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A novel Alzheimer’s disease 
prognostic signature: 
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genes in immunogenicity 
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Alzheimer’s disease (AD) is characterized as a distinct onset and progression of cognitive and 
functional decline associated with age, as well as a specific neuropathology. It has been discovered 
that glutamine (Gln) metabolism plays a crucial role in cancer. However, a full investigation of its role 
in Alzheimer’s disease is still missing. This study intended to find and confirm potential Gln-related 
genes associated with AD using bioinformatics analysis. The discovery of GlnMgs was made possible 
by the intersection of the WGCNA test and 26 Gln-metabolism genes (GlnMgs). GlnMgs’ putative 
biological functions and pathways were identified using GSVA. The LASSO method was then used to 
identify the hub genes as well as the diagnostic efficiency of the four GlnMgs in identifying AD. The 
association between hub GlnMgs and clinical characteristics was also studied. Finally, the GSE63060 
was utilized to confirm the levels of expression of the four GlnMgs. Four GlnMgs were discovered 
(ATP5H, NDUFAB1, PFN2, and SPHKAP). For biological function analysis, cell fate specification, 
atrioventricular canal development, and neuron fate specification were emphasized. The diagnostic 
ability of the four GlnMgs in differentiating AD exhibited a good value. This study discovered four 
GlnMgs that are linked to AD. They shed light on potential new biomarkers for AD and tracking its 
progression.

Abbreviations
AD  Alzheimers disease
GO  Gene ontology
TCM  Traditional Chinese medicine
MF  Molecular functions
KEGG  Kyoto encyclopedia of genes and genomes
GEO  Gene expression omnibus
 Gln  Glutamine
BP  Biological processes
CC  Cellular components
DEGs  Differentially expressed genes

Alzheimer’s disease (AD) is often regarded as one of the primary causes of dementia and frailty. The signs of 
the illness begin with mild memory issues and proceed to cognitive impairment, dysfunctions in complex 
daily tasks, and several other domains of cognition. By the time AD is clinically recognized, neuronal loss and 
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neuropathologic abnormalities have devel- oped in several brain  locationst1,2. AD is a degenerative and irrevers-
ible brain disease that impairs memory, cognition, and, eventually, the ability to perform even the most basic 
activities. Injury appears to begin in the hippocampus and entorhinal cortex, two areas of the brain critical for 
memory  formation3. Additional brain regions are harmed as more neurons die, and brain tissue is substantially 
reduced in the latter stages of AD. While numerous variables, like as genetics and lifestyle, impact a person’s 
risk of acquiring AD, age is by far the most  important4. The condition is rare before the age of 65, and the recur-
rence grows in subsequent decades, with a 24–33% probability of having the disease by the age of  855.Given the 
pessimistic projections for the AD population and its associated socioeconomic costs between 2030 and 2050, 
scientific and clinical research in the field of AD is currently focusing on the early detection of the transitional 
phase between normal aging, moderate cognitive impairment, and  dementia6,7. Throughout the preceding three 
decades, much has been learnt about the molecular basis of the condition, stressing the potential for developing 
biomarkers for diagnosis, risk assessment, clinical trials, therapeutic targeting, and discovering novel pharma-
ceutical  targets8,9.

AD is a complex disease that is unlikely to be successfully treated with a single medication or other inter-
vention. Modern pharmacotherapeutic strategies are focused on supporting patients in maintaining mental 
capacities, regulating behavioral manifestations, and delaying development, hence decreasing the appearance of 
sickness  symptoms10,11. All currently known treatments work by altering the levels of particular neurotransmitters 
in the brain, principally acetylcholine (ACh) and glutamate. Although this helps with symptoms, it is not a total 
cure for the  condition12. With the growth of bioinformatics, a lot of evidence-based evidence has been gathered. 
Computation and prediction based on relevant information can give certain alternative suggestions for future 
clinical diagnosis and therapy and drug research.

