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Quantum annealing 
for microstructure equilibration 
with long‑range elastic interactions
Roland Sandt 1*, Yann Le Bouar 2 & Robert Spatschek 1,3

We demonstrate the use and benefits of quantum annealing approaches for the determination of 
equilibrated microstructures in shape memory alloys and other materials with long‑range elastic 
interaction between coherent grains and their different martensite variants and phases. After a 
one dimensional illustration of the general approach, which requires to formulate the energy of the 
system in terms of an Ising Hamiltonian, we use distant dependent elastic interactions between 
grains to predict the variant selection for different transformation eigenstrains. The results and 
performance of the computations are compared to classical algorithms, demonstrating that the new 
approach can lead to a significant acceleration of the simulations. Beyond a discretization using simple 
cuboidal elements, also a direct representation of arbitrary microstructures is possible, allowing fast 
simulations with currently up to several thousand grains.

The modeling of microstructures is an important approach to the understanding, improvement and develop-
ment of new materials for various applications. However, as mechanisms at different length and time scales are 
intimately linked, such descriptions and model implementations are typically challenging and require massive 
computational resources. Although phase field simulation approaches – the most prominent method for predict-
ing microstructure evolution – strongly benefit from developments like the thin interface  limit1,2, nondiagonal 
phase field  models3,4 and sharp phase field  approaches5, simulations containing large microstructural domains 
to obtain predictions with a certain statistical significance are rare, strongly limited by the available (super-)
computer resources and their associated costs and energy consumption. Despite the enormous progress in this 
research field and the extended use of parallel computers and graphics cards for the simulations, limitations 
of the computational techniques remain a serious thread to the basic scientific progress and applied research.

One of the striking questions, which arises at the horizon of materials science modeling is how quantum 
computing will potentially change the simulation landscape in the future. However, at present a general-purpose 
quantum computer of sufficient size is not yet available. In the meantime, a technology known as quantum 
annealing (QA)6–10 has emerged and is available on several sites worldwide. The use of such machines differs 
significantly from traditional gate based computers and therefore currently only specific problems can be handled 
by quantum  annealers11. The concept of a quantum annealer is that its qubits are initialized in a well defined 
state which is described by a Hamiltonian with a unique ground  state12. During the operation at cryogenic tem-
peratures, this Hamiltonian is changed adiabatically such that the ground state converts into the one of the final, 
desired  Hamiltonian12,13, and therefore allows to perform global energy minimization computations efficiently. 
The structure of these Hamiltonians is a binary quadratic model, which can be expressed in terms of a quadratic 
unconstrained binary optimization or equivalently through an Ising  model11. Due to this specific structure, so 
far, materials science related applications of this technology are still rare. Instead, actual research focuses mainly 
on the benchmarking and performance tests of quantum annealing compared to classical  approaches14–16.

Some first applications in the field of biology and traffic research in the sense of optimization problems have 
been developed recently. Here, quantum annealing enables the efficient analysis of transcription factors in gene 
expression with combined machine learning  algorithms17, identification of conformations of lattice protein 
 models18 and their  folding19, detection of tree cover in aerial  images20, real-world traffic flow optimization 
 problems21 or control of automated guided  vehicles22. However, the usage of quantum annealing in materials 
science is not widespread and few publications correspond to phase transitions in the transverse field Ising 
 model23, the investigation of critical phenomena in frustrated magnets via the Shastry-Sutherland Ising  model24, 
Monte-Carlo  sampling25 and the automated materials design of  metamaterials26. The purpose of the present paper 
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is therefore to demonstrate that this novel technology can indeed lead to completely new possibilities beyond 
the existing and commonly used descriptions for the modeling of microstructures.

In order to be as explicit and illustrative as possible, we demonstrate here the case of coherent solid state 
transformations involving austenitic and martensitic phases, where the latter are allowed to appear in different 
variants. Such transitions play a role for shape memory alloys like NiTi, which can be deformed easily at low 
temperatures, but heating to higher temperatures lets the material return to its previous, trained  shape27. The 
modelling and mapping of shape memory alloys to spin glass systems was previously established in several 
 studies28–31 and can here be exploited for QA applications. In the following we will mainly stick to the terminology 
of the shape memory alloys but emphasize that similar approaches can be used to model e.g. the transforma-
tion and deformation behavior in steels, ferroelastic materials, as well as phase changes in solid electrolytes for 
rechargeable batteries. The particular aspect that plays a central role here are the anisotropic long-range elastic 
interactions, which are common for solid state  transformations32, and therefore the ground state configuration 
does not only depend on phase concentrations and fractions, but also on the detailed microstructural arrange-
ment of phases and grains. In a typical phase field  simulation33, the microstructural evolution is solved together 
with the relaxation of the mechanical deformations in the spirit of a continuum description, which leads to very 
long simulation times. Here, we show that the separation of the discrete degrees of freedom for the variant dis-
tribution of martensitic phases from the continuous development of the microstructure and the QA treatment 
allow to drastically increase the performance of the computations and therefore to simulate significantly larger, 
application relevant systems compared to existing approaches.

