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Identification of railway subgrade 
defects based on ground 
penetrating radar
Zhezhe Hou 1*, Weigang Zhao 2 & Yong Yang 2

A recognition method is proposed to solve the problems in subgrade detection with ground 
penetrating radar, such as massive data, time–frequency and difference in experience. According 
to the sparsity of subgrade defects in radar images, the sparse representation of railway subgrade 
defects is studied from the aspects of the time domain, and time–frequency domain with compressive 
sensing theory. The features of the radar signal are extracted by sparse representation, thus the 
sampling data are reduced. Based on fuzzy C-means and generalized regression neural network, a 
rapid recognition of the railway subgrade defects is realized. Experimental results show that the 
redundancy of data is reduced, and the accuracy of identification is greatly increased.

Abbreviations
GPR	� Ground penetrating radar
FCM	� Fuzzy C-means
GRNN	� Generalized regression neural network
STFT	� Short-time Fourier transform
CS	� Compressed sensing

Railway subgrades have long been influenced by the environment, climate conditions, and trainloads. Some 
subgrade defects are inevitable, such as sinkholes, settlements, mud pumping, and affect traffic safety and effec-
tive maintenance. Therefore, railway subgrade defects should be accurately and effectively detected to ensure 
the railway subgrade work properly.

With rapidity, continuity, and high accuracy, GPR technology satisfies the requirements for the detection of 
the continuous detection of railway subgrades1–3. Liu et al.4 utilized the different GPR antennas and frequencies 
to detect ballast layer. Tosti et al.5 used GPR systems equipped with central frequencies of 600, 1000, 1600 and 
2000 MHz to obtain the dielectric permittivity of the ballast system. Bi et al.6 fused multi-frequency data into a 
synthetic data to obtain both high resolution and deep penetrating ability. Therefore, multi-frequency antennas 
have been used more recently. The detections in railway subgrade have been developed7,8. Kuo9 investigated mud 
pumping distributions, Huang10 analyzed void signals based on the digital images and proposed a void recogni-
tion algorithm for subgrade defects. Barrett et al.11 considered the degrees of ballast fouling and moisture content, 
and proposed the measurement of ballast fouling conditions. However, the type, size, and position of subgrade 
defects are different. Consequently, the GPR echo signals are affected, and identification becomes complex12,13.

Feature extraction and target recognition are the key points in the research of GPR nondestructive testing14. 
The identification of subgrade defects based on GPR has been concerned for decades15,16. Generally, the research 
is mainly the echo signal and GPR image. Fabio et al.17 identified the underground targets with the shape and 
position of the echo signal. Ciampoli et al.18 analyzed the relationship between the aggregates grain size and the 
frequency spectra peaks, and assessed the railway ballast geometric properties. Therefore, this method works 
efficiently in a certain geometry (mainly shape) or single layer, but in subgrade defects, nonhomogeneous defects 
change the shape of the echoes and affect detection accuracy. Li et al.19 used finite difference time domain to 
classify hard objects. Fontul et al.20 considered the relationship between the electromagnetic properties and the 
ballast water content, applied the frequency domain analysis to assess the ballast condition. Liu et al.21 processed 
the GPR signals in the time and frequency domains, and effectively accessed ballast fouling and moisture content. 
Ciampoli et al.22 estimated electromagnetic parameters of railway ballast. Zhang et al.23 utilized time–frequency 
features of GPR signal to evaluate the pavement conditions. And wavelet transform (WT) is provided for the 
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echo feature extraction. Sadeghi et al.24 applied WT was to interpret GPR data to evaluate ballast fouling. Ciam-
poli et al.3 used both time–frequency and discrete wavelet techniques to evaluate the levels of fouled ballast. 
The methods are limited to process a large number of original data and obtain redundant feature parameters. 
Therefore, time lags are a considerable drawback in these methods, which are contradictory to rapid evaluation 
the subgrade condition.