Because glutamine (Gln) is the most prevalent amino acid in circulation, cultured tumor cells use it quickly. 
Gln is commonly used in cellular aerobic glycolysis to maintain TCA flux or as a source of citrate for lipid syn-
thesis in reductive  carboxylation13. Furthermore, glutaminolysis enhances proliferative cell survival by decreasing 
oxidative stress and preserving the integrity of the mitochondrial membrane. Gln serves as an energy source for 
both tumor and immunological  cells14. However, it appears that inflammatory antitumor immune cells, particu-
larly macrophages, do not rely on or even reject Gln metabolism. M2 macrophages are more dependent on Gln 
than naive macrophages, but decreased Gln metabolism can generate pro-inflammatory M1  macrophages15. As 
a result, Gln metabolism may be a target for converting tumor-associated macrophages from M2 to M1, hence 
increasing the anti-tumor inflammatory immune response.

Furthermore, Gln metabolism is important in Th1 cell differentiation and effector T cell activation. These data 
imply that inhibiting Gln metabolism may be able to restructure TME and boost immunotherapy effectiveness. 
Some pattern recognition receptors in AD can form huge multiprotein complexes known as inflammasomes. 
When inflammasomes combine, they create membrane holes and process proinflammatory cytokines, result-
ing in pyroptosis, a kind of inflammatory cell  death16. Innate immune signaling and inflammasome activation 
are important preventive mechanisms against  AD17. Their activation, however, must be strictly managed, since 
excessive activation can cause neuroinflammation and brain injury. Potential treatment methods for AD have 
included balancing the host’s innate immune  response18. Although targeting Gln metabolism in conjunction with 
immunotherapy is incredibly promising in AD, the landscape of Gln metabolism in tumor microenvironment 
(TME) is yet unknown. As a result, we conducted this work to conduct a comprehensive review of GlnMgs and 
immunotherapy in AD.

In biological research, gene expression analysis is becoming increasingly significant. The Accelerating Medi-
cines Partnership- AD program’s availability of high-throughput transcriptome sequencing data and clinical 
annotation allows us to investigate the altered transcriptional and related molecular pathways implicated in AD. 
Several research have used gene expression information acquired from the Gene Expression Omnibus (GEO) to 
investigate the molecular pathways involved in the development of  AD19,20. The results of these bioinformatics 
analyses provide intriguing insights for understanding the pathophysiology and processes of AD from several 
perspectives. However, no study has used bioinformatics to determine whether GlnMgs are im- portant for AD 
development. As a result, the goal of this work was to examine the AD-related GEO via the lens of the GlnMgs 
(Fig. 1).

DEG identification and principal component analysis. Among the 26 GlnMgs, all were significantly 
different except for CPS1, GLUD1, CAD, SLC38A1,GMPS (Fig. 2a). Some genes cluster in the treat group and 
some in the control group. Treat: PHGDH, CTPS2, LGSN, GLYATL1, GLUL, ASL, ARHGAP11B. Control: 
MECP2, NR1H4, NIT2, PFAS, GLS2, GLS, ASNS, PPAT, GFPT1, ASNSD1 (Fig. 2b) (Table S2).

Expression of GlnMgs. We calculated the chromosomal positions of GlnMgs and visualized them in cir-
cles (Fig.  3a) (Table  S3).a˘Then, in order to clarify the expression of these genes, we conducted correlation 
analysis of these genes (Fig. 3b,c).

Immune cells. The immune environment is extremely essential in the onset and progression of AD. CIB-
ERSORT was used to examine the immune cell components in adipose tissue. We built barplot and corplot to 
show the results of immune cells (Fig. 4a,b). Then, in order to clarify the expression of these genes, we conducted 
correlation analysis of these genes and immune cells (Fig. 4c).

Cluster analysis. When the clustering variable (k) was set to 2, the intragroup correlations were the strong-
est and the intergroup correlations were the smallest, indicating that AD patients could be divided into two 
groups based on GlnMgs (Fig. 5a). Based on this cluster, we also discussed the expression of the GlnMgs in 
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Figure 1.  Framework. The data of AD patients were obtained from GEO databases, and then the GlnMgs were 
matched to carry out difference analysis and risk model construction, respectively.a˘GSE132903 was used as 
the main body and GSE63060 was used to verify the model with good grouping, and GlnMgs related to the 
prognosis of AD patients were obtained.a˘Then, GO, KEGG and GSEA analyses were performed with multiple 
databases to obtain the functions related to GlnMgs.a˘Last, the immune cells, function and RNA changesa˘were 
analyzed.