Results
One‑dimensional model. For a simplified 1D model we consider only a “martensitic” phase which is 
assumed to exist in two different variants. Hence the microstructure consists of a line of grains of these variants, 
as depicted in the inset of Fig. 1a. To be explicit, we assume that both variants have a stress free strain (eigen-
strain), which leads to a shear deformation relative to the austenitic mother phase, and denote these variants by 
state variables si = ±1 . As in the end we will map the description to a one-dimensional Ising model, we also 
use here the terminology of “spins” with two possible alignments in the spirit of a magnetic model. As each of 
the variants leads to a shearing of the cell, we get an overall stress free deformation of this line (compared to 
the shear strain free austenite), depending on the spin configuration. We assume that all grains have the same 
height d , the same elastic constants, and opposite shear eigenstrain ±ε0 . As one can readily see from the inset 
of Fig. 1a, the stress free equilibrium position of the top grain x0 depends only on the number of variants N+ 
with orientation si = +1 and N− with si = −1 , but not on the individual arrangement, which is a particular-
ity of the simplified 1D model and the chosen eigenstrain. Hence, for a fixed number N = N+ + N− spins 
in a row, the macroscopic stress free strain is ε̄ = (N+ − N−)ε0/N , which leads to x0 = Ndε̄ . If an external 
deformation is enforced, i.e. x  = x0 the elastic energy is Fel = µeff(x − x0)

2 with an effective shear modulus 
µeff  . Obviously, the elastic energy is minimized if the spin configuration is such that x = x0 , which implies 
(N+ − N−)min = x/ε0d , up to the point of saturation, where all spins are aligned. This expression serves as 
reference for the comparison with the numerical minimization approaches below. We note that we neglected at 
this stage the discrete nature of the variants, which means that the integer value N+ − N− should be as close as 
possible to the continuum value (N+ − N−)min above. Although the energy in the simple 1D model does not 

Figure 1.  Results of the one-dimensional model comparing different numerical and analytical methods. 
(a) Mean variant orientation (N+ − N−)/N as function of the displacement x/dNε0 . Comparison between 
the results obtained by numerical minimization (solid lines) versus the analytical theory for an infinite 
and continuous system (dashed line). For large displacement, all “spins” are aligned and therefore the 
“magnetization” saturates. The inset shows a sketch of the one-dimensional arrangement of martensite variants 
si = +1 (red) and si = −1 (green). The bottom row is fixed to position x = 0 , whereas the top grain has a mean 
position x0 in the stress free state. If an additional external stress or strain is applied, the top layer is moved to 
position x, and the entire microstructure is sheared to the dashed configuration. (b) Elapsed computation time 
as a function of the number of grains. Different methods and algorithms are compared. Dashed parts of the QA 
curve belong to the regime of chain breaks. For large system sizes, only the hybrid quantum annealing approach 
remains feasible, showing an almost constant computing time need for less than 1000 spin variables (inset).
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depend on the arrangement of the variants but only on the total numbers N+ and N− = N − N+ , we formulate 
the model here on the level of the individual “spins” si for the later extension towards higher dimensions and 
the use of the quantum annealer. Hence we get N+ − N− =

∑
i si . Inserting this into the elastic energy expres-

sion yields Fel = µeffε
2
0d

2
∑

i,j sisj − 2µeffxε0d
∑

i si + µeffx
2 , where the summations run over all spins. For the 

implementation on a quantum annealer, we need to bring this to the Ising form of a Hamiltonian H with

where the first term corresponds to the interaction with an external magnetic field hi and the second term to a 
spin-spin interaction, which favors ferromagnetic (antiferromagnetic) ordering in case that the coupling constant 
Jij is negative (positive). The last, spin-independent term H0 is only an irrelevant additive constant. From the 
comparison of the two above expressions we identify hi = −2µeffxε0d and Jij = 2µeffε

2
0d

2 . First, we note that 
the external deformation is here analogous to the magnetic field in the Ising description. Second, the spin-spin 
interaction term Jij is positive, hence favoring “antiferromagnetic ordering”. Also, this term is independent of 
the spin numbers i, j, which means that this interaction does not depend on the distance between the grains. In 
other words, the elastic interaction depends only on the averaged “magnetization” N+ − N− , which implies a 
mean field interaction.

