aerobic chemoheterotrophy is significantly higher in 2014 samples and photoautotrophy 
is significantly higher in 2019 samples (Table S7; Fig. 5). Among the predicted microbial functions, many of 
them show negative correlations with salinity (p < 0.05), including dominant microbial functions (with median 
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value > 1%) such as photoautotrophy and fermentation. In comparison, aerobic chemoheterotrophy is signifi-
cantly positively correlated with salinity (p < 0.05) (Table S8).

The functional gene amplicon sequence beta diversity, done only with the 2019 samples, showed a significant 
correlation with the 16S rRNA community composition with the nifH, nrfA, nirS, nosZ, aprA, and soxB genes 
(Table S9). Salinity significantly correlates with the Shannon index of both nifH (r =  − 0.656, p < 0.001, N = 22) and 
nrfA genes (r =  − 0.552, p = 0.008, N = 22) encoding nitrogenase  (N2 fixation) and nitrite reductase  (NO2

− reduc-
tion to  NH4

+), respectively (Figure S7). Besides salinity, DO, pH, alkalinity,  Sr2+, δ18O, and δ2H also significantly 
correlate with the Shannon index of one or more functional genes (Figure S7; Table 2). Salinity strongly correlates 
with nifH and aprA gene compositions (r = 0.40, 0.54; adjusted p = 0.002, 0.0003, respectively), along with  Mg2+, 
 Na+,  Sr2+,  Cl−, and  SO4

2− (Table 2).

Discussion
El Niño and salinity changes from 2014 to 2019. El Niño years in the central tropical Pacific have 
much higher precipitation rates, leading to decreased lake  salinity23,24. The substantial salinity changes from 2014 
to 2019 are likely due to the very strong central Pacific El Niño event in 2015–2016, which caused record high 

Table 1.  Median, standard deviation (1σ) and non-parametric rank-sum test (Wilcoxon test) p-values 
(adjusted by Bonferroni method) of the relative abundances of the most abundant bacterial and archaeal phyla 
(relative abundance > 1% in at least one sample, plotted in Figure S4) and Proteobacteria classes in the 2014 
versus 2019 samples. P-values less than 0.05 are bold.

Phylum Median relative abundance (%) 2014 Median relative abundance (%) 2019 p-value