Figure 2.  Principal component analysis. (a) GlnMgs. (b) Expression of GlnMgs in clusters.
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different clusters. CTPS2, ARHGAP11B, and NR1H4 were not significantly different between the two groups 
(Fig. 5b,c). According to the PCA results, patients with varying risks were divided into two groups (Fig. 5d). 
Based on the previous results, we also analyzed the results of immune cell infiltration according to different 
clusters (Fig. 5e,f).

Analysis of functional enrichments. The GlnMgs were used to conduct the enrichment analysis. The 
MF mainly involves atp dependent dna dna annealing activity, beta galactoside cmp alpha-2-3-sialyltransferase 
activity, gomf phosphatidylinositol-3-4-5-trisphosphate binding. The BP mainly involves cell fate specification, 
atrioventricular canal development, neuron fate specification (Fig. 6a). The pathways analysis showed that the 
notch signaling pathway, primary immunodeficiency, renin angiotensin system were enriched (Fig. 6b).

Figure 3.  Expression of GlnMgs. (a) Expression of GlnMgs on sequences. (b,c) The correlation between 
GlnMgs and related genes.
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Building a co-expression network and module detection. To establish an approximation scale-free 
topology for the network, a soft-thresholding power was applied (Fig. 7a). The genes with the highest variance 
were grouped and integrated into nine co-expression modules (Fig. 7b). The relationship between module eigen-
gene and clinical characteristics was investigated using Pearson’s correlation analysis (Fig. 7c). The turquoise 
module was shown to be highly connected with the “Group” attribute (i.e. AD and ND) and to have the greatest 
association (Fig. 7d) (Table S4).

Clustering co-expression network construction and module detection. To establish an approxi-
mation scale-free topology for the network, a soft-thresholding power was applied (Fig. 8a). The co-expression 
modules were formed by clustering the variance genes (Fig. 8b). Pearson’s correlation analysis was used to inves-
tigate the relationship between module eigengene and clinical characteristics (Fig. 8c). The module was shown to 
be strongly linked with the “Group” characteristic (i.e. AD and ND) and to have the greatest association (Fig. 8d) 
(Table S5).

Developing a model for least absolute shrinkage and operator selection. DEGs, grey module 
genes (WGCNA), and GlnMgs overlapping as well. A total of 34 genes were crossed (Fig. 9a) (Table S6). The 
Boxplots depicted the residual expression patterns of these genes in AD (Fig. 9b).a˘There are some differences 
in the proportions of the four different modes (Fig. 9c). As seen in Fig. 6e, the GlnMgs’ diagnostic capacity in 
distinguishing AD from control samples revealed a satisfactory diagnostic value, with an Areas under the curve 
(AUC)a˘of RF: 0.784, SVM: 0.759, XGB: 0.788, and GLM: 0.666 (Fig. 9d). An AUC of 0.784 (95% CI 0.655–
0.896) in GSE132903, an AUC of 0.815 (95% CI 0.7340.895) in GSE63060 (Fig. 9e) (Table S7).

Drug-gene interactions. The hub gene in the XGB model predicted three drugs. These include ME-344, 
METFORMIN HYDROCHLORIDE, NV-128(Table 1). In addition, we predicted all interacting genes for drug 
and gene relationships (Table 2).

Discussion
AD is a neurodegenerative condition that primarily affects persons over the age of 65. It first affects memory and 
then progresses to permanent cognitive decline and functional disability, severely impairing the patient’s quality 
of  life21. As the population ages, the rising frequency of AD imposes a tremendous financial burden on families 
and  society22. Gln metabolism is gaining attention as an intriguing regulatory node that is frequently altered in 
a variety of pathological conditions. Gln is the most abundant non-essential amino acid in circulation, and it 
performs numerous metabolic functions in the  cell23. Gln metabolism begins with the enzyme glutaminase, which 
deaminates it to form glutamate, an important intermediate metabolite with numerous biosynthetic applications 
in the  cell24. A few recent studies have emphasized the function of GlnMgs in several aging-related illnesses. For 
example, Dai et al. explored the potential roles of Gln-metabolism related genes in hepatocellular  carcinoma25. 

