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Shorter planning depth and higher 
response noise during sequential 
decision‑making in old age
Johannes Steffen 1, Dimitrije Marković 2, Franka Glöckner 2, Philipp T. Neukam 1,3, 
Stefan J. Kiebel 2, Shu‑Chen Li 2 & Michael N. Smolka 1*

Forward planning is crucial to maximize outcome in complex sequential decision‑making scenarios. 
In this cross‑sectional study, we were particularly interested in age‑related differences of forward 
planning. We presumed that especially older individuals would show a shorter planning depth to 
keep the costs of model‑based decision‑making within limits. To test this hypothesis, we developed 
a sequential decision‑making task to assess forward planning in younger (age < 40 years; n = 25) and 
older (age > 60 years; n = 27) adults. By using reinforcement learning modelling, we inferred planning 
depths from participants’ choices. Our results showed significantly shorter planning depths and higher 
response noise for older adults. Age differences in planning depth were only partially explained by 
well‑known cognitive covariates such as working memory and processing speed. Consistent with 
previous findings, this indicates age‑related shifts away from model‑based behaviour in older adults. 
In addition to a shorter planning depth, our findings suggest that older adults also apply a variety of 
heuristical low‑cost strategies.

Making sequential decisions to pursue long-term goals is an implicit routine task for humans of all ages. One 
option to approach such complex decision-making scenarios is to use model-based forward  planning1,2. By 
‘model-based’, we refer to decision-making relying on planning based on a representation of the individuals’ envi-
ronment, i.e. an internal model of available actions, possible states, probabilities of transitioning between states as 
well as outcome probabilities of entering a state. One obvious challenge of model-based forward planning is the 
question of how far one should plan ahead in order to reach one’s goal. If the goal is temporally distant, it is crucial 
to consider the long-term consequences of the available actions: an action might make good short-term progress 
towards the goal but lead to adverse outcomes in the long  run3. One option is to exhaustively plan through all 
possible action sequences and compare their overall reward with each other. However, this strategy would span 
a decision tree with an exponentially increasing number of action sequences for increasing planning depth. This 
would soon become infeasible, especially because in real world scenarios, the action-outcome relationship usu-
ally is not deterministic but probabilistic and one action may have several possible outcomes which increases 
the amount of possible action sequences further. To deal with these complexities in light of limited cognitive 
resources, especially in old  age4,5, people utilize different strategies to reduce the length of action sequences that 
have to evaluated, i.e. to prune the decision tree. Therefore, the choice of planning depth is naturally linked to 
the basic trade-off between predictive accuracy and computational complexity. The planning gets more complex 
and effortful with every step of deeper planning. However, at the same time, with deeper planning depth, people 
are more likely to find a behavioural policy enabling them to reach their goal. In our study, we focused on the 
question, how planning depth is modulated by older age.

Although we previously have observed effects of aging on sequential decision making with older adults per-
forming particularly worse when crucial outcomes only occurred in several decision states  later3, it is unclear 
whether older adults would opt for a shorter planning depth in situations when individuals can plan their 
own decision steps in a probabilistic environment with a fully transparent task structure. So far, no study has 
investigated the effects of aging on forward planning depth in sequential decision-making. However, evidence 
from two related research branches reveals impairments in model-based decision-making in old age. Firstly, 
classical sequential problem-solving tasks like the Tower of London  Task6 or the Tower of Hanoi  Task7 require 
participants to plan ahead to find an action sequence to the target configuration with as few actions as possible. 
The common finding is that older adults require more actions to reach the given target  configuration8. This 
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suggests that older adults might not have planned far ahead enough to find the shorter sequence. However, these 
tasks do not directly assess planning depth. Moreover, they address a specific problem-solving scenario with a 
deterministic environment and a single given target state, which limits external validity. Secondly, the relative 
influence of model-based and model-free control on human decision-making has been investigated in reward-
based sequential decision-making tasks like the two-stage Markov  task9. While these studies found a decreased 
contribution of model-based control to choices of older  adults10–12, they also do not differentiate computational 
parameter values of model-based control like planning depth. Nevertheless, both strands of evidence suggest 
that older compared to younger adults demonstrate reduced forward planning capabilities.