Bacteria

 Proteobacteria: 55.03 ± 22.86 29.75 ± 6.14 0.003

  Gammaproteobacteria 53.71 ± 24.98 9.76 ± 3.8 0.000

  Alphaproteobacteria 2.1 ± 3.89 17.87 ± 4.83 0.001

  Proteobacteria_unclassified 0.99 ± 0.76 0.1 ± 0.1  < 0.001

 Bacteroidota 17.83 ± 15.25 15.02 ± 5.82 0.711

 Bacteria_unclassified 11.35 ± 11.53 6.78 ± 4.89 0.080

 Spirochaetota 0.63 ± 0.9 4.58 ± 2.09  < 0.001

 Planctomycetota 0.34 ± 0.75 9.96 ± 3.78  < 0.001

 Firmicutes 0.13 ± 10.43 0.25 ± 1.21 0.215

 Verrucomicrobiota 0.13 ± 1.2 1.55 ± 0.93 0.062

 Cyanobacteria 0.08 ± 0.27 5.37 ± 5.95  < 0.001

 Desulfobacterota 0.06 ± 2.07 6.48 ± 4.82 0.001

 Patescibacteria 0.05 ± 0.78 0.05 ± 0.06 0.839

 Actinobacteriota 0.01 ± 0.04 1.27 ± 1.32  < 0.001

 Chloroflexi 0.01 ± 0.56 1.73 ± 1.53 0.001

 Halanaerobiaeota 0.01 ± 1.93 0 ± 0.14 0.309

 Myxococcota 0 ± 0.09 2.46 ± 1.89  < 0.001

 NB1-j 0 ± 0 1.18 ± 1.03  < 0.001

 Zixibacteria 0 ± 0 0.63 ± 0.72  < 0.001

 Acidobacteriota 0 ± 0.02 0.34 ± 0.96  < 0.001

 Gemmatimonadota 0 ± 0.03 1.22 ± 1.5  < 0.001

 SAR324_clade(Marine_group_B) 0 ± 0 0.06 ± 0.24 0.000

 Fibrobacterota 0 ± 0.05 0.31 ± 0.52 0.001

 Calditrichota 0 ± 0 0.25 ± 0.34 0.000

 CK-2C2-2 0 ± 0 0 ± 0.44 0.072

 Latescibacterota 0 ± 0.01 0.3 ± 0.48 0.000

 Bdellovibrionota 0 ± 0.13 0.35 ± 0.39 0.000

Archaea

 Archaea_unclassified 4.08 ± 6.12 15.99 ± 10.34 0.063

 Thermoplasmatota 50 ± 38.48 13.23 ± 23.76 0.151

 Nanoarchaeota 0 ± 0 36.75 ± 19.34 0.003

 Asgardarchaeota 15.68 ± 29.32 2.38 ± 3.43 0.086

 Euryarchaeota 0 ± 0.02 0.02 ± 3.21 0.086

 Halobacterota 0.36 ± 37.72 4.76 ± 15.34 0.906

 Crenarchaeota 0 ± 12.29 3.9 ± 4.07 0.151

 Aenigmarchaeota 0 ± 0 0 ± 1.37 0.086

 Micrarchaeota 0 ± 0 0 ± 1.19 0.151
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rainfall in the central tropical Pacific (Fig. 1E)25. However, individual lakes may have responded differently to 
this precipitation anomaly, as lakes in different areas of Kiritimati are more sensitive to precipitation, evapora-
tion, or sea  level22. For example, sea level can affect the water budget of lakes that are surficially connected to 
the main lagoon, or have a stronger subsurface connection to the ocean. Therefore, an increase in sea level dur-
ing El Niño events can also result in more saline seawater flowing into such lakes, which would contradict the 
decline in lake salinity caused by freshwater charges from groundwater and precipitation during these periods. 
When lakes are isolated from the lagoon and the ocean, the major water sources are likely to be precipitation and 
groundwater fluxes. As a result of high precipitation during El Niño events, such lakes will experience decreased 
salinity. Evaporation following the termination of an El Niño event will slowly increase lake salinity, but the 
rates of recovery to pre-event salinity values can vary depending on the rates of the groundwater recharge. 
Additionally, the permeability of the lake bottoms can also differ, which can impact groundwater  flow23. Due to 
the permeability of the carbonate sediment on Kiritimati atoll, there may be subterranean connections between 
freshwater lenses and lakes, so proximity of lakes to fresh groundwater can also affect lake  salinity21. Moreover, 
bacterial mat growth provides a sealing effect and can reduce lake bottom permeability, impacting groundwater 
 transportation36. Overall, the observed Kiritimati lake salinity changes are primarily attributed to the extreme El 
Niño event from 2015 to 2016, with variations in individual lakes due to differences in proximity to freshwater 
lenses, permeability, and groundwater flow.

Community composition changes from 2014 to 2019. We found significant differences in the sedi-
ment bacterial and archaeal communities between 2014 and 2019, with these differences associated with changes 
in the physiochemical parameters of salinity (Tables S3 and S4; Fig. 2). Among the physiochemical parameters 
that changed substantially from 2014 to 2019, salinity is likely the major driver of the observed changes in micro-
bial communities. Salinity is often considered a primary control on the composition of microbial communities 

Figure 2.  Non-metric multidimensional scaling (nMDS) and Shannon diversity plots of (A, C) bacterial and 
(B, D) archaeal community composition based on 16S rRNA gene sequencing data. The ordination is based 
on Bray–Curtis similarities overlaid with significantly correlating environmental variables (p < 0.05) plotted 
as vectors. Vector length is proportional to the strength of correlation between the variable and community 
similarity. See Table S4 for environmental fitting statistics. Samples from different years are denoted by different 
colors. All analyses were performed using R Statistical Software (v4.1.3; R Core Team 2022).
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in lakes, in both the water column and the underlying  sediments3,4,37–39. High salinity can decrease the taxo-
nomic diversity of sediment microbial communities, since high osmotic pressure during high salinity requires 
specific strategies for  adaptation40,41. In addition, low salt conditions can also be deleterious for halophiles that 
use a “salt-in” strategy (accumulating KCl equal to NaCl within their cells), since many of the halophilic proteins 
of such halophiles will become unstable or denature in low  salinity42. Therefore, the decrease in salinity and 
other solutes from 2014 to 2019 likely impacted the diversity of the sediment microbial communities.