Figure 4.  Expression of Immune cells. (a,b) Expression of immune cells in different clusters. (c) Correlation 
between GlnMgs and immune cells.
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Liu et al. established a signature of Gln-metabolism for the prognosis of lung  adenocarcinoma26. Aside from 
cancer, the importance of Gln-metabolism in non-cancerous diseases has received a lot of attention. Asthma, 
pulmonary fibrosis, and chronic obstructive pulmonary disease are a few examples. The physiological role of Gln 
metabolism during procession of AD is unknown. This could be an interesting line of research.

We detected 34 DEGs associated with Gln-metabolism in AD. After delving more into the role of GlnMgs 
in AD, we determined the Gln metabolism DEGs through intersected DEGs, WGCNA, and GlnMgs. Further-
more, four hub GlnMgs (ATP5H, NDUFAB1, PFN2, and SPHKAP) were found using LASSO regression, and 

Figure 5.  Cluster analysis. (a) Consensus clustering matrix. (b,c) Expression of the GlnMgs in different clusters. 
(d) PCA. (e,f) Immune cell infiltration of different clusters.
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their diagnostic capacity was verified using external datasets, suggesting that these genes may be involved in the 
AD process. The results of the aforementioned genes suggest some directions for future investigation, however 
there is no convincing evidence that they would be involved in the production of specific transcription factors 
associated with Gln metabolism control. such as CCR5, CEBPB, and  CD3327–29. is insufficient, necessitating 
additional inquiry.

This ATP5H/KCTD2 locus is important in mitochondrial energy generation and neuronal hyperpolariza-
tion during cellular stress conditions such as hypoxia or glucose  deprivation30. The risk of AD can be observed 
by observing the level of ATP5H/KCTD2. Panagiotis Giannos identified NDUFAB1 as a key gene in Altered 
mitochondrial  microenvironment31. In acute myeloid leukemia, hypermethylation of the SKIP gene (SPHKAP) 
promoter silences its expression (AML). According to Essam A Ghazaly’s findings, SKIP down-regulation in AML 
lowers SK activity and ceramide levels, which eventually limits apoptosis in leukemia  cells32. Chen et al. developed 
a Molecular Signatures of Mitochondrial Attachments database. The alteration of mitochondrial complexes that 
support AD onset is mediated by molecular markers implicated in oxidative phosphorylation and retrograde 
endocannabinoid signaling (NDUFAB1) pathways, according to this  study33. These studies reinforce the validity 
and plausibility of our discoveries since these Gln metabolism DEGs seemed to be associated to the malignancy 
process in AD individuals. The GSE63060 analysis found that a Gln metabolism related characteristic might be 
used as an efficient predictive indicator. However, only a few investigations on the gene alterations associated 
with Gln metabolism have been conducted.

The GSVA showed the GlnMgs DEGs were enriched in primary immunodeficiency, notch and b cell recep-
tor signaling pathway, galactose metabolism. Notch signaling pathway is highly conserved evolutionarily and is 

Figure 6.  Enrichment analysis for DEGs. (a) GO. (b) KEGG. (a) Barplot graph for GO enrichment (the longer 
bar means the more genes enriched; q-value: the adjusted p-value). (b) Barplot graph for KEGG pathways (the 
longer bar means the more genes enriched).
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involved in the regulation of cell differentiation, proliferation and apoptosis. Notch signaling expression persists 
throughout the adult brain and mature differentiated cells, and is one of the major regulators of neural stem cells 
and neural development in the  brain34. AD is a degenerative disease of the central nervous system. Extracellular 
senile plaques formed by amyloid beta deposition are one of the characteristic pathological changes of AD. 
Notch protein coexpresses with presenilin protein (PSs) and interacts physiologically and functionally in adult 
brain neurons at anaphase of  mitosis35. Recent studies have shown that PS1 expression of AD in neural stem 
cells impaired the regeneration function of neural stem cells and decreased -secretase mediated proteolysis of 
Notch pathway, indicating that inhibition of Notch signaling pathway may play a direct role in neurodegenera-
tion in  AD36. Changes in brain energy metabolism have been proposed to be crucial in the development of AD. 
Acutely separated cerebral cortex and hippocampal slices from 3-month-old APPswe/PSEN1dE9 and wild-type 
control mice were incubated in conditions containing [U-13C]glucose, [1,2-13C]acetate, or [U-13C] Gln in the 
Andersen research. The rate of ATP production in isolated whole-brain mitochondria of these mice was reduced, 
and many cerebral metabolic abnormalities, including altered glucose metabolism, impaired Gln processing, and 
mitochondrial dysfunctions, were seen in animals prior to amyloid plaque  development37,38. These studies show 
that the Notch signaling pathway and Gln metabolism play an important role in AD. However, more research 
into the crosstalk between these four GlnMgs in AD is required.