With the development of feature extraction methods, such as compressed sensing (CS), sparse representation, 
a new method is provided to extract features. Shao et al.25,26 analyzed the relationship between the frequency 
and standard deviation, obtained the sparse feature vector of ballasted railways. Sun et al.27 combined sparse 
scattering with geometrical features of landmines, detected the landmine rapidly. Based on previous studies, this 
method is a clear advantage in sparsity for the ballast layer or single structure, and obviously reduces the amount 
of data. Our study focuses on identifying the complex heterogeneous subgrade defects, analyzes the features of 
target echoes, and constructs a feature extraction to identify subgrade defects. "Methodology" Section analyzes 
the sparse characteristics of the spatial structure, introduces a methodology to identify subgrade defects. "Result 
analysis and discussion" Section describes a rapid identification of railway subgrade defects based on GPR images, 
and verifies the reliability of the proposed algorithm through field experiments. "Conclusion" Section summarizes 
our study and presents relevant conclusions.

Methodology
Target sparsity and sparse imaging.  For radar signals of fixed frequency, the mixer output is a linear 
frequency modulation signal, and its frequency signal is as follows:

where A is the amplitude of the signals, f0 is the initial frequency, and k is the frequency modulation slope. The 
echo of a point with a distance of H is as follows:

where ρ is the target location, S(H) is the attenuation factor,c is the electromagnetic wave velocity in a vacuum,i 
is the echo channel number, and σ is the target reflection coefficient.

To speed up signal reading and processing speed, every 25 channels of radar signals form a 256 × 256 pixel 
image φ

[

µx ,µy

]

.The coincidence rate of radar images is 50%. Combined with the sparsity of railway subgrade 
defects, the relationship between the measurement target and space images is as follows:

where πT
(

x, y, z
)

 is the spatial position of the measurement target, d
(

µx ,µy , f
)

 is the frequency-space image, 
and ψ is the space transformation basis matrix, that is, the dictionary.

Sparse matrix of radar signals.  To establish the sparse matrix, the measurement target must be discrete 
in spatial position,i is the echo channel number, 

(

xi , yi , zi
)

 is the spatial position, image space B is formed corre-
spondingly by N pixels {π1,π2, . . . ,πn} , and each pixel πi corresponds to the three-dimensional vector 

(

xi , yi , zi
)

 . 
The ith vector radix of pixel πi is as follows:

where ω is the frequency vector B, and the dictionary matrix corresponding to the echo channel is obtained 
through Formula (4). The P target echo is received by the ith echo channel

Formula (6) is converted to a vector

where b is the weighted steering vector of the target space, πj is the partial position of the measurement target, 
bj = Aσj

/

Ŵ
(

πj
)

 ; otherwise, bj = 0.
Assume that the collected radar signals are made up of huge amounts of one-dimensional signals of length 

L with a sparsity of k (that is, it contains k nonzero values), which form a large quantity of sample data. Due to 
the sparsity of railway subgrade defects in space, this paper proposes the compressive sensing method for data 
sampling, that is, a small number of signals represent all signals, to construct the target images. The measure-
ment matrix should be a random matrix that is not related to the dictionary. In this paper, the Bernhard matrix 
composed of 0 and 1 elements is selected as the observation matrix. Therefore, M random rows are extracted 
from the L× L identity matrix to obtain the measurement matrix ϕi corresponding to the ith echo channel. The 
measured value is

The measurement matrix ϕi of each echo channel is different.
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∑P

k=1
b(k) exp

[

−jω(t − Ŵi(π)k)
]

(6)ςi(ω) = ψib

(7)βi = ϕiζi = ϕiψib



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6030  | https://doi.org/10.1038/s41598-023-33278-w

www.nature.com/scientificreports/

To obtain the space guidance vector b, echo channels K are selected. The dictionary matrix is 
ψ =

[

ψT
1 ,ψ

T
2 . . . ,ψT

K

]

 , the measurement matrix is ϕ = diag[ϕ,ϕ2 . . . ,ϕK ] , the measurement value is 
β =

[

βT
1 ,β

T
2 · ··,βT

K

]

 , and reconstruction b becomes a constrained problem to solve the convex optimization 
problem.

where Formula (8) is only in the absence of noise. The measured value corresponding to the ith echo channel 
with noise:

where µi = ϕini ∼ N
(

0, σ 2
)

 and ni ∼ N
(

0, σ 2
)

 is aliasing noise. Convex optimization of the improved L1 norm 
under constraint conditions:

where A = ϕψ , ε = σ
√

2 lgN  . Formula (10) can be used to create the target images.