Additionally, forward planning involves several fluid cognitive abilities like working memory, processing 
speed and executive  control13. These have been shown to influence model-based  learning11,14–16 and are classical 
examples for significant cognitive decline in old age starting from early  adulthood5. In related neuropsychological 
tasks, older adults usually demonstrated both, an overall slowing as well as less accurate  responses17. Previous 
findings of lower performance in model-based control in old age might be confounded with these general cogni-
tive abilities. Similarly, they might also explain differences in planning depth. We therefore included indicators 
of working memory and processing speed in assessments of forward planning as potential covariates.

In order to assess potential age-related differences in planning depth between younger and older adults, we 
designed a sequential decision-making task, the Space Adventure Task (SAT), which required participants to 
use model-based planning in order to make beneficial choices. The task further allowed to differentiate between 
different planning depths based on participants’ choices. Choices in the SAT were modelled with a reinforce-
ment learning (RL) agent model which in turn allowed us to infer planning depths with hierarchical Bayesian 
inference of free model parameters (see Methods section for details). To motivate participants, deeper planning 
yielded higher rewards. Moreover, we varied the degree of randomness in state transitions, i.e. the predictability 
of outcomes, to explore how participants adapt planning when facing different levels of uncertainty. To investigate 
to what extent differences in planning depth could be explained by classical constructs of cognitive performance, 
participants underwent a neuropsychological assessment for processing speed and spatial working memory.

Based on previous research, we hypothesized that in the SAT, older compared to younger adults should dem-
onstrate reduced forward planning capabilities indicated by lower scores and a lower inferred planning depth. 
Regarding outcome certainty, we presumed that a less predictable environment should lead to a reduction in 
planning depth. Finally, we expected performance measures for the two assessed general cognitive abilities to 
be positively associated with planning depth while not fully explaining group differences in planning depth.

Methods
Participants. Twenty-seven older adults (13 women, age above 60 years: M = 68.8) and twenty-five younger 
adults (7 women, age below 40 years: M = 26.4) took part in the experiment. The study was conducted as an asso-
ciated experiment for the larger research project "Aging and neuromodulation of forward planning under uncer-
tainty" in the collaborative research centre funded by the German Research Foundation (DFG SFB 940). Prior to 
the appointment, participants were telephone screened for potential exclusion due to psychiatric or neurological 
illness. The assessment consisted of a sociodemographic questionnaire, an eyesight test, a neuropsychological 
test battery and the SAT. The overall procedure took around 2‒2.5 h and participants were compensated with 
20 Euros plus a maximum of additional 10 Euros depending on their performance in the SAT. Ethic approval 
in accordance with the Helsinki declaration was granted by the ethic committee of the TU Dresden, Germany 
(EK 514122018). All participants signed informed consents before the start of study participation. Demographic 
characteristics and basic cognitive covariates are depicted in Table 1. Age ranged from 17 to 38 years for younger 
adults and from 61 to 75 years for older adults. Groups did not differ significantly in gender distribution accord-
ing to Pearson’s chi-squared test, χ2(1) = 2.23, p = .136.

Cognitive tests. Cognitive covariates were assessed with three computerized tasks. The Spot-a-Word Test 
(SAW) examined verbal knowledge as an indicator for crystalline intelligence and the Identical Pictures Task 
(IDP) measured perceptual processing speed as an indicator for fluid  intelligence18. Thirdly, the first subtask 
(location memory condition across both load levels) of the Spatial Working Memory Task (SWM) was used 
to test for spatial  abilities19. For brief descriptions of the tasks, see Figs. S1–S3. In each test, reaction time (RT) 
and number of correct responses were measured. Trials with reaction time below 150 ms were excluded. Perfor-
mance was calculated as achieved percentage of maximum possible number of correct responses. In line with 
previous  evidence5, independent t-tests of group means revealed that older adults showed a significantly lower 
performance in the tasks associated with fluid intelligence, the SWM (t(32.06) = 3.70, p < .001) and the IDP 
(t(50) = 7.62, p < .001). Similarly, as expected, older adults showed superior results for crystalline intelligence 
in the SAW, as indicated by a Mann–Whitney-U test (used because of non-normal distributions; Z = − 2.47, 
p = .013).

Space adventure task. The SAT is a sequential decision-making task based on a task first described by 
Huys et al.20. Participants navigated a spaceship through various planetary systems. Each system was a configu-
ration of six planets, each being one out of five possible planet types. Participants had to spend fuel to travel 
between planets but could gain fuel by arriving at specific planet types (Fig. 1A). The task goal was to accumulate 
as much fuel as possible throughout the experiment consisting of the same sequence of N = 100 mini-blocks for 
every participant.