Figure 7.  Co-expression module construction. (a) Soft threshold power mean connection and scale-free fitting 
index anal- ysis. (b) Clustering of dendrograms According to dynamic tree cutting, the genes were sorted into 
distinct modules using hierarchical clustering with a threshold of 0.25. Each color represents a separate module. 
(c) Heatmap of correlations between module eigengenes and clinical characteristics. (d) Gene scatterplot in the 
turquoise module.
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According to research, the particular entrance of peripheral cells into the brain parenchyma induced by dam-
age, as well as the imbalance of the immunological milieu in the brain, are strongly associated to the development 
of AD. Because acquiring data within the brain is challenging, it is critical to apply machine learning algorithms 
to determine the link between peripheral and intracerebral data and their effect on the development of AD. 
Recently, neuroinflammation has been identified as one of the causes of unsuccessful  therapy39. After an injury, 
neuroinflammation develops as a result of an imbalance in the synthesis and release of pro-inflammatory and 
anti-inflammatory cytokines from central or peripheral  sources40. The activation of microglia is the most obvi-
ous element of neuroinflammation. Under physiological settings, activation of microglia leads in the creation 
of nutritional and anti-inflammatory molecules. Microglia become too active in pathological settings such as 
chronic stress or infection, resulting in not only increased levels of inflammatory chemicals in the brain, but also 
neuronal damage and  death41. In order to successfully treat neuroinflammation and restore neurotropism and 
neurotransmitter function, fundamental and clinical AD research must develop unique diagnostic biomarkers 
from the standpoint of nerve-immunity interaction. As a result of our previous findings, we also discussed the 
expression of GlnMgs in the immune microenvironment. The finding show that NK cells resting, Macrophages 
M1, T cells CD4 naive and T cells regulatory (Tregs) were highly expressed in cluster 1. Plasma cells and Dendritic 
cells activated were highly expressed in cluster 2. which also proved that the pathogenesis of GlnMgs in AD is 
also closely related to inflammation and immune response.

The relationship between metabolism and AD has been marginally explored. Currently, some papers have 
used bioinfor- matics analysis to show a relationship between metabolism and  AD42–44. Zhang et al. identified 
five effective biomarkers by constructing a model of age-related genes. ZNF384: A Potential Therapeutic Target 
for Psoriasis and AD Through Inflammation and Metabolism. Gu et al. constructed a prediction model related 

Figure 8.  Cluster construction of co-expression modules (a) Soft threshold power mean connection and scale-
free fitting index analysis. (b) Dendrogram clustering (c) Heatmap of correlations between module eigengenes 
and clinical characteristics. (d) Gene scatterplot in the grey module.
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to iron death and performed drug prediction. They ended up with 520 effective iron metabolism-related genes. 
However, there are almost no studies on Gln metabolism and AD. Our study based on the mechanism of brain 
energy metabolism provides a reference for determining the effective brain energy metabolism in the treat-
ment of AD. Despite this, there are currently few predictive models for GlnMgs and AD. When compared to 
other studies, the approach used in this study is novel. First, the current study expanded on earlier research by 
utilizing more GlnMgs data from the continuously updated GEO database. Second, GSE132903 were used as 
the primary analysis, with GSE63060 being incorporated into the common pattern for model validation. The 
GO and KEGG analyses, as well as the GSEA analysis, all added credibility to the study. Finally, there is almost 
no prediction model for GlnMgs that gives specific recommendations for future metabolic research or therapy 
based on metabolic interference AD. Although this study provides some context, it also has certain limitations.