The goal of the formulation is to minimize the elastic energy and to find the optimal spin or variant con-
figuration {si} . To this end, we use three different numerical approaches (see methods section), and the results 
are compared to the analytical solution above: First, a brute force approach iterates over all spin configurations 
to find the energetic minimum exactly, second we use simulated annealing as probabilistic ground state finder, 
and finally the quantum annealing approach. Fig. 1a shows the resulting “magnetization” (N+ − N−)/N , i.e. the 
average variant orientation, as function of applied displacement x/dNε0 , which corresponds to the magnetic 
field in the Ising model.

As expected, the results agree with the analytical theory up to the aforementioned discretization effect, which 
becomes less pronounced for large grain numbers. For high displacements saturation sets in when all variants 
are de-twinned, which means that all spins are either in the state +1 or −1 . We note that for the investigated 
number of spins all used algorithms lead to the same energy minimum, which confirms that also the probabilistic 
approaches indeed find the global minimum states.

Fig. 1b shows the required computation time for the different methods and algorithms as a function of the 
number of grains N. All conventional algorithm implementations are based on single core computations without 
parallelization and are mainly shown for a qualitative comparison, as the focus of the investigations is on the 
quantum annealing approach. For the latter, we use quantum processing unit (QPU) implementations up to the 
highest possible number of spins (typically N ≈ 170 for the Pegasus  architecture34 of a D-Wave machine). The 
brute force approach, where iterations over all spin configurations are run, has the highest computation time. 
Even at small spin systems of around N ≈ 40 the elapsed user time was too large for practical applications due 
to the simulation time scaling ∼ O(2N ) . The pure quantum annealing method produces the fastest results and 
ends up with an almost constant elapsed QPU access time. Overall, the computations for N ≈ 150 are roughly 
three orders of magnitude faster than for the other classical approaches. Beyond around N ≈ 50 spins, so called 
chain  breaks35 occur occasionally. They result from the need to encode strongly coupled spins as a single logical 
spin. Ideally, these spins should represent the same state as the individual spins, but in practise this identity can 
be violated. To avoid this issue and to simulate even larger systems, which are essential for higher dimensional 
modeling in the following sections, hybrid classical and quantum annealing approaches can be used, which com-
bine pure QA with conventional minimization  approaches36. The numerical results in Fig. 1b show an increase 
of the computation time of the hybrid solver compared to the pure QA, but the relative acceleration compared 
to the classical algorithms becomes even more striking. For the hybrid solver, the elapsed computation time is 
essentially independent of the number of spin variables and increases only beyond 103 grains to several seconds. 
Altogether, the hybrid QA is clearly the fastest approach for large grain numbers and is therefore used in the 
following two-dimensional simulations.

Transformations in higher dimensions. For the determination of the linear elastic energy beyond one 
dimension, we consider coherent precipitates of different variants which form inside the matrix. In this way, the 
entire material can be considered to consist of small entities (in the following denoted as grains), which can be 
in one of the different martensitic states. The simplest possible (cartesian) discretization is to use small cuboidal 
grains with edge length a. All grains are assumed to be coherent (the elastic displacements and tractions are 
continuous at the interfaces between the grains), and we use homogeneous elasticity, i.e. we ignore differences 
in the elastic constants between the different phases or variants. This has the consequence that the elastic energy 
reduces to combinations of pairwise interactions between all  grains37.

For demonstrational purposes we perform here two-dimensional simulations in a plane strain setup, but a 
transfer to three dimensions is straightforward. In particular, the annealer part does not depend on the dimen-
sionality of the description. The qualitatively new aspect beyond 1D is the appearance of distance and orientation 
dependent “spin-spin” interactions, which decay only slowly with the distance between the grains, and therefore 
leads to fully populated matrices Jij . As it turns out that an accurate determination of the elastic interaction 
energy is essential for a precise prediction of the equilibrium microstructure, we use Fourier transformation 
approaches with periodic boundary conditions as outlined in the methods section. As boundary conditions, 
we use either vanishing average stress in the periodic volume V, �σij� = 1

V

∫
σij(r) dr = 0 , or, similarly to the 

1D description, a given average strain 〈εij〉 . We employ in the following for simplicity isotropic elasticity, which 
is e.g. described by the Lamé coefficient � and the shear modulus µ , i.e. the stress-strain relationship reads 