In each mini-block, participants were presented with a specific planet configuration and starting position of 
their spaceship. A bar at the top indicated the current amount of fuel accumulated so far, as well as the number 
of remaining actions that can be performed during the mini-block (Fig. 1B). The mini-blocks were designed in 
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a way that participants had to use forward planning to find the route leading to the maximum possible fuel gain 
within a specific number of actions (two or three steps).

At each step, participants could choose to either (i) move to the next planet in a clockwise fashion, or to (ii) 
jump to a specific non-neighbouring planet. Travelling to the next planet into clockwise direction cost two units 
and jumping cost five units of fuel. The target planets for jumping were determined by a given travel pattern 
(Fig. 1C). Moreover, while moving clockwise was a deterministic action, jumping was uncertain, i.e. jumping was 
successful only with a specific probability. In case of jump failure, the jump led to one of the two neighbouring 
planets of the target planet, each with equal probability.

In addition to the available numbers of actions, the jump (transition) uncertainty was varied among mini-
blocks. In the low noise condition, jumping succeeded with a 90% probability, while in high noise mini-blocks 
(indicated by asteroids in the background) it succeeded with a 50% probability. The experiment had a 2-by-2 
factorial design with the factors ’steps’ (two or three total actions) and ’noise’ (low or high uncertainty). The 
resulting four conditions were assigned to four phases with 25 mini-blocks each. The order of these phases was 
counterbalanced between participants (see Fig. S4). For each mini-block, choice and RT data was acquired as 
well as the amount of accumulated fuel as points.

The SAT was implemented in MathWorks MATLAB R2017a and run on a standard PC. Participants con-
trolled the experiment with a computer keyboard. The move action was selected with the right arrow key and the 
jump action with the ’S’ key. Prior to the experiment, participants underwent an extensive training: they were 
informed about the goal and conditions of the task and were instructed to carefully look for the optimal route 
of actions to choose in each mini-block. Moreover, they were informed about the effect of jumping uncertainty, 
but they were not given explicit probabilities but learned success/failure probabilities over time (see also next 
section). Participants were also tested how well they had memorized the travel pattern for jumps with feedback. 
Finally, they familiarized themselves with the task procedure during 20 training mini-blocks, 5 mini-blocks per 
condition. More details on the training procedure can be found in the supplementary material.

Computational model. We modelled participants’ action choices with a mixture model of three single 
model-based RL agent models with planning depth of 1, 2 and 3 respectively. Each agent had an optimal model 
of the environment, i.e. it was completely informed about the rules of the task. This environment model entailed 
the set of available actions A =

{

′move′, ′jump′
}

 and states S (the planet configuration of the mini-block), the 
transition probabilities p(st+1|st , at) for reaching a subsequent state st+1 from a given state st with action at as 
well as the immediate reward of reaching each state r(s) indicating the planet types of the current configuration. 
Here, t denotes the trial within a mini-block. To choose the optimal action for a specific state in a specific mini-
block, the agents computed the expected cumulative reward for executing each action with an optimal forward 
planning algorithm (value iteration algorithm; a detailed formulation can be found in the supplementary mate-
rial) only limited by their planning depth.

Value iteration outputs the expected cumulative reward for executing each action a in the current state s 
with planning horizon d , which is called the state-action- or Q-values. These Q-values were the essential values 
for action selection. The higher the relative value of an action was, the higher should have been the probability 
of selecting that action. Action selection was therefore modelled probabilistically with a softmax function, one 
of the most universal assumption in the model-based reinforcement learning  literature21. For our case of two 
available actions, this corresponded to a sigmoid transformation σ(x) of the difference between the Q-values, 
�Q(st , d) . Choice probabilities were thus defined as:

(1)p
(

at =
′jump′|st , d

)

= σ(β ∗�Q(st , d)+ θ),

Figure 1.  Schematic of the Space Adventure Task. (A) Five planet types with their respective reward values 
for visiting a planet of that type. (B) Example mini-block with three steps (green squares) and low noise (black 
background). There are six planets with the yellow rocket symbol indicating the current location. The starting 
position and planet configuration varied across mini-blocks. The fuel bar at the top of the screen showed the 
remaining amount of fuel. Importantly, the fuel level was carried over between mini-blocks. (C) Travel pattern 
of the jump action. This pattern was once presented to participants for memorization and then practiced during 
training.
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Here, the inverse temperature beta ( β ∈ [0,+∞] ) controlled the extent to which differences in Q-values 
affected action selection. Higher values of beta represented higher probability to select the action with the highest 
Q-value. If beta = 0 , actions are selected with a constant probability independent of outcomes which helped iden-
tify individuals which might have ignored the experimental instructions. The parameter theta ( θ ∈ [−∞,+∞] ) 
denoted an a priori response bias, where negative values implied a bias towards choosing the deterministic ’move’ 
action, which was incorporated to capture a potential risk-averse tendency of  individuals22.