Feature representation of railway subgrade defects.  The subgrade defects are sparse from the 
graphical distribution based on the CS (compressed sensing) algorithm. The identification parameters of typical 
defects are as follows:

(1)	 Peaks of the multiscale wavelet energy spectrum of the subgrade;
(2)	 The time-domain features, such as energy per block, the variation per block, the variation and the demixing 

points per block.

Feature extraction of GPR signals based on the time domain.  Based on the continuity and disorder of the phase 
axes of the subgrade, the time domain characteristics of the subgrade defects are established. A signal of length 
N is divided into M blocks, and each block image is divided into K segments by length. The coincidence rate 
between the images is 50%. The features of subgrade are as followed:

where i = 0, 1, 2, · · ·K − 1 ; Ei is the energy of the ith segment; Aj is the amplitude of the jth sample; σ 2 is the 
sample variance of the ith segment; Ai  is the mean amplitude of the ith segment.

Horizontal energy spectrum.  The characteristics of the subgrade radar signal are different at each scale. Each 
scale energy has different contributions to the total energy. The main part of the signal is identified according to 
the characteristics of the energy spectrum. The component energy of wavelet decomposition at the Jth scale is 
shown as follows:

where AJ f(n) is the low-frequency reconstructed signal at the Jth wavelet decomposition, and DJ f(n) is the 
high-frequency reconstructed signal at the Jth wavelet decomposition.EAJ f (n) and EDJ f (n) are the low- and high-
frequency signal energies, respectively, at the Jth wavelet decomposition.

Sparse matrix.  Based on L1-norm optimization method, the training samples matrix are constructed by eigen-
values of subgrade defects and all used as the data dictionary of the sparse representation. The flow of the sub-
grade defects is shown in Fig. 1.

Target detection and identification method.  Identification of subgrade defects based on FCM.  The 
FCM algorithm was as follows:

(1)	 The subgrade defects are divided into three categories: sinkhole, mud pumping, and settlement, and the 
fuzzy weight index is determined;

(8)b̂ = argmin�b�1 s.t. β = ϕψb
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(11)Ei =

M·i/ 2+M
∑

j=M·i/ 2+1

A2
j

(12)σ 2
i =

1

M − 1

M·i/2+M
∑

j=M·i/2+M

(

Aj − Ai

)

(13)EAJ f (n) =

N
∑

n=1

(

AJ f (n)
)2

(14)EDJ f (n) =

N
∑

n=1

(

DJ f (n)
)2

j = 1, 2, . . . , J
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(2)	 The clustering center (v) and individual fuzzy membership matrix (u) of each kind of subgrade defect are 
set; thus, fuzzy clustering is analyzed;

(3)	 The subgrade defects are classified based on the clustering, the corresponding mean value center (v) is 
obtained, and the distance between the individual (subgrade defect type) in the class and the mean value 
center is obtained; thus, the fuzzy clustering statistical results are obtained accordingly.

Identification of subgrade defects based on FCM‑GRNN.  According to the fuzzy boundaries and considerable 
data of railway subgrade defects, FCM and GRNN algorithms are combined to identify the subgrade defects, as 
shown in Fig. 2. The specific algorithm is as follows:

(1)	 Based on the FCM, the GRNN is used to predict the type of training samples;
(2)	 The corresponding mean value center (v) and the distance between the individual (subgrade defect type) 

in the class and the mean value center are recalculated, and the data closest to the center are selected as the 
training samples of the network;

(3)	 After repeated calculations, the final network cluster is obtained.

Result analysis and discussion
Some sections of the Daqin and Shichang railways are detected by GPR installed at the bottom of rail inspection 
vehicle, as shown in Fig. 3a. To meet the requirements of maximum detection depth and depth resolution, 100 
and 400 MHz radar antennas are adopted to detect the railway subgrade, as shown in Fig. 3b. The GPR system 
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(Fig. 3c) and the working parameters of the ground-penetrating radar are set as follows: sampling interval is 
5 cm; the maximum depth reaches 8 m; depth resolution is up to 0.2 m; sampling rate is set to 100 scans−1, and a 
large quantity of railway subgrade defects are sparse in radar images. Therefore, railway subgrade defects meets 
the requirements of sparse theory.

Feature extraction of GPR signals.  Based on the GPR signal data, the feature extraction method consists 
of the following two steps: (1) time domain, (2) horizontal energy spectrum. The feature extraction methods of 
the signals are explained through an example in the following paragraphs.