(1)H =
∑

i

hisi +
∑

i<j

Jijsisj +H0,
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σij = 2µ(εij − ε
(0)
ij )+ �δij(εkk − ε

(0)
kk ) , where implicit summation over repeated indices is used. The position 

dependent eigenstrain ε(0)ij (r) is known for a given microstructure with fixed phase dependent stress free strains 
(relative to the austenitic mother phase), ε(0)ij (r) = θ(r)ε0ij , where the indicator function θ is zero in the austenite 
and either +1 or −1 in the two considered martensite variants. For a given microstructure, the elastic energy can 
then be computed in reciprocal space, as shown in the methods section. For the formulation as Ising model we 
discretize our microstructure using small non-overlapping cuboidal grains as discussed above and assign a “spin” 
si to each of them like before, such that the indicator field becomes a superposition θ(r) =

∑
i siθi(r) , where θi 

equals one inside the corresponding square and is zero outside. Therefore, the elastic energy decomposes into 
pairwise interactions (for i  = j ) and self-energy terms (for i = j)

where the integral kernel B(r) is defined through the inverse of the elastic Green’s function. Hence, it is sufficient 
to perform the Fourier transform energy calculations for all pairs of the same martensite variant si = sj = 1 on the 
discrete lattice sites in the volume V; for periodic boundary conditions and identical grain shapes, it is sufficient 
to calculate the elastic interaction energy between a reference grain and all the other grains, due to translation 
invariance. In case of fixed average strain boundary conditions, an additional homogeneous term appears (see 
methods section), contributing both to the spin-spin interaction Jij as well as to the magnetic field term hi , which 
is absent for zero average stress boundary conditions. The resulting fully populated matrix of coupling constants 
with both positive and negative entries has similarities to spin glass systems with random couplings, which have 
been investigated in the literature with conventional approaches, see e.g.38.

For the simplest case that the eigenstrain is purely dilatational and isotropic the Bitter-Crum theorem applies 
and the total energy depends only on the volume fraction of the martensite variant, where no interaction between 
the grains is present and only a self energy term  remains39.

For a nontrivial elastic interaction and the link to the previous 1D description, we consider a shear trans-
formation strain with ε0xy = ε0yx = ε0 , where all other components vanish. In this case, we obtain a distance and 
orientation dependent interaction as depicted in Fig. 2a, which is computed here for the case of vanishing average 
stress, �σik� = 0 . Here and in the following parts the Poisson ratio is chosen as ν = 1/4 (i.e. � = µ).

The interaction energy is obtained by subtracting the elastic self energies Eself  for each of the two (isolated) 
martensite grains inside the austenitic matrix from the total elastic energy Eel of the two-grain arrangement, 
i.e. Eint = Eel − 2Eself  , to normalize the interaction energy such that it decays to zero for large grain separations. 
For short distances, a transition between attraction and repulsion is found for the 〈100〉 direction, whereas a 
purely repulsive interaction results for the diagonal 〈110〉 directions. Due to the periodic boundary conditions, 
the result depends on the system size V = Lx × Ly , as the grains also interact with their periodic images, hence 
r ≪ Lx , Ly is required to observe the decay of the interaction.

We note that in two dimensions the interaction energy decays asymptotically as r−2 , whereas in three dimen-
sions it scales as r−3 in large systems, which follows from the elastic Green’s  function40. For the quantum annealer 
implementation, the interaction energies are needed only for the discrete lattice points (symbols on the curves). 
Although the decay of the elastic interaction may suggest to cut it off beyond a certain distance in real space, it 
turns out that such an approach is inappropriate, as it leads in the end to invalid equilibrium microstructures, 
and it is therefore essential to keep all interaction terms Jij with high precision to avoid spurious effects. We note 
that the formulation on the quantum annealer does not depend on the dimensionality, therefore the scaling plot 
in Fig. 1b applies here as well.

Based on the calculation of the elastic interactions, we obtain from the Ising model implementation on the 
quantum annealer with hybrid solver stripe patterns in 〈100〉 direction as equilibrium structures. These patterns 

(2)Ei,j = sisj
1

2V

∫

dr

∫

dr′B(r − r
′)θi(r)θj(r

′),

Figure 2.  Interaction energies of two grains of equal variant type ( si = sj ). Interaction energies in the case of 
(a) shear eigenstrain and vanishing average stress and (b) tetragonal eigenstrain. The interaction energy per 
length is given in units of �a3ε2