Since the state transition probabilities for the jump action p
(

st+1|st , at =
′jump′

)

 were not given explicitly 
during training, we assumed an experience-based learning process of the corresponding state transition prob-
abilities for the high and low noise condition respectively. The belief about the probability that a jump at trial t 
will be successful ρt = p

(

st+1 =
′target′|st , at =

′jump′
)

 was updated using the temporal difference rule:

depending on the experienced success (ot = 1) or failure (ot = 0) of a jump. The learning rate parameter alpha 
( α ∈ [0, 1] ) modelled how fast participants changed their beliefs about the probability of transition success. 
Larger values of alpha could also be interpreted as faster forgetting of prior experience and stronger reliance on 
recent outcomes.

Planning depth and parameter inference. To infer the four described free model parameters, inverse 
temperature beta, response bias theta, learning rate alpha and planning depth ( d ), from participants’ choices, we 
used a hierarchical probabilistic model of free parameters and the approximate Bayesian inference scheme for 
computational feasibility. For a detailed description of the parameter inference, please refer to the supplemen-
tary material (Eq. S4 ff.). In simplified terms, we combined the above-described choice probabilities of the three 
RL agent components with planning depth d ∈ {1, 2, 3} in the form of a mixture model. The likelihood of our 
probabilistic model, i.e. the probability of choosing a specific action in a given mini-block, was thus defined as:

where p(db = d) denotes the probability each planning depth has and acts as a weight of the choice probability 
of the corresponding agent in the mixture model, where p(db = 3) was set to zero for two-stage mini-blocks. 
Moreover, p(ab|sb) and p(ab|sb, db = d) are also functions of the model parameters (β , θ ,α) described in the 
previous section (compare Eq. S6). These had to be marginalized out in order to retrieve a marginal posterior 
distribution over planning depth. As illustrated in Fig. 2, the mean of marginal posterior samples of planning 
depth for one mini-block was a categorical distribution. We calculated the mean of this distribution to get a mean 
planning depth per mini-block. Importantly, we assumed that forward planning should mostly happen before 
the first action of each mini-block. Hence, for the model inversion (parameter inference), we have constrained 
behavioural data only to the first choice in each mini-block being either move or jump.

To account for the limited amount of behavioral data, and for expected within group similarities in par-
ticipants responses, we designed the probabilistic generative model in a hierarchical fashion with group-level, 
subject-level and condition-level priors. The parameters beta, theta and alpha were then modelled on the subject-
level, while planning depth d was modelled on the mini-block-level. As an analytical solution for the posteriors 
of the parameters was intractable and also Markov chain Monte Carlo methods were computationally infeasible, 
we instead used the stochastic variational inference scheme from the probabilistic programming library Pyro 
v1.5.223 to approximate the posterior distributions. Importantly, we ensured using simulations that assumptions 
we made for approximate posteriors are qualitatively good and that we can recover both parameters and planning 
depth with high accuracy. For this, we fixed model parameters to the inferred values and simulated behavioral 
responses for the same number of subjects. Using the same inference scheme, we again inferred posterior param-
eter distributions from these responses and validated that the true parameter values fall within the 95% credible 
interval of the estimates. Finally, we also validated that we can recover the actual planning depth on individual 
trials by ensuring that for at least 95% of posterior samples, the true planning depth had the highest probability.

Statistical analysis. Having formalized the within-subject cognitive mechanism with a generative model 
(Eqs. 1–5), we then followed the standard procedure and next analyzed estimated parameters and additional 
between-subject variables with classical statistical tests. To analyze mean planning depths, we first calculated 
mean values for each subject and condition to compare groups and experimental conditions. To analyze the 
differences between groups in more detail, we set up a linear mixed effects model with random intercept and 
random slopes to test the effects of age group, noise and steps condition on planning depth. We also included 
condition-by-group interaction terms. In a second analysis, we tested to what extent mean planning depths can 
be explained by performance in tasks measuring fluid cognitive abilities. For this purpose, we aggregated sub-
ject-wise mean planning depths over the whole task and linearly regressed them on the performance outcomes 
of the IDP and the SWM as well as a group indicator. To investigate the role of planning time, we also included 
SAT reaction time as a predictor. A detailed description of the models can be found in the supplementary mate-
rial (Eq. S20 ff.). As planning depth was the main focus of our study, we decided to use a simple two-sample 

(2)where σ(x) =
1

1+ e−x

(3)�Q(st , d) = Q
(

at =
′ jump′, st , d

)

− Q
(

at =
′ move′, st , d

)

.