(1)	 Time domain

Based on the continuity and disorder of the phase axes of the subgrade, the time domain characteristics of 
the subgrade defects are established.

The change of the energy and the phase axis of is obvious in the subgrade defects, and the space location, 
energy, and variation of defects are different from those of the normal subgrade, as shown in Fig. 4. The energy 
per block and the variation per block can distinguish the normal subgrade from the defects. The phase axes of 
settlement apparently decline, the energy of the fault increases obviously, and the variation and demixing points 
per block are distinguished from the settlement. However, the interfaces of mud pumping become vague. In 
addition, the high conductivity of the mud pumping makes the energy of the radar image low. Judging from the 
energy and variance of the radar images, the subgrade defects can be identified.

(2)	 Horizontal energy spectrum

The wavelet energy spectrum in scale 18 was built to reduce sample data combining wavelet multi-scale 
decomposition and power spectra analysis, as shown in Fig. 5. Through the energy spectrum, it can be seen that 
the characteristic peaks of the normal subgrade, sinkhole, and settlements are all in scale 8, and the character-
istic peak of mud pumping is in scale 6. The energy spectrum of the normal subgrade is as high as 2.5 × 10–4 J/
Hz, and the energy spectrum of mud pumping is as low as 160 J/Hz. The energy spectra between settlement and 
sinkholes are so similar that it is difficult to distinguish between them.

(3)	 Analysis of sparsity

100 blocks of subgrade defects are selected as the test samples, and grouped into three categories: sinkhole, 
mud pumping, and settlement, corresponding to the first, second and third category. The number of features is 
73 extracted by time domain and energy spectrum. The different dimensional visualization of subgrade defects 
is shown in Fig. 6. All the extracted 32-dimensional eigenvalues are clustered, and used as feature vectors.

Take subgrade settlement for example, the sparsity in subgrade defects dictionary is analyzed, as shown in 
Fig. 7. Based on L1 minimum norm method, the sparse coefficient of settlement is calculated in dictionary settle-
ment matrixA1, sinkhole matrixA2, and mud pumping matrix A3, respectively, and thus the dictionary matrix A 
is made up of the 32-dimensional eigenvalues. The settlement in dictionary A1 is sparse, and most of coefficient 
is 0, as shown in Fig. 7c, but it is not sparse in dictionary A2 or A3, as shown in Fig. 7a and b.

Compared with CS images, restored images, and original radar images, the feasibility and accuracy of sparse 
representation is shown in Fig. 8. The radar images of subgrade, including normal subgrade, settlement, sink-
hole, mud pumping, are shown in Fig. 8a. The data sets obviously are declined. Restored images based on sparse 

Figure 3.   The GPR and its suspension system. (a) suspension system of radar antenna for track inspection 
train, (b) photo for fixed radar antenna, (c) SIR-20 ground penetrating radar system.
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representation are shown in Fig. 8b, and partial data loss has little effect on CS imaging results. Compared with 
Fig. 8b and c, it is not difficult to find that the CS algorithm completes the target detection.

Identification of subgrade defects.  Figure 9 shows that the faster convergency with FCM-GRNN algo-
rithm on the basis of the clustering center (v) and individual fuzzy membership matrix (u) trained by FCM 
algorithm. The training error is converged gradually. Figure 10 shows the classification accuracy obtained by 
FCM and FCM-GRNN, respectively. Detailed information about the recognition rates is shown in the confusion 
matrices. The confusion matrices demonstrate that the recognition rates vary significantly (Fig. 10a), and the 
recognition rates vary weakly (Fig. 10b), thereby, the classification results are influenced by recognition meth-
ods. Thus, we can conclude that the FCM-GRNN exhibits higher classification accuracy, and efficient classifica-
tion of subgrade defects is not implemented by FCM. The clustering center (v) and individual fuzzy membership 
matrix (u) are obtained by FCM, then v is recalculated and the new u is obtained by FCM-GRNN, thus clustering 
results are improved.