Considering relative abundance changes of specific phyla, classes, and families from 2014 to 2019, Gam-
maproteobacteria (phylum Proteobacteria) is significantly more abundant in 2014 samples (Table 1), and its 
abundance is positively correlated with salinity (Fig. 3A). Gammaproteobacteria include families that contain 
halophilic or marine bacteria that can survive in saline environments, such as Alteromonadaceae, Pseudoaltero-
monas, Idiomarina, and  Halomonadaceae43,44. These families are significantly more abundant in 2014 lakes with 
overall higher salinities (Fig. 4). The more abundant phyla in 2019 lake sediments exhibit a significant negative 
correlation with salinity (Fig. 3A) and include Cyanobacteria, Desulfobacterota (formerly Deltaproteobacteria), 
Chloroflexi, Gemmatimonadetes, and Actinobacteria. These phyla are also more abundant in brackish lakes 
from the 2014 spatial  survey9. Cyanobacteria, Chloroflexi, and Actinobacteria are generally more abundant in 
low-salinity settings, since salinity is an important abiotic stress for these  phyla2,45,46. For the class Alphaproteo-
bacteria, the families Hyphomonadaceae, Kiloniellales, Rhizobiales, Rhodobacteraceae, and Geminicoccaceae 
are more abundant in 2019 samples. Among them, Hyphomonadaceae and Kiloniellales are predominantly 
mesophilic, marine  bacteria47,48, and Rhodobacteraceae is one of the most widely distributed bacterial lineages 
in marine  habitats49. Their normal presence in marine habitats can possibly explain their high abundance in 
2019 samples with lower salinity.

Additionally, some substantial changes can occur at the taxonomic level of families even if the corresponding 
phylum (class) shows no overall significant change from 2014 to 2019. For example, the family Cyclobacteriaceae 
from phylum Bacteroidota, which contains species isolated from foreshore soils and saline  lakes50,51, has a higher 
relative abundance in 2014. Similarly, the families Bacillaceae and Halanaerobiaceae from phylum Firmicutes are 
relatively more abundant in 2014 lakes compared to 2019 lakes (Fig. 4). The Halanaerobiaceae and Bacillaceae 

Table 2.  Mantel test correlation results of functional genes chosen for downstream analysis with 
environmental factors (listed in Table S2). Adjusted p-values (adjusted by Bonferroni test, shown in adj p in the 
table) less than 0.05 are bold.

Env 
factors

soxB nrfA aprA nifH nirS nosZ

r p adj p r p adj p r p adj p r p adj p r p adj p r p adj p

Salinity 
(ppt) 0.1581 0.1111 0.2698 0.4765 0.0067 0.0228 0.5412 0.0001 0.0003 0.4035 0.0006 0.0020 0.273 0.0035 0.0129 0.1631 0.0522 0.0911

Tem-
pera-
ture 
(℃)

 − 0.0046 0.5034 0.5744 0.0649 0.315 0.3570 0.0645 0.2809 0.3184 0.1597 0.0924 0.0982 0.0277 0.3659 0.3888 0.0506 0.3076 0.3216

DO 
(%)  − 0.1252 0.8075 0.8075 0.1923 0.1077 0.1831 0.1364 0.0896 0.1385 0.2669 0.0075 0.0128 0.0732 0.2039 0.2311 0.2444 0.0085 0.0723

pH 0.1944 0.0598 0.2292 0.2846 0.0525 0.1116 0.2945 0.0102 0.0193 0.3273 0.0034 0.0083 0.2516 0.0075 0.0213 0.3108 0.002 0.0340

Alka-
linity 
(mg/L)

0.0294 0.3977 0.5634 0.1157 0.1852 0.2624 0.2177 0.0285 0.0485 0.1593 0.0588 0.0714 0.1481 0.0502 0.0948 0.1113 0.11 0.1700

Sulfide 
(mg/L) 0.2563 0.0161 0.2292  − 0.1432 0.8566 0.8566 0.136 0.106 0.1386 0.0291 0.3484 0.3484 0.0177 0.3944 0.3944 0.0468 0.291 0.3216