(4)ρt+1 = ρt + α(ot − ρt),

(5)p(ab|sb) =
∑3

d=1
p(db = d)p(ab|sb, db = d)
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t-test for group comparison of the remaining outcomes, i.e. SAT performance, reaction times, cognitive covari-
ate performances and the remaining model parameters (alpha, beta, theta). As a measure of SAT performance, 
we calculated the achieved percentage of the maximum possible fuel score. If the normality assumption was 
not met, as indicated by a significant Shapiro–Wilk test statistic, we compared results with the non-parametric 
Mann–Whitney-U test. If variances were unequal, as indicated by Levene’s test, we checked results with Welch’s 
t-test. However, if there was hardly any difference in results of the alternative procedures compared to the stand-
ard t-test, we still report t-test statistics for better readability. To evaluate the quality of our computational model 
of participants’ choices in the SAT as described in the previous section, we analyzed how well the fitted model 
parameters explain variance in behavior. For this purpose, we linearly regressed SAT performance on all compu-
tational model parameters (mean planning depth, alpha, beta, theta).

All statistical analyses were carried out using IBM SPSS Statistics (Version 28) with a significance level of 
α = 0.05. For outlier analysis, we decided to exclude mini-blocks with an RT below 150 ms, which is a common 
timeframe for solely perceptual and motor  processes24.

Results
Descriptive statistics and group comparisons are depicted in Table 1. During outlier analysis, none of the SAT 
mini-blocks had to be excluded. However, there was one trial in the SAW and in the SWM with a reaction time 
below 150 ms that had to be excluded.

Planning depth and performance. The overall mean planning depth in older adults was approximately 
0.3 steps lower compared to younger adults, see Fig. 3A. When taking into account intercept and noise in the 
linear mixed effects analysis (estimated parameters depicted in Table 2), this difference was statistically signifi-
cant as indicated by the fixed group effect, t(53.90) = − 5.10, p < .001. Moreover, the number of steps significantly 
predicted mean planning depth, such that an increase in the number of actions that could be performed sequen-
tially lead to deeper planning, t(52.14) = 14.93, p < .001. Although the steps effect showed considerable variation 
between subjects, there was a strong positive steps effect for almost all subjects. The effect of the noise condi-
tion was not significant, t(104.31) = .52, p = .607, i.e. participants did not change their planning depths when 
exposed to the condition with high uncertainty on jumps. This effect also did not show relevant between-subject 
variation. The interaction terms did not yield any significant effect for group*noise, t(104.43) = 1.16, p = .249, or 
group*steps, t(52.14) = .74, p = .465.

Performance (percentage of maximum possible points gained) was significantly lower for older adults, 
t(50) = 4.22, p < .001 (see Fig. 3B). There was no significant difference in mean reaction times between groups, 
only a visual trend of tendentially faster mean reaction times for older adults, t(50) = 1.94, p = .058 (see Fig. 3C). 
Across conditions and groups, longer reaction times in the SAT were associated with deeper mean planning 
depths (r = .512, p < .001) and higher SAT performance (r = .624, p < .001). SAT performance and planning depth 
also showed a significant positive correlation (r = .861, p < .001).

Figure 2.  Ternary Plot of Prior Distribution and Marginal Posterior Samples for Planning Depth of one Mini-
block. (A) Uniform Dirichlet prior distribution for planning depth (top) with mean prior corresponding to a 
uniform categorical distribution (bottom). (B) Exemplary marginal posterior samples for planning depth of 
one mini-block depending on first action being either jump or move (top) where the mean marginal posterior 
corresponds to a categorical distribution (bottom).