The Daqin Railway subgrade is chosen as the target. A total of 1084 subgrade sinkholes, 970 mud pumping 
defects, and 1534 subgrade settlements are selected as the test samples. Table 1 lists that railway subgrade defects 
are effectively identified by the FCM and FCM-GRNN algorithms. The accuracy rate of FCM-GRNN algorithms 
reaches 100% both for settlement and mud pumping. The accuracy rate of subgrade sinkholes by FCM-GRNN 
is 59.1%, and the result of it is more accuracy than the result that gain by FCM.

To verify the method to identify the subgrade defects, Daqin railway is detected by GPR, as shown in Fig. 11. 
The normal subgrade is shown in Fig. 11a, and there are some defects, such as settlement (Fig. 11b), sinkhole 
(Fig. 11c) and mud pumping (Fig. 11d), in the railway sungrades. Figure 11b shows an obvious semi-parabolic 
on the edge of the stage and line feature at the bottom. Figure 11c shows the phase axis is lower than normal axis, 
and the range is relatively small. The defects are inferred to be the remains of the artificial mining cave. Under 
long-term traffic loading and water erosion conditions, the structure of rock and soil is gradually destroyed, and 
its load-carrying capacity gradually decreases, eventually leading to collapse. The collapse forms a loose area, 
which results in subgrade settlement, and water-enriched regions form mud pumping. Figure 11d is strongly 
reflected signal region, and the axis is not exit.
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Conclusion
The railway subgrade defects present sparse in radar images, which meets the requirements of sparse theory. 
The demixing points, energy, and variance per block are obtained as time domain eigenvalues, and the energy 
spectrum of the wavelet multiscale spatial are acquired and made up of data dictionary. The optimal sparse radar 
feature is established based on L1 minimum norm method.

Fuzzy C-means (FCM) and generalized regression neural network (GRNN) are used as the recognition algo-
rithms for subgrade defects. FCM-GRNN simulation and field experiments show that the classification accuracy 
of sinkhole, mud pumping, and settlement is 100, 100, 59.1%, respectively.

This study combines sparse theory with field experiments and obtains sparse features to identify the subgrade 
defects. The identification method overcomes the influence of redundant data and promotes GPR application 
for the detection of railway subgrade defects. However, the classification accuracy of settlement is relatively low. 
Hence, the identification methods for settlement should be further discussed.
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Figure 5.   Multiscale wavelet energy spectrum of subgrade. (a) the normal subgrade; (b) subgrade settlement; 
(c) subgrade sinkhole; (d) mud pumping.
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Figure 6.   Different dimensional visualization of subgrade defects.
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Figure 7.   Sparse representation coefficient of settlement in subgrade defects dictionary. (a) Sparse coefficient 
of settlement in dictionaryA2, (b) Sparse coefficient of settlement in dictionaryA3, (c) Sparse coefficient of 
settlement in dictionaryA1.
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Figure 8.   The radar images of subgrade: (a) CS images, (b) restored images, (c) original radar images, including 
(1) normal subgrade, (2) settlement, (3) sinkhole, (4) mud pumping, respectively.
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Figure 9.   Effect of training epoch on FCM-GRNN test performance.
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Figure 10.   Confusion matrices based on the testing dataset for FCM and FCM-GRNN algorithm, respectively. 
The X-axis labels are the ground truth labels and the Y-axis labels are the predicted labels. (a) FCM algorithm, 
(b) FCM-GRNN algorithm.
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Data availability
All data, models, and code generated or used during the study appear in the submitted article.

Code availability
Source code implementing the algorithm described in this work can be obtained from the following git reposi-
tory: http://​www.​ilove​matlab.​com/. This software is written in Matlab (version R2016a). It should run on any 
modern Linux x86 computer supporting the aforementioned packages.

Table 1.   The accuracy recognition of railway subgrade defects.

Input Number/channels Output

Number/channels Classification accuracy

FCM FCM-GRNN FCM (%) FCM-GRNN (%)

Sinkhole 1084

Sinkhole 493 641

45.5 59.1Settlement 443 345

Mud Pumping 148 98

Mud pumping 970

Sinkhole 128 0

82.3 100Settlement 44 0

Mud Pumping 798 970

Settlement 1534

Sinkhole 307 0

77.1 100Settlement 1183 1534

Mud Pumping 44 0
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Figure 11.   GPR images of subgrade defects. (a) normal subgrade, (b) settlement, (c) sinkhole, (d) mud 
pumping.

http://www.ilovematlab.com/
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