δ13CDIC 
(‰)  − 0.0068 0.5128 0.5744 0.2379 0.0766 0.1447 0.1434 0.104 0.1386 0.3201 0.0051 0.0108 0.1626 0.0579 0.0964 0.174 0.0503 0.0911

Ca2+ 
(mg/L) 0.1858 0.0899 0.2547 0.1644 0.2081 0.2721 0.0635 0.3005 0.3193 0.2025 0.0677 0.0767 0.1565 0.0924 0.1309 0.0655 0.2821 0.3216

Mg2+ 
(mg/L) 0.147 0.1411 0.2981 0.5687 0.0035 0.0198 0.6422 0.0001 0.0003 0.4776 0.0004 0.0020 0.3073 0.0024 0.0129 0.2217 0.0294 0.0911

Na+ 
(mg/L) 0.1293 0.1578 0.2981 0.4333 0.0105 0.0298 0.5269 0.0001 0.0003 0.3776 0.0007 0.0020 0.2664 0.0038 0.0129 0.1635 0.0536 0.0911

K+ 
(mg/L)  − 0.0166 0.5406 0.5744 0.3605 0.0448 0.1088 0.5831 0.0001 0.0003 0.3283 0.007 0.0128 0.1737 0.0624 0.0964 0.1254 0.1381 0.1806

Sr2+ 
(mg/L) 0.0826 0.2488 0.3845 0.4829 0.0028 0.0198 0.4564 0.0003 0.0007 0.4135 0.0003 0.0020 0.2952 0.0035 0.0129 0.235 0.019 0.0911

Mg/Ca 0.0041 0.489 0.5744 0.1635 0.172 0.2624 0.3802 0.0036 0.0077 0.2323 0.0315 0.0412 0.1121 0.141 0.1712 0.0432 0.3216 0.3216

Cl− 
(mg/L) 0.1922 0.0596 0.2292 0.4598 0.0059 0.0228 0.569 0.0001 0.0003 0.4101 0.0003 0.0020 0.2807 0.0022 0.0129 0.1889 0.0255 0.0911

SO4
2− 

(mg/L) 0.1932 0.0611 0.2292 0.4973 0.0033 0.0198 0.4838 0.0002 0.0006 0.3865 0.0005 0.0020 0.2466 0.0089 0.0216 0.1661 0.0498 0.0911

δ18O 
(‰) 0.0855 0.2163 0.3677 0.0857 0.2326 0.2824 0.0303 0.3344 0.3344 0.2207 0.0161 0.0228 0.108 0.1118 0.1462 0.1574 0.0452 0.0911

δD 
(‰) 0.1752 0.0674 0.2292 0.0553 0.3375 0.3586 0.089 0.1907 0.2316 0.273 0.0088 0.0136 0.2108 0.0149 0.0317 0.1161 0.1212 0.1717
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families can either be halotolerant (family Halanaerobiaceae) or capable of forming endospores, which can help 
them survive in hypersaline  environments52,53. In addition, Bacillaceae is one of the most abundant families in 
2014 and shows a significant correlation with salinity (Fig. 3B). Lastly, even though class Gammaproteobacteria 
is more abundant in 2014 samples, the Chromatiaceae family (also known as phototrophic purple sulfur bacteria) 
from this class is more predominant in most of 2019 samples.

The only archaeal phylum that differs significantly between 2014 and 2019 lakes is Nanoarchaeota (Table 1), 
which is not present in any of the 2014 samples. As the universal primer pair used in 2014  samples54 shows 
poorer coverage of archaeal communities than the primer set used in 2019  samples55, we cannot exclude the 
possibility that Nanoarchaeota may have been present in 2014 samples but were not detected due to methodo-
logical limitations. The logFC plot of the comparison of changes in archaeal community families indicates that, 
surprisingly, many family members from phylum Halobacterota have significantly higher relative abundances in 
2019 lake sediments (Fig. 4B). Despite this, since the detections of archaeal communities in 2014 primers were 

Figure 3.  Heatmap of correlations between environmental factors and (A) bacterial phyla and (B) top 20 
unique genus groups. Corresponding phylum of each genus group is also indicated in (B). For rows (microbial 
communities) and columns (environmental factors), dendrograms from hierarchical clustering using the 
distance and clustering methods distfun and hclustfun are made and shown in the figure. All analyses were 
performed using R Statistical Software (v4.1.3; R Core Team 2022, https:// www.R- proje ct. org/).