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7692  | https://doi.org/10.1038/s41598-023-33274-0

www.nature.com/scientificreports/

Cognitive covariates. Older adults showed a significantly lower performance in the tasks associated 
with indicators of fluid intelligence, i.e. the SWM (t(32.06) = 3.70, p < .001) and the IDP (t(50) = 7.62, p < .001, 
see      Fig. 3B). A correlation analysis revealed significant associations of mean planning depth with IDP perfor-
mance (r = .37, p < .01) and SWM performance (r = .32, p < .05). Including these covariates in a linear regression 
model of subject-wise mean planning depths (see Table 3 for parameter estimates) did not yield any significant 
effect for these predictors. Controlling for these covariates as well as speed in the SAT, the group variable still 
indicates a significant difference in planning depth between groups.

Model parameters. We found that values for learning rate α were overall close to zero suggesting stable 
beliefs about transitions uncertainties during the experiments. Learning rates for older adults were significantly 
lower compared to younger adults, t = 3.26, p ≤ .01 (see Fig.  3 D). Older adults showed a significantly lower 
inverse temperature β , t(34.74) = 3.97, p < .001 indicating higher response noise. The response bias θ differed sig-
nificantly between groups, t(50) = − 3.35, p < .01. This means that younger adults showed a significant response 
bias towards the deterministic "move" action indicated by a negative theta value, t(24) = − 3.37, p < .01, whereas 
older adults showed no bias significantly different from zero, t(26) = 1.92, p = .066.

All model parameters (mean planning depth, α , β , θ ) explained 88.2% of the variance in SAT perfor-
mance (R2 = .882) with a significant contribution of mean planning depth (Beta = .528, p < .001) and β 
(Beta = .500, p < .001). Detailed results of the underlying linear regression can be found in the supplementary 
material.

Discussion
In this study, we aimed at assessing how planning depth is modulated by old age. We found that in our sequen-
tial decision-making task that required forward planning in order to maximize outcomes, performance was 
lower in older adults compared to younger adults, i.e. they collected less points. Using a model-based analysis, 
we found in older adults lower inferred planning depths and higher response noise. Notably, older adults also 
showed substantially lower performance in cognitive tasks measuring processing speed, working memory and 
in our forward planning task slightly (trend-wise significant) faster reaction times. Even when controlling for 
lower processing speed, spatial working memory and reaction times, we still found the robust result of lower 
planning depth in older adults.

Our main finding of reduced planning depth in older adults is in line with established findings of cognitive 
 aging17 and evidence from classical planning  tasks8. Moreover, planning depth of both groups increased with 
task complexity in the form of a deeper decision tree (2-steps to 3-steps condition) while the difference between 
age groups did not change (group*steps interaction). Interestingly, in the 3-steps condition most subjects, on 
average, planned ahead 2 or more steps, but planned ahead less than 2 steps in in the easier 2-steps condition. 
This indicates that in the SAT, not only the ability to plan but also invested effort plays a crucial role. This 
assumption is well in line with recent proposals of how cognitive control is regulated such as the Expected Value 

Table 1.  Descriptive statistics and group comparison of model parameter and task outcomes. Scores represent 
means and standard deviations (in parenthesis). For the Space Adventure Task, performance was defined as 
percentage of maximum possible points gained. For the other tasks, performance indicated percentage of 
correct trials. a Z-statistic and corresponding asymptotic p-value based on non-parametric Mann–Whitney-U 
test as groups’ distributions deviated strongly from normality. b Pearson’s chi-squared test statistic with one 
degree of freedom and corresponding p-value.

Younger adults (N = 25) Older adults (N = 27) t p

Sample characteristics

 Age 26.4 (5.7) 68.8 (3.4)

 Gender (F/M) 7/18 13/14 2.23b .136b

Model parameters

 Mean planning depth 2.1 (.3) 1.8 (.2) 4.14 < .001

 Learning rate alpha .0 (.1) .0 (.0) 3.26 < .01

 Inverse temperature beta 1.8 (.8) 1.1 (.4) 3.97 < .001

 Response bias theta − .2 (.3) .2 (.6) − 3.35 < .01

Task performances (%)

 Space adventure 57.7 (17.7) 38.2 (15.7) 4.22 < .001

 Spot-a-word 62.2 (12.5) 69.9 (16.6) − 2.47a .013a

 Spatial working memory 91.2 (7.3) 74.6 (22.1) 3.70 < .001

 Identical pictures 65.7 (9.3) 45.8 ( 9.5) 7.62 < .001

Task reaction times (s)