Although providing theoretical underpinnings and research concepts, it has several limits. To begin, the data 
utilized in the study is derived from the GEO database, which makes determining the quality and trustworthi-
ness of the statistical data challenging. Therefore, in order to increase the quality and credibility of statistical 
data. We chose GSE132903 was used as the main body and GSE63060 was used to verify the model with good 
grouping. Second, while the study focuses on mRNAs linked with Gln metabolism, the underlying processes are 
unknown. There is a lack of understanding of the underlying systems. As a result, there is a lack of understand-
ing of the underlying mechanisms at work. This is one of the key limits on what we can do in vivo and in vitro. 
Yet, there is a dearth of understanding of the underlying processes involved. There is a lack of understanding 
of the underlying systems. Both in vivo and in vitro testing is an excellent idea. But so far, this provides us with 
other research avenues for further investigation. Additionally, the association between prognostic genes and Gln 
metabolism is unclear, which might provide light on the role of GlnMgs in AD. Moreover, there are few external 
data sources available to verify the model’s veracity, making validation difficult. The following are the study’s 
difficulties. This risk model is heavily reliant on publicly available databases. Also, protein expression may differ 
from RNA expression, demanding more study with a larger data set.

Figure 9.  (a) Identification of GlnMgs with a venn diagram. (b,c) Residuala˘expression patterns. (d) AUC of 
train group. (e) AUC of test group.

Table 1.  Drug-gene interactions in the XGB model.

Search term Match term Gene Drug Interaction types Source

Ndufab1 Ndufab1 Ndufab1 Me-344 Inhibitor Chembl interactions

Ndufab1 Ndufab1 Ndufab1 Metformin hydrochloride Inhibitor Chembl interactions

Ndufab1 Ndufab1 Ndufab1 Nv-128 Inhibitor chembl Interactions
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Search term Match term Gene Drug Interaction types Source

Ndufab1 Ndufab1 Ndufab1 Me-344 Inhibitor Chembl interactions

Ndufab1 Ndufab1 Ndufab1 Metformin hydrochloride Inhibitor Chembl interactions

Ndufab1 Ndufab1 Ndufab1 Nv-128 Inhibitor Chembl interactions

Ptbp1 Ptbp1 Ptbp1 Chembl604321 Unkonw Dtc

Ptbp1 Ptbp1 Ptbp1 Elliptecine Unkonw Dtc

Ptbp1 Ptbp1 Ptbp1 Chembl586031 Unkonw Dtc

Ptbp1 Ptbp1 Ptbp1 Chembl578502 Unkonw Dtc

Ptbp1 Ptbp1 Ptbp1 Chembl2095095 Unkonw Dtc

Ptbp1 Ptbp1 Ptbp1 Chembl592124 Unkonw Dtc

Rtn4 Rtn4 Rtn4 Ozanezumab Inhibitor|Antibody Chembl interactions

Rtn4 Rtn4 Rtn4 Atinumab Unkonw Ttd

Cflar Cflar Cflar Cabozantinib Unkonw Clearity foundation clinicaltrial

Cflar Cflar Cflar Finasteride Unkonw Nci

Cflar Cflar Cflar Bicalutamide Unkonw Civic

Cflar Cflar Cflar Nintedanib Unkonw Clearity foundation clinicaltrial

Cflar Cflar Cflar Dovitinib Unkonw Clearity foundation clinicaltrial

Cflar Cflar Cflar Bay-11–7085 Unkonw Dtc

Cflar Cflar Cflar Idronoxil Unkonw Clearity foundation clinicaltrial

Rapgef3 Rapgef3 Rapgef3 Chembl601385 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Pentabromophenol Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl1210769 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Tanshinone I Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Rafoxanide Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Myricetin Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Dipyridamole Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Acid Blue 129 unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Acriflavine Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Sennoside B Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl585591 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl505670 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Idarubicin hydrochloride Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Physodic acid Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 1,4-Dimethoxyanthraquinone Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Gyrophoric acid Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl234338 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl1576310 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 2,4-Dihydroxybenzophenone Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Luteolin Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Daphnoretin Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl1256796 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl1306556 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Hexachlorophene Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Bithionoloxide Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Lobaric acid Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Pyrogallol red Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 9,10-Phenanthrenequinone Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl601757 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Cryptotanshinone Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Estropipate Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Chembl515252 Unkonw Dtc

Rapgef3 Rapgef3 Rapgef3 Purpurogallin Unkonw Dtc

Tubb2A Tubb2A Tubb2A Vinblastine Sulfate Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Eribulin Mesylate Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Crolibulin Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Trastuzumab Emtansine Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Indibulin Inhibitor Chembl interactions

Continued
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Conclusions
AD occurs and progresses as a result of interactions between multiple targets, pathways, signaling pathways, 
and mech- anisms, and the regulatory process is synergistic and bi-directional. GlnMgs affects the production 
of ATP5H, NDUFAB1, PFN2, and SPHKAP, which can activate or inhibit the notch signaling pathway, primary 
immunodeficiency, B cell receptor signal pathway.a˘Notch and other signaling pathways regulate immune-
inflammatory responses, neuron remodeling, and other processes, as well as the onset and progression of AD.