0
 , and the computations were done using a system size of Lx/a = Ly/a = 50 , 

where a is the edge length of the grains. At distance r/a = 0 the grains touch each other. The symbols on the 
continuous curves indicate the information for the interaction at discrete lattice sites, which is actually used in 
the annealer simulations.
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are irregular in the sense that the widths of the stripes are not uniform. This is in analogy to the 1D model, 
which was discussed above, where we found that the arrangement of the two variants is not determined. This 
coincidence, which is physically expected, is nontrivial from the model formulation, as (i) in the 1D model we 
had a distance independent interaction in the discretized model, where here the interaction is significantly more 
complex, but adds up to the same effective descriptions for the periodic arrangement; (ii) a rotation of the pattern 
by 90 degree is possible and sometimes obtained from the optimal configuration due to the discrete rotational 
symmetry; (iii) the fixing of the average stress compared to the given average strain in the 1D formulation can 
lead to unequal distributions of the different variants. In particular, for the presently considered absence of an 
external strain (implying a vanishing magnetic field in the Ising terminology), there is no constraint of the sort 
�si� = 0 for the average spin alignment. All stripe configurations are energetically equivalent, which includes the 
possibility of a single variant configuration. These results therefore confirm simultaneously the accuracy of the 
elastic interaction calculation with the pairwise decomposition as well as the ability of the quantum annealer to 
identify the true ground state configurations.

As next example, we use a tetragonal eigenstrain with the only nonvanishing components 
ε0xx = −ε0yy = ε0zz = ε0 . First, we consider again the situation with vanishing average stress, �σij� = 0 . The cor-
responding interaction energy is shown in Fig. 2b for ν = 1/4 . In this case, the equilibrium microstructure is 
trivial and consists of a single variant, as in this case the elastic energy is zero for the periodic system. Therefore, 
the situation differs from the previous shear transformation, where also lamellar arrangements with both variants 
lead to stress free situations. The reason is that any interface between two variants leads to a mismatch between 
adjacent variants for the tetragonal transformation, and therefore such a situation is energetically unfavorable 
here. A change of boundary conditions to vanishing average strain, �εij� = 0 , alters the situation, since then 
arrangements with equal amounts of both variants are preferred, as this lowers the volumic part of the elastic 
energy. In this case, we find regular inclined stripes as equilibrium pattern, as shown in Fig. 3a.

Again, the solution is not unique; in particular, due to translation invariance, the annealer returns also con-
figurations where the stripes are shifted. Also, a switch of the sign of the inclination angle φ (see definition in the 
figure) leads to energetically equivalent solutions. However, we do not find ground state configurations which 
lead to different (absolute) inclination angles or strip widths or even irregular variations of the latter, contrary 
to the shear transformation case before.

The reason for the observed ground state morphologies is a combination of continuum elasticity effects, the 
granular structure of the material and constraints induced by periodic boundary conditions. Figure 3b shows the 
computed elastic energy for different numbers of regular arrangements of stripes in the periodic system as func-
tion of the inclination angle φ . Here we see a pronounced influence of the grain size, as the elastic energy of con-
figurations with regular stripe pairs with a discretization by 50× 50 grains (squares in the figure) is higher than 
for corresponding cases with very fine grains, where discretization effects do not play a role anymore (smooth 
curves). The oscillating nature is due to the periodic boundary conditions, as improper choices of the inclina-
tion angle lead to discontinuities of the stripe patterns at the boundaries, which is energetically unfavorable. 

Figure 3.  Resulting stripe patterns for tetragonal eigenstrain. (a) Equilibrium structure with three stripe pairs 
(counted along the horizontal axis) in a system consisting of 50× 50 cuboidal grains. A vanishing mean strain, 
�εij� = 0 , is imposed. The width of the stripes is uniform, consisting of grains with configuration si = +1 (red) 
and si = −1 (green). (b) Elastic energy of stripe patterns with different inclination angles φ. The solid curves 
correspond to smooth stripes (the grain size a/Lx , a/Ly ≪ 1 is negligible) and show a pronounced stationary 
point for inclinations for which the pattern repeats periodically without kinks at the boundaries. The squares 
correspond to situations with the same number of stripes, where the system is discretized by 50× 50 quadratic 
grains, leading to pronounced aliasing effects, and the resulting elastic energy is higher than for the smooth 
stripes. This shifts the energetic minimum for 6 stripe pairs at φ ≈ 40

◦ to a lower angle φ ≈ 33
◦ with 3 stripe 

pairs. The infinite system size limit for smooth stripes is depicted as black dotted curve.
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Therefore, continuous patterns correspond to the stationary points of the curves. For specific angles, the curves 
for three and six stripe pairs meet at local minima, which is a consequence of the scale invariance of linear elas-
ticity. From the smooth, continuum limit curves one would conclude that an angle of about φ ≈ 40◦ should lead 
to the energetically lowest configuration (absolute minimum of the smooth red curve). Moreover, in the limit 
of infinite systems, where periodic boundary conditions do not play a role anymore, an analytical treatment is 
possible, leading to the energy expression E∞el = VB(n)/2 for equal volume fraction of the two variants with

with n = cosφ . Energy minimization gives the optimal angle φ = cos−1 √5/8 ≈ 37.8◦ , see Fig. 3b (minimum 
of the black dotted curve).