 Space adventure 6.8 (3.9) 5.0 (2.6) 1.94 .058

 Spot-a-word 5.5 (1.9) 5.7 (1.8) − .41 .684

 Spatial working memory 1.3 (.3) 1.7 (.4) − 4.44 < .001

 Identical pictures 2.4 (.3) 3.5 (.7) − 7.66 < .001
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Figure 3.  Mean Planning Depths, Task Outcomes and Model Parameters. (A) Mean planning depths in the 
Space Adventure Task (SAT) plotted for the whole task (left), over the two noise levels (middle) and numbers 
of steps (right). Small dots indicate mean values for individual participants. Large dots and bar plots represent 
group means. White small dots indicate boxplot medians. Error bars indicate 95% confidence intervals. 
(B) Density kernel estimate (DKE) plots and boxplots of subjects’ performance in the tasks. For the SAT, 
performance was defined as percentage of maximum possible points gained. For the Spot-a-Word Test (SAW), 
the Spatial Working Memory Task (SWM) and the Identical Pictures Task (IDP) performance indicated 
percentage of correct trials. (C) DKE plots and boxplots of reaction times for tasks with time limit (left) and 
without (right). (D) Raincloud plots of estimated model parameters at the subject-level: learning rate alpha, 
inverse temperature beta and response bias theta. Note that for alpha, the y-axis is transformed to the log-scale 
for better visualization of the densities.

Table 2.  Estimates of linear mixed effects model for mean planning depth.  The covariance parameter for 
Noise was redundant as interindividual variance was too small. The confidence interval could not be computed 
by SPSS. CI = confidence interval; LL = lower limit; UL = upper limit.

b SE b

95% CI b

Random Effect (η) SE η

95% CI η

LL UL LL UL

Intercept 1.74 .05 1.64 1.84 .061 .012 .041 .090

Noise .01 .01 − .02 .03 .000 .000 – –

Steps .69 .05 .59 .78 .049 .010 .032 .074

Group − .36 .07 − .50 − .22 – – – –

Group*Noise .02 .02 − .01 .06 – – – –

Group*Steps .05 .06 − .08 .18 – – – –
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of Control (EVC) framework or accounts of computational  rationality25,26: if people plan in a resource-rational 
manner, they should balance the costs and benefits of investing cognitive resources to plan deeper. On the cost 
side, forward planning was probably more demanding for older adults because they had to compensate for more 
limited cognitive resources. On the benefit side, evidence from neuroimaging suggests that reward sensitivity is 
shifted from monetary reward to social reward in old  age27. Because participants in the SAT were rewarded with 
a performance dependent amount of money, the benefits of planning might have been lower for older adults. 
Therefore, the expected value of control/planning was probably reduced in older adults which might have led to 
lower motivation and planning depth, or the use of simpler, less costly heuristical forward planning  algorithms20. 
This would also explain why older adults reacted faster in the SAT in our sample and the association of RT and 
planning depth in our study. RT is a well-known indicator of cognitive cost of the underlying  computations28. 
Nevertheless, the group differences in planning depth remained significant when controlling for reaction time. 
This indicates that additional differences are at play and that group differences are not just due to a difference in 
trading off planning depth and speed. Explicitly modelling such hypothetical alternative planning algorithms 
in future model comparison studies of forward planning could provide further insight.

Differences in effort allocation between both age groups might also explain why neither spatial working 
memory nor processing speed were significant predictors of mean planning depth. The tasks used to measure 
general cognitive performance are not reward-based but motivate participants with time pressure. Therefore, 
weighing up effort and reward might play a minor role. In the SAT however, we assume that especially in the 
2-steps condition individual limits of storage were mostly not reached due to reduced effort and reduced alloca-
tion of cognitive resources.

A second explanation of lower task performance suggests that older adults, although extensively trained, build 
noisier task  representations29–31. This effect could also underlie lower inferred planning depth. For all applied 
RL agent models, correct task knowledge was assumed but older adults might have forgotten aspects of the 
task during the course of the experiment. Noisy or erroneous task representations with still extensive planning 
could result in similar choices as lower planning depth with correct task models. It is even conceivable that these 
mechanisms are intertwined: noise in representations could accumulate during forward planning computations 
and lead to less precise outcome predictions with deeper planning, which would effectively result in a gradual 
limitation of planning depth. Another line of argument from Jiang et al.32 elaborates further. These authors show 
mathematically that in the case of incorrect task models, limitation of planning depth can even be beneficial as 
it can avoid overfitting in policy selection. In other words, they show that it is useful not to set up far-reaching 
plans on imprecise knowledge. Transferred to the SAT, this means that participants might continuously esti-
mate the uncertainty of their belief over the task structure, e.g. the travel pattern or transition probabilities. 
This uncertainty is presumably higher in older adults and therefore they might have dynamically adapted their 
planning horizons. Unfortunately, the set of possible incorrect or noisy task representations is extremely large 
making exact inference practically infeasible. In the context of the present study, deviations from correct task 
representations might therefore instead partly be reflected in lower inverse temperature values, which was the 
case for older adults.