This work has significant limitations, despite the fact that it presents some theoretical underpinnings and 
research proposals for GlnMgs in AD. The following ideas for future enhancement are made: (1) Because the 
current data is generated from the GEO, determining the trustworthiness and quality of the statistical data is 
difficult. In the future, the number of data sources will be increased while the data offset will be reduced. (2) 
More scientific and clinical studies will be conducted to determine whether effective therapies can enhance the 
neurological and immune functions of AD patients by regulating these GlnMgs in the brain.

Materials and methods
Raw data processing. GEO was searched for mRNA expression. Series: GSE132903 and GSE63060. Plat-
form: GPL10558 and GPL6947 (Table 1). GSE132903 and GSE63060 were used as the trian and test groups 
respectively. Strategy for searching (’Alzheimer’s disease’ [MeSH] mRNA [All Fields] and normal) AND (’Homo 

Search term Match term Gene Drug Interaction types Source

Tubb2A Tubb2A Tubb2A Cabazitaxel Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Paclitaxel Inhibitor Dtc|Chembl interactions

Tubb2A Tubb2A Tubb2A Vinorelbine Tartrate Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Colchicine Inhibitor Dtc|Tdgclinicaltrial|chembl interactions

Tubb2A Tubb2A Tubb2A Vinflunine Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Brentuximab Vedotin Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Lexibulin Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Ixabepilone Inhibitor Chembl interactions|tend

Tubb2A Tubb2A Tubb2A Plinabulin Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Fosbretabulin Disodium Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Docetaxel Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Vincristine Sulfate Inhibitor Chembl interactions

Tubb2A Tubb2A Tubb2A Verubulin Unkonw Chembl interactions

Tubb2A Tubb2A Tubb2A Chembl2036119 Unkonw Dtc

Tubb2A Tubb2A Tubb2A Vinblastine Unkonw Dtc|Tdgclinicaltrial|tend

Tubb2A Tubb2A Tubb2A Podofilox Unkonw Dtc

Tubb2A Tubb2A Tubb2A Fosbretabulin Tromethamine Unkonw Chembl interactions

Tubb2A Tubb2A Tubb2A Chembl1935538 Unkonw Dtc

Tubb2A Tubb2A Tubb2A Maytansinol Unkonw Dtc

Tubb2A Tubb2A Tubb2A Curcumin Unkonw Dtc

Tubb2A Tubb2A Tubb2A Sagopilone Unkonw Chembl Interactions

Tubb2A Tubb2A Tubb2A Vorinostat Unkonw Dtc

Tubb2A Tubb2A Tubb2A Combretastatin A4 Unkonw Dtc

Tubb2A Tubb2A Tubb2A Maytansine Unkonw Dtc

Tubb2A Tubb2A Tubb2A Abt-751 Unkonw Dtc

Tubb2A Tubb2A Tubb2A Paclitaxel Poliglumex Unkonw Chembl interactions

Tubb2A Tubb2A Tubb2A Cyclostreptin Unkonw Dtc

Tubb2A Tubb2A Tubb2A Zampanolide Unkonw Dtc

Tubb2A Tubb2A Tubb2A Vincristine Unkonw Dtc|Tdgclinicaltrial|tend

Tubb2A Tubb2A Tubb2A Largazole Unkonw Dtc

Tubb2A Tubb2A Tubb2A Enmd-981693 Unkonw Tdgclinicaltrial

Tubb2A Tubb2A Tubb2A Chembl453818 Unkonw Dtc

Tubb2A Tubb2A Tubb2A Chembl2036124 Unkonw Dtc

Tubb2A Tubb2A Tubb2A Davunetide Unkonw Chembl interactions

Tubb2A Tubb2A Tubb2A Chembl1795737 Unkonw Dtc

Tubb2A Tubb2A Tubb2A Nocodazole Unkonw Dtc

Tubb2A Tubb2A Tubb2A Vinorelbine Unkonw Dtc|Tdgclinicaltrial|tend

Table 2.  Drug-gene interactions of all intergenes.
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sapiens’ [Organism] AND ’Non-coding RNA profiling by array’ [Filter]). MSigDB was used to retrieve 26 
GlnMgs (Table S1).