However, these predictions disagree with the finding from the quantum annealer, which favors a configuration 
with three stripe pairs at a lower angle of φ ≈ 33◦ . This observation can be understood by consideration of the 
granular structure of the patterns investigated here, as the microstructure in the annealer simulations consists of 
50× 50 square grains. First, the explicit appearance of the length scale a breaks the scale invariance of the peri-
odic pattern, and therefore the minima of the energy curves belonging to the discrete microstructures (squares 
in Fig. 3b) do not coincide anymore at the local minima. Additionally, with increasing inclination antialiasing 
effects of the patterns become more relevant, and therefore the energy curves show an increasing disagreement 
with the continuum limit curves. As a result, the energetic minimum in the discrete microstructure indeed shifts 
toward a configuration with three stripe pairs at φ ≈ 33◦ (absolute minimum of the blue squares in Fig. 3b), which 
is in agreement with the prediction of the quantum annealer. Consequently, details of the granular structure can 
change the energetics compared to a full continuum approximation, especially since many local minima of the 
elastic energy are located close to each other.

Variant selection in realistic microstructures. The approach presented above is not limited to mutu-
ally interacting cuboidal grains, but can also be applied to realistic microstructures. To illustrate the procedures, 
we have generated a microstructure consisting of N = 400 grains using a Voronoi  tesselation41. Each grain is 
allowed to take one out of two martensite variants with the tetragonal eigenstrain tensor, and we pre-compute 
all mutual elastic interactions between them. We note that contrary to the case with the cuboidal grains in a 
periodic array here we cannot exploit translational invarince due to the different shapes of the grains, and hence 
these elastic interaction energy calculations scale here as O(N2) instead of O(N) before, although we still use 
periodic boundary conditions. Additionally, we consider now arbitrary given external strains 〈εij〉 , which leads 
to the appearance of a “magnetic” term like in the one dimensional description. With that, we can predict the 
equilibrium variant distribution within the microstructure using the hybrid quantum annealer, and this step is 
typically executed within a few seconds of runtime.

Examples for the equilibrium microstructures are shown in Fig. 4 as function of the externally applied strain 
〈εxx〉 , whereas the other average strain components vanish.

The observed microstructures are indeed similar to what we have found before using the square discretization, 
although here the band widths and orientation deviate from the previous case due to microstructural details and 
the smaller number of grains, and these effects can be explained using an analysis similar to the one done for 
Fig. 3b. We note that in these microstructures all grains have the same orientation, and therefore the application 
of a tensile strain strongly favors the selection of the grain variant si = +1 (for a compressive situation we observe 
the opposite behavior), and we find a full alignment of all variants in the last snapshot.

Additionally, we have performed the same analysis for grains with uniformly distributed random orienta-
tion, which implies a rotation of the local transformation strain tensor, see Fig. 5 for the grain orientations and 
for the variant selection.

Here, also the equilibrated spatial distribution of the variants appears to be irregular. Application of a tensile 
strain again favors the “alignment” of the variant, but this time even for high strains not all grains select the same 
variant, which is due to the local rotation. In fact, a grain, which is rotated by 90◦ with respect to the straining 
direction has a preference to be in variant state si = −1 , as then the direction of expansion is aligned with the 
external tensile strain. This can be clearly seen e.g. in Fig. 5(c) for the highest tensile strain in x direction, where 
the remaining patches with “spin” si = −1 correspond to the grains with orientation close to π/2 (or 3π/2 ). We 
emphasize that for a given microstructure (shapes of all grains) the mutual elastic grain-grain interactions have 
to be computed only once. As mentioned before, this step has to be done with high precision, and consequently 
this is the step which demands the highest amount of computing time. After that, all changes of the external 
boundary conditions affect only the k = 0 mode contributing to the interactions Jij and hi , and these terms can 
be calculated analytically (see methods section). As each hybrid quantum annealing calculation typically requires 
only a few seconds, the entire microstructural change during mechanical loading can be calculated extremely fast.