https://www.R-project.org/
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Figure 4.  LogFC pairwise comparison between (A) bacterial and (B) archaeal families within 2014 and 2019 
samples with significant differences (p < 0.05). Positive logFC values on the x-axis indicate families that are more 
abundant in 2019 lake sediment samples, and negative logFC values on the x-axis indicate families that are more 
abundant in 2014 lake sediment samples. Colors of circles denote the phyla for each listed family, shown in the 
legend. All analyses were performed using R Statistical Software (v4.1.3; R Core Team 2022, https:// www.R- proje 
ct. org/).

https://www.R-project.org/
https://www.R-project.org/
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poor, comparisons of archaeal communities from 2014 to 2019 samples may not be statistically valid. When 
examining the 2019 spatial samples, many of the detected genera from phylum Halobacterota are only present 
in a small set of samples (< 5 samples) (Table S10). When looking at the 5 genera that are found in at least half 
of the samples (> 11 samples), 2 of them (unclassified Halomicrobiacea and uncultured Haloferacaceae) show 
significant positive correlation with salinity (r = 0.471, 0.584; p = 0.03, 0.005, respectively), and are among the 
dominant genera of the Halobacterota phylum (Table S10). To be noticed, there are dominant genera from the 
Halobacterota phylum that show no significant correlations with salinity. Although members from phylum Halo-
bacterota mainly inhabit high salinity  environments56, 16S rRNA gene results show that members are also found 
from low- to moderate-salinity  systems57–59. Recent studies have shown that Halobacteria can adapt to different 
salinity conditions through changing membrane permeability to different  solutes60, and can rapidly repopulate 
sediments when salinity drops, such as after  rainfall61,62. Specifically, one dominant genera (Halomarina) that 
occurs in 15 lake samples can grow in a wide range of salt concentrations, and survive at low salt concentrations 
and can recover after prolonged exposure to distilled  water63. Therefore, many halophilic archaea in Kiritimati 
lake systems may be able to adapt to abrupt changes in salinity and may not be restricted to hypersaline environ-
ments. Future isolation and characterization of those Halobacterota strains can be used to test our hypothesis.

Overall, bacterial communities show more halophilic taxa in 2014 samples and more halotolerant or marine 
taxa in 2019 samples, suggesting salinity was a major driver of the observed bacterial community changes. How-
ever, the diversity and changes of archaeal groups in Kiritimati lake sediments need to be further evaluated due 
to the limitations of the universal primer chosen in 2014 and their overall unstudied nature.

Functional groups change with salinity. As salinity influences the microbial community composi-
tion, the relative distribution of microbial metabolisms that directly impact lake ecosystem functions can also 
 vary2. Accordingly, we modeled the relative abundances of different metabolic pathways for each sample in 
2014 and 2019 using FAPROTAX, a program that uses 16S rRNA gene phylogeny (Fig. 5). The results suggest 
that chemoheterotrophy (48.4 ± 9.76%) is dominant in 2014 samples, while chemoheterotrophy (19.21 ± 6.89%) 
and phototrophy (14.12 ± 4.68%) are both important metabolisms in 2019 samples (Table S7). Furthermore, we 
find significant positive correlations between aerobic chemoheterotrophy and salinity (r = 0.49, p = 0.00, N = 31), 
and negative correlations between photoautotrophy and salinity (r =  − 0.41, p = 0.02, N = 31). Salinity can alter 

Figure 5.  Heatmap showing relative abundances of metabolisms retrieved from Functional Annotation of 
Prokaryotic Taxa (FAPROTAX) for each sample. For each metabolism (rows), the relative abundances of each 
sample are centered, standardized and scaled to [− 1, 1] interval. For rows (metabolisms) and columns (lake 
samples), dendrograms from hierarchical clustering using the distance and clustering methods distfun and 
hclustfun are made and shown in the figure. All analyses were performed using R Statistical Software (v4.1.3; R 
Core Team 2022, https:// www.R- proje ct. org/).