A third explanation for reduced task performance is that group differences could also have been driven by 
processes independent from the computation of the prediction, e.g. by constantly increased response noise. The 
latter is well captured by the inverse temperature parameter, which indeed was decreased in older compared 
to younger adults. This could explain why we only found main effects of age group and task complexity but no 
group*steps interaction effect. Moreover, this parameter was—besides planning depth—the best predictor of 
performance in the SAT, clearly indicating a central influence of response noise on outcomes of forward plan-
ning. Though higher response noise well accounts for lower task performance (more random choices), it does not 
explain lower planning depth, since both parameters of the computational model are theoretically independent.

Limitations. Contra-intuitively, inferred planning depth was almost equal between the high and low noise 
condition for both groups. This is inconsistent with a previous study that found decreased model-basedness 
when state transitions were less predictable in the two-step  task33. Post-hoc simulations revealed that this result 
was most likely caused by a suboptimal design of the task: high noise mini-blocks yielded on average higher 
rewards and were presented at a later stage during the experiment. Thus, motivation and learning effects are 
potential confounding variables for the noise effect. We therefore refrain from any interpretations here and will 
instead work on an improved version to address this in the future.

Table 3.  Linear regression analysis. CI = confidence interval; LL = lower limit; UL = upper limit. Model 
Summary: R2 = .410; Adj. R2 = .360; SE = .258.

Predictor

Unstandardized 
coefficients Standardized coefficients

t p

95% CI b

b SE Beta LL UL

Intercept 1.80 .28 6.309 < .001 1.12 2.37

Group − .25 .11 − .40 − 2.367 .022 − .47 − .04

IDP_PER (%) .00 .00 − .02 − .116 .908 − .01 .01

SWM_PER (%) .00 .00 .04 .306 .761 .00 .01

SAT_RT (s) .04 .01 .40 3.356 .002 .02 .06
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Furthermore, we cannot exclude that older adults might have forgotten aspects of the task during the course 
of the experiment. For future studies, we therefore aim at using a simplified version of the task to minimize this 
potential confound.

There are two other potential limitations of the current work that we wish to address: first, the cross-sectional 
design of our study did not control for systematic differences in computer (game) experience between the two 
cohorts. This could be a significant confounder of the age effect which should be considered in further investi-
gations, e.g. by longitudinal studies or by attempts of measuring the amount of computer experience directly.

Second, we propose a limitation of planning depth as a mechanism to keep model-based control affordable 
and our computational model showed good validity as the model parameters could explain most of the variance 
in planning performance. However, we want to highlight that our model just captures one example out of a variety 
of possible planning algorithms and that humans most likely apply multiple  strategies20,29, which seems to be 
especially relevant for older adults. This is also indicated by the inverse temperature parameter which—besides 
response noise—can also capture mismatch between model and data. Higher response noise (lower inverse 
temperature) in older adults could therefore also point towards older adults using alternative heuristical strate-
gies which are not covered by our model.

Conclusion
Taken together, our findings strongly point towards an age-related reduction of forward planning that cannot 
be explained by reduced cognitive abilities (i.e. working memory or processing speed) in older adults. Rather, 
reduced task performance in older adults seems to be partly due to higher randomness of their choices (higher 
response noise) and reduced depth of forward planning. We speculate that the reduction of planning depth in 
older adults is driven by reduced allocation of model-based effort, with older adults seemingly applying lower-
cost strategies. Noisier task representations might also play a role in this process. We assume that additional 
strategic differences are at play and that group differences in planning depth are not just due to differences in 
trading off costs and benefits of planning. Explicitly modelling and testing these hypothetical alternative planning 
algorithms in future studies of forward planning could shed more light on this issue.

Data availability
All data generated or analysed during this study along with the code and scripts necessary to perform the model-
based inference and statistical analyses are available in the plandepth_age Github repository, https:// github. com/ 
jeffe nsen/ pland epth_ age.
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