Discussion
The central result of the present paper is the shown optimization of microstructures via quantum annealing, 
exhibiting a clear performance advantage of the novel approach compared to conventional energy minimization 
strategies. The brute force approach is not recommended, whereas optimized simulated annealing algorithms 
produce good results. However, quantum annealing represents the by far fastest method for optimization prob-
lems, particularly for systems with high numbers of grains (spins) and non-vanishing coupling constants and 
biases, and allows the determination of ground state configurations for system sizes, which are not accessible for 
the classical algorithms on reasonable computing timescales.

B(n) = 4µ

�+ 2µ
ε20

[
(3�+ 2µ)− 2(3�+ 2µ)n2 + 4(�+ µ)n4

]
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For a system consisting of N grains, we need to compute O(N2) spin-spin interactions. These elastic energy 
calculations have to be done with high accuracy, and therefore they dominate the overall computing time. After 
that, O(2N ) spin configurations need to be compared to identify the equilibrium configuration. For the conven-
tional algorithm, this combinatorial step dominates the total computational effort already for low values of N. In 
contrast, with the quantum annealer or its hybrid variant the computation time for the minimization of the Ising 
energy expression is completely negligible compared to the elastic interaction energy computations. Hence, we 

Figure 4.  Resulting equilibrium variant distribution with uniform grain orientation. The microstructures 
consist of 400 grains and tensile strain is applied in horizontal (x) direction. Red (green) grains correspond 
to variant si = +1 ( si = −1 ). The tensile strain is (a) �εxx�/ε0 = 0 , (b) �εxx�/ε0 = 0.1 , (c) �εxx�/ε0 = 0.5 , (d) 
�εxx�/ε0 = 0.9 , (e) �εxx�/ε0 = 1.1 and (f) �εxx�/ε0 = 1.3.

Figure 5.  Resulting equilibrium variant distribution with random grain orientation. (a) Grain orientation map 
corresponding to the microstructures. In the color bar the grain rotation angle is given in radian (modulo π 
due to symmetry). The rotation axis is along the [001] direction. The microstructures consist of 400 grains and 
tensile strain is applied in horizontal (x) direction. The grains have a random orientation, which is the same for 
all cases, based on a uniform distribution. The tensile strain in horizontal direction is (b) �εxx�/ε0 = 0 and (c) 
�εxx�/ε0 = 2.1 . Red (green) grains correspond to variant si = +1 ( si = −1).
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have demonstrated that QA is able to drastically optimize the search for microstructural equilibrium states in 
solid phases with long-range elastic interactions. Already today, the usage of hybrid quantum annealing enables 
the computation of microstructures with several thousand grains which all interact with each other, which is 
essential for a realistic modeling of microstructures inside various materials.

For many application relevant investigations, it is critical to understand whether and how models can be 
formulated that they are suitable for quantum computing. We have demonstrated this here for the particu-
lar case of long-range elastic interactions. Extensions towards the consideration of interfacial energy, multiple 
martensite variants, anisotropic elasticity, orientation relationships between grains and phases, and different 
spatial dimensions are obvious, as they do not conceptually influence the presented strategy of formulating the 
problem in terms of an Ising model. Inhomogeneous elasticity and the proximity to free surfaces can effectively 
lead to many-body interactions, for which perturbative extensions or the introduction of product spin variables 
are promising  directions37,42. Beyond the purely elastic effects, further potential applications comprise phase 
changes in multi-phase solid state batteries, phase transformations in high strength steels or other materials like 
ferroelectrics. Overall, the separation of continuous and discrete degrees of freedom and the quantum treatment 
of the latter may also be beneficial for hybrid phase field and quantum annealing descriptions which combine 
a variant selection with a grain morphology evolution in an efficient way to drastically reduce computing time 
demands of existing approaches for application relevant sample sizes.

Methods
Quantum annealing. Like general purpose quantum computers, a quantum annealer is built from qubits, 
which here store and process information using superconducting loops. A clockwise or anticlockwise circulat-
ing current in such a loop represents different spin  states12. In each qubit superconducting loops interact with 
external flux biases, which allows to construct an energy landscape, where the fluxes influence barrier height and 
energy  difference12. At the start of the computation, the system is initialized in the ground state of a known Ham-
iltonian H0 ∼ −

∑
i σ

x
i  with Pauli matrices σi , i.e. a strong transverse magnetic  field13,43. During the annealing 

process, the Hamiltonian is turned into the desired one based on an Ising  model11 Hp =
∑

i hisi +
∑

i<j Jijsisj 
with spin states si = ±1 , bias hi and coupling strength Jij between qubits i and j, for which an energetic minimum 
is sought, min{si=±1} Hp . Both Hamiltonians do not  commute11, and the time of the initial Hamiltonian to adopt 
the low energy state is sufficiently large to ensure the validity of the adiabatic theorem of quantum  mechanics44, 
which states that a system remains in its eigenstate, if changes occur adiabatically. Notice that the quantum 
annealing employs tunneling to leave metastable regions, contrary to the simulated  annealing6. Another impor-
tant quantum mechanical principle in quantum annealing is the entanglement and the usage of entangled states 
inside quantum annealing processors (QPU)45.