https://www.R-project.org/
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microbial community composition from primarily oxygenic phototrophs to primarily heterotrophs in sabkha 
and ocean  ecosystems64,65. Furthermore, heterotrophs in the sediments can also utilize the organic matter sub-
strates produced by phototrophs. For example, Gammaproteobacteria, a dominant class of heterotrophs in 2014 
samples (median 53.7%), can play important roles in organic matter degradation in sediments by assimilating 
intermediate products (acetate) or initializing the decomposition of algal-derived organic  matter66,67. In applying 
FAPROTAX to our data, the principal limitation is that FAPROTAX implicitly assumes that if all cultured mem-
bers of a taxon (genus or species) can perform a particular function, then all members of the taxon (cultured and 
uncultured) can perform that  function35,68. As more organisms are cultured in the future, it might lead to false 
generalizations. Therefore, we need to take precautions when interpreting the metabolic results obtained from 
FAPROTAX. Previous validation of FAPROTAX shows that some functional groups show good agreement in 
FAPROTAX and metagenomic results, including aerobic chemoheterotrophs and  photoautothrophs35, which are 
also major functional groups shifts observed from 2014 to 2019 samples (Table S7; Fig. 5). Accordingly, FAPRO-
TAX results may still be valid when it comes to predicting and comparing changes in aerobic chemoheterotrophy 
and photoautotrophy between 2014 and 2019 (Table S7; Fig. 5). In addition, previous biomarker results at Lake 
30 support that microbial functional groups change with salinity over long timescales, since the absence of phy-
tol (produced by photosynthetic organisms) and low δ2H values of  C16:0 and  C18:0 (indicating chemoautotrophic 
organisms) coincide with periods of high salinity over the last  millennium69.

Considering the limitations of the metabolic results predicted by FAPROTAX, we also checked the functional 
gene results to further evaluate how salinity may impact the functional potentials. The functional gene results 
acquired from the 2019 spatial survey also suggest that salinity may affect microbial diversity within functional 
groups. As an example, the richness and diversity of nrfA and nifH genes show a significant negative correlation 
with salinity (Figure S7), indicating that the diversity of these genes may decrease with salinity. Additionally, 
salinity significantly correlated with nifH and aprA in mantel tests, showing that a change in these genes would 
follow salinity (Table 2). Salinity is known to increase the activity of nitrogenase (NifH) genes and decrease the 
abundance of Cyanobacteria in intertidal microbial  mats15. As salinity changes, we may see changes in dominant 
taxa harboring nifH genes. According to the nifH phylogenetic tree results, the dominant nifH OTUs of hyper-
saline lake site 17 (113 ppt) cluster near references Desulfovibrio marinus and Halothece (Fig. 6), which are both 
salt-tolerant halophilic  taxa70,71. In contrast, the predominant nifH OTUs of brackish Lake 30 (1.7 ppt, Fig. 6) 
are from taxa Desulfobacter that are common in marine and non-halophilic aquatic  environments72,73. Similarly, 
a study conducted in Tirez Lagoon suggests that aprA genes can be used as indicators of  salinity74. The relative 
abundances of aprA OTUs in lake site 17 also differ significantly from those in Lake 30 on Kiritimati (Figure S8).

Metagenomic data from a specific hypersaline lake (Lake 1) sampled in  201775 provide additional informa-
tion regarding how functional genes may change with salinity. The annotated nifH genes from metagenomic 
data (metagenome-assembly genomes and assembled sequences) of Lake 1 from 2017 (salinity: 44.7 ppt) cluster 
with nifH OTUs from amplicon sequences from 2019 (salinity: 71 ppt) (Figure S9), suggesting that those nifH 
genes from different years have close phylogenetic affiliations. Many of the annotated nifH genes from 2017 and 
2019 belong to a clade of sulfate-reducing bacteria with known references that live at lower salinity conditions, 
including marine or slightly halophilic environments (e.g., Desulfovibrio marinus strain CS1, Desulfosarcina 
widdelii PP31, and Chloroherpeton thalassium)70,76,77, which is consistent with the relatively low salinity of the 
lakes in those two sampling years. Some of the annotated nifH genes from both 2017 and 2019 samples clus-
tered with known references of halophilic Cyanobacteria (e.g., Halothece sp. PCC 7418). Even though halophilic 
Cyanobacteria from the clade “Halothece” often have optimal growth in hypersaline conditions, they may still 
grow suboptimally in conditions of relatively lower  salinity71. Considering this, their presence in sediments 
with lower salinity suggests these Cyanobacteria can survive a wide range of salinity fluctuations in responses 
to precipitation anomalies on Kiritimati.