Analysis of DEGs. Perl (https:// github. com/ Perl) matched and sorted transcription data to acquire exact 
mRNA data. The IDs were converted into gene names. After the data standardization of GSE132903 using the 
normalize Between Arrays function in the limma package, PCA was conducted by using the factoextra package. 
The Differentially expressed genes (DEGs) between AD and non-demented controls (ND) were analyzed. The 
DEGs were screened with the criteria of |Fold2FC|> 1 and p < 0.05. To show significantly deregulated genes, a 
heat map was created using ggplot2 and the "ComplexHeatmap" package.

Immune cell infiltration. The immune cell components in adipose tissue were analyzed via CIBERSORT. 
We built barplot and corplot with the limma package to show the results of immune cells.

Cluster analysis. We used the Limma and ConsensusClusterPlus package to do cluster analysis. With 
the clustering variable (k) at 2, a strongest intragroup correlation and a weakest intergroup correlation were 
observed. The GlnMgs associated with prognosis were classified into cluster 1 and 2. We also performed a con-
sensusScore based on this  result45. The limma was utilized to discover changes in particular genes between 
subtypes and tissue  types46.

Enrichment analysis. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG), the biological function and path- ways linked with the DEGs were then investigated. The biological 
pathways associated with the DEGs were then examined using Gene Ontology (GO). Biological processes (BP), 
molecular functions (MF), and cellular components (CC) controlled by the differentially expressed GlnMgs 
were further investigated using R. “c5.go.bp.v7.5.1.symbols” gene sets were obtained from MSigDB. GSVA was 
used to compute the process score by “GSVA” package.

Co-expression gene identification. WGCNA is an algorithm for clustering genes into distinct mod-
ules and determining the correlations between modules and disease features. To examine the genetic processes 
implicated in the pathogenesis of AD, the “WGCNA” package was used to build a co-expression network. The 
co-expression network was built utilizing just the genes with the highest 25% variance from GSE132903. The 
dynamic cutting tree approach was used to combine modules with a threshold of 0.25. Other criteria were uti-
lized to build the co-expression network, including: soft threshold power () based on the scale-free topology 
requirement (an independence value of  R2 = 0.85) by using the select Soft Threshold function; and minimum 
genes of each module = 30. Pearson correlation analysis was used to identify possible relationships between 
modules and patient clinical variables.

GlnMgs identification. To find the GlnMgs, we intersected the DEGs from major modules (WGCNA), 
Gln, and cluster hubGenes. A Vnnmap was used to visualize the overlapping genes. As previously stated, biologi-
cal processes and enrichment routes were also uncovered. We separated the GSE132903 into training cohorts 
after identifying Hub GlnMgs. The “glmnet” package was used to discover the hub DEGs, with the smallest 
lambda defined as the best value. In each sample, the DEGs predicting score was computed. The diagnostic and 
discriminative utility of GlnMgs in AD and ND was evaluated using receiver operating characteristic curve 
analysis. The external validation dataset was GSE63060.

Drug-gene interactions. With the advancement of bioinformatics, the construction of biological models 
and the identification of efficient biomark- ers has become more significant in the diagnosis and prevention of 
clinical disorders. Even if the biomarkers are established, the crucial issue is determining how to use them in the 
clinic. As a result, medication prediction based on successful indicators will be critical in the future prevention 
and treatment of AD. Validated biomarkers provide some reference for clinical treat- ment. Therefore effective 
drug prediction is very important. We used the DGIdb database (https:// dgidb. genome. wustl. edu/) to make 
drug predictions for both the obtained hub genes and so the intersection gene in the XGB model.

Ethics approval and consent to participation. This manuscript is not a clinical trial, hence the ethics 
approval and consent to participation are not applicable.

Data availability
The datasets generated during and/or analyzed during the current study are available in the appendix. For data 
citations of datasets uploaded to e.g. figshare, please use the howpublished option in the bib entry to specify the 
platform and the link, as in the Hao:gidmaps:2014 example in the sample bibliography file.
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