As in practise this approach does not always deliver the lowest energy state, especially if energetically close 
low energy states exist, a suitable number of repetitions is made and the configuration with the lowest detected 
energy is taken. If the Ising problems do not match the architecture of the QPU, a subgraph of coupled qubits, 
know as chains, cover one variable of the problem in the so called minor  embedding36,46. Additionally, for huge 
systems hybrid quantum annealing exploits classical algorithms and the interplay with quantum annealing in 
areas of high computational demands using a QPU coprocessor working with generic parameters for up to 11616 
spin variables on the D-Wave Advantage  system36,47. In practise, the D-Wave framework  Leap48 allows a direct 
formulation in terms of a problem Ising Hamiltonian.

Brute force minimization. For N spins we compute the energy of all 2N possible configurations to deter-
mine the minimum. This deterministic approach delivers the true ground state energy but has a high computa-
tional effort.

Simulated annealing. For this probabilistic  approach49 a random initial configuration is chosen. A new 
candidate configuration, which we generate here by a single spin flip, is accepted if its energy is lower than the 
previous value. If the energy is higher by an amount �E , the configuration is accepted with a probability given 
by the Boltzmann factor exp(−�E/T) , in order not to get stuck in local energy minima. During the simulation, 
the temperature T is reduced according to a specific cooling strategy, in order to converge towards an energetic 
minimum at the end of the simulation. As our main goal is not to maximize the performance of the (classical) 
algorithms but rather to demonstrate the general scaling behavior, we refrain from a detailed discussion of the 
parameter optimization of the probabilistic simulated annealing approach. This includes in particular the use of 
suitable stopping criteria when no further reduction of the energy occur, as well as the use of problem adapted 
cooling strategies. For the simulated annealing approach we use single spin flips trials in each iteration, and the 
temperature T is decreased each time by �T/µeffε

2
0d

2 = 10−6 , which delivers a good performance for large 
system sizes. The simulations are stopped after a fixed number of 107 steps, which is optimized for the largest 
considered spin system with N = 150 in Fig. 1b, leading to a scaling of the computation time ∼ N2 due to the 
calculation of the interaction energy.

Elasticity. We solve the elastic problem of a multi-grain setup with homogeneous linear elasticity, i.e.  all 
variants and phases are assumed to have the same elastic constants. Also, coherent interfaces are assumed, which 
means continuity of displacements at the interfaces. The martensite variants have different stress free strains (or 
eigenstrains) compared to the mother austenite phase, hence the stress-strain relation reads for general linear 
elasticity σij = �ijkl(εkl − ε

(0)
kl ) , where ε(0)kl (r) is the local stress free strain tensor and �ijkl the elastic tensor. We 

determine the elastic equilibrium configuration, which obeys the condition ∂σij/∂xj = 0 in bulk domains and 
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the continuity of normal stresses at interfaces, using Fourier transformation  approaches32. From that, the elastic 
energy can be computed in reciprocal space  as32

for a periodic system with vanishing average stress as boundary condition, where θ̂ (k) is the Fourier transform of 
the indicator field θ(r) and B(n) with n = k/k equals B(n) = σ 0

ij ε
0
ij − niσ

0
ij�jkσ

0
klnl with σ 0

ij = �ijklε
0
kl . Here, �ij(n) 

is the normalized Green tensor for displacements, which is defined through its inverse as �−1
ik = �ijklnjnl . The 

summation in Eq. (3) is over discrete vectors due to the periodic boundary conditions in real space. The summa-
tion is in principle infinite, and can be efficiently computed using the decoration  technique50. For average strain 
boundary conditions, i.e. a prescribed value of 〈εij〉 , an additional homogeneous ( k = 0 ) contribution appears in 
Eq. (3), which reads Ehom = V�ijkl(�εij� − �ε(0)ij �)(�εkl� − �ε(0)kl �)/2 , which can be calculated analytically.

Data availability
Data that was obtained during this project will be made available by the corresponding author upon request.
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