In conclusion, FAPROTAX, functional gene amplicon sequences, and previous metagenomic data altogether 
suggest that functional group relative abundance, diversity, and affiliated dominant taxa likely change in response 
to abrupt salinity changes. Also, some functional groups (e.g. Cyanobacteria) can survive under unfavorable 
conditions and flourish when the environment becomes more ideal in relation to ENSO events. Future metagen-
omic, metatranscriptomic, and isolation studies from different lakes in different years can provide additional 
details of how functional groups can change with salinity in these tropical sediments.

Conclusion
In a suite of lakes with varying salinities on Kiritimati, lake salinity decreased between 2014 and 2019 due to 
anomalously high precipitation rates during the 2015–2016 El Niño event. Both alpha and beta diversity metrics 
suggest that microbial community also changed significantly from 2014 to 2019, and that these changes were 
correlated with salinity. Phylum- and family-level results indicate that halophilic microorganisms are more 
abundant in 2014 samples, whereas halo-tolerant or mesohaline microorganisms are more abundant in 2019 
samples. The FAPROTAX and functional gene amplicon sequencing results suggest that the salinity-induced 
microbial community changes altered the relative abundance of functional groups (chemoheterotrophs, pho-
totrophs, nitrogen fixation, denitrification, sulfate reduction) as well as microbial diversity (alpha diversity and 
dominant taxa) within these groups. Although some differences in primer sets and sequencing techniques could 
potentially account for some of these variations, we conducted thorough adjustments to account for batch effects, 
and our results demonstrate that these effects had negligible or no impact on our conclusions. Based on the 
results of our analysis and observations, we conclude that the significant decrease in salinity altered microbial 
communities in Kiritimati lake sediments, with a change from a dominance of halophilic microbes to mesosaline 
and salinity-sensitive microbes. In addition, the functional groups also changed from aerobic chemoheterotroph 
dominance to photoautotroph dominance in response to salinity changes. Additionally, we discovered microbial 
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communities and functional groups living at salinity levels that were outside of their optimal growth ranges, 
suggesting that microbial communities on Kiritimati Island may be able to adapt to large salinity fluctuations 
associated with interannual precipitation anomalies. The study demonstrates how abrupt changes in salinity, 
induced by climate variability, can impact microbial community metabolism in tropical near-marine lacustrine 
environments, offering insights on the factors influencing community diversity and stability in extreme ecosys-
tems. Moreover, this study sheds light on microbial responses to future potential climatic and anthropogenic 
salinity fluctuations in lacustrine environments, as previous studies showed that artificial and anthropogenic 
salinization and desalinization processes can substantially shape microbial communities and functions in lake 
 systems39,78–80.

Data availability
Raw sequence data from this study has been deposited in MG-RAST (2014 samples, project number MGP82583) 
and NCBI (2019 samples, BioProject ID PRJNA76940). Raw sequence data for 2019 samples will be made publicly 
available to download upon publication. Reviewers can use the link listed below to get access to the submission 
of 2019 samples. https:// datav iew. ncbi. nlm. nih. gov/ object/ PRJNA 769403? revie wer= jc7au nebjh i97a7 7ajnc 7c730f.

Received: 18 June 2022; Accepted: 11 April 2023

Figure 6.  Distribition of nifH OTUs in the Kiritimati sediments under investigation and the phylogenetic tree 
for the nifH genes. The phylotypes under consideration (blue) comprised of the top 5 abundant OTUs identified 
in all the samples. The relative abundances of OTUs are presenting using a log2 transformation. The reference 
nifH genes (pink) were identified via BLAST against the NCBI-non redundant database and the gene sequences 
for the cultivated species were preferentially selected. The phylogenetic tree is generated using iTOL (v6, https:// 
itol. embl. de/).

https://dataview.ncbi.nlm.nih.gov/object/PRJNA769403?reviewer=jc7aunebjhi97a77ajnc7c730f
https://itol.embl.de/
https://itol.embl.de/
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