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Triclustering‑based classification 
of longitudinal data for prognostic 
prediction: targeting relevant 
clinical endpoints in amyotrophic 
lateral sclerosis
Diogo F. Soares 1*, Rui Henriques 2, Marta Gromicho 3, Mamede de Carvalho 3 & 
Sara C. Madeira 1

This work proposes a new class of explainable prognostic models for longitudinal data classification 
using triclusters. A new temporally constrained triclustering algorithm, termed TCtriCluster, is 
proposed to comprehensively find informative temporal patterns common to a subset of patients in 
a subset of features (triclusters), and use them as discriminative features within a state‑of‑the‑art 
classifier with guarantees of interpretability. The proposed approach further enhances prediction with 
the potentialities of model explainability by revealing clinically relevant disease progression patterns 
underlying prognostics, describing features used for classification. The proposed methodology is 
used in the Amyotrophic Lateral Sclerosis (ALS) Portuguese cohort (N = 1321), providing the first 
comprehensive assessment of the prognostic limits of five notable clinical endpoints: need for 
non‑invasive ventilation (NIV); need for an auxiliary communication device; need for percutaneous 
endoscopic gastrostomy (PEG); need for a caregiver; and need for a wheelchair. Triclustering‑based 
predictors outperform state‑of‑the‑art alternatives, being able to predict the need for auxiliary 
communication device (within 180 days) and the need for PEG (within 90 days) with an AUC above 
90%. The approach was validated in clinical practice, supporting healthcare professionals in 
understanding the link between the highly heterogeneous patterns of ALS disease progression and 
the prognosis.

Considering longitudinal data, also referred to as multivariate time series data, three-way data, or multivariate 
trajectory data, triclustering aims to discover patterns that satisfy specific homogeneity and statistical significance 
criteria. Given the increasing prevalence of three-way data across biomedical and social domains, triclustering—
the discovery of patterns (triclusters) within three-way data—is becoming a reference technique to enhance the 
understanding of complex biological, individual, and societal  systems1. Clustering is limited to this end since 
objects (patients) in three-way data domains are typically only meaningfully correlated on subspaces of the overall 
space (subsets of features), and although biclustering is able to find correlated objects in a subspace of features 
or temporal patterns for one feature, cannot consider both time and multiple  features2.

In clinical domains, triclustering has been successfully applied for different ends: health record data analysis, 
where triclusters can identify groups of patients with correlated clinical features along time; neuroimaging data 
analysis in which triclusters correspond to enhanced hemodynamic or electrophysiological responses and con-
nectivity patterns between brain regions; multi-omics, where triclusters capture putative regulatory patterns 
within omic series data; and multivariate physiological signal data analysis, where triclusters capture coherent 
physiological responses for a group of  individuals1,3,4. In spite of triclustering relevance for descriptive tasks 
(knowledge acquisition), its potential in predictive tasks (medical decision) remains considerably  untapped1.

In this context, grounded on the potentialities of triclustering approaches, we propose a triclustering-based 
classifier to learn prognostic models from three-way clinical data, which takes advantage of the temporal 
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dependence between the monitored features, and further enhances model explainability by learning an associa-
tive model grounded on local temporal patterns (subsets of features with specific values for a subset of patients 
in a contiguous set of temporal observations during follow-up). To this end, we propose TCtriCluster, a 
temporally constrained triclustering algorithm able to mine time-contiguous triclusters that extends the state-
of-the-art triCluster  algorithm5, originally proposed by Zhao and Zaki to mine patterns in three-way gene 
expression data, to cope with three-way heterogeneous clinical data (patient-feature-time data).

As a case study, we target prognostic prediction in Amyotrophic Lateral Sclerosis (ALS) using a large cohort 
of Portuguese patients, where the triclusters learned from patients’ follow-up data can be interpreted as disease 
progression patterns. The patterns identifying groups of patients with coherent temporal evolution on a subset 
of features are then used for prognostic prediction as features in a state-of-the-art classifier. The prognostic 
models learned using the proposed triclustering-based classifier predict whether a patient will evolve to a target 
clinical endpoint within a certain time window. We target five clinically relevant endpoints in ALS: (1) need 
for non-invasive ventilation (NIV), (2) need for an auxiliary communication device, (3) need for percutaneous 
endoscopic gastrostomy (PEG), (4) need for a caregiver, and (5) need for a wheelchair.

The major contributions of this work are the following:

• A new pattern-centric data transformation from longitudinal data into multivariate temporal features, the 
triclusters, yielding both descriptive and discriminative qualities for subsequent learning tasks;

• First study in ALS that comprehensively assesses the state-of-the-art predictability limits of different clinical 
endpoints of interest, using time windows;

• A new triclustering algorithm, termed TCTriCluster, able to find time-contiguous triclusters with constant 
and additive forms of homogeneity;

• Discriminative patterns of (ALS) disease progression used for prognostic prediction and whose inspection 
can putatively help to explain prognostics, aiding medical research and practice.

The gathered results are promising, highlighting the potential of the proposed methodology regarding both pre-
dictability (outperforming state-of-the-art alternatives) and interpretability. Some limitations should, however, 
be pinpointed. First, our results primarily focus on the predictive value of follow-up assessments. Nevertheless, 
the proposed predictors can straightforwardly combine static features with triclustering-based features (as we 
show at the end). Second, in spite of the large ALS cohort size (N = 1321), collected at the Portuguese ALS center, 
data from other ALS centers can be used for further validation.

The proposed triclustering-based classifier can be used to learn prognostic models from follow-up data in 
other diseases, as well as predictive models from three-way data in other domains. The TCtriCluster algorithm 
can be further used as a standalone tool to mine arbitrarily positioned, overlapping, and temporally constrained 
triclusters with constant, scaling, and shifting patterns from three-way heterogeneous data.

Background and related work
ALS is a neurodegenerative disease characterized by weakness and functional disability, with patients presenting 
with a different phenotype and progression rate. Most of the patients with ALS die from respiratory complications 
within the first 3–5 years after disease onset. Notwithstanding, some patients are living up to 10 years, while in 
more severe circumstances, survival can be shortened to 1  year6. Recent studies have reported a prevalence of 
8-9 cases in 100.000 inhabitants  worldwide7, in Portugal, the described prevalence is  similar8.

In the absence of curative treatment, it is essential to promote timely interventions for prolonging survival and 
improving quality of life. The most important interventions are NIV, with a major positive impact on survival; 
augmentative communication for preventing social isolation; PEG to keep appropriate nutrition; routine caregiver 
support for daily life activities and wheelchair regular outings, e.g. for medical  appointments6,9,10. Clinicians have 
been using a well-established scale to determine disease progression: the revised ALS Functional Rating Scale 
(ALSFRS-R)11. This scale has specific questions regarding respiratory symptoms, speaking, swallowing, self-care 
and walking, which are essential to determine the timing of the several interventions. Regarding respiratory 
function, a number of tests are used to support the decision of NIV initiation.

Due to the high heterogeneity of this disease, the individual prognosis of an ALS patient is challenging. 
Therefore it is of utmost importance to develop explainable machine learning models, pinpointing the need for 
approaches to learn explainable disease progression models that clinicians can effectively use for prognostic 
prediction and timely interventions, with a possible positive impact on survival and quality of life. Recent years 
have witnessed an increasing awareness of the potentialities of machine learning amongst ALS researchers, 
leading to several applications to ALS cohort  data12–21. The great potential of learning stratification models has 
also shown opportunities for future clinical trials, besides promoting more accurate and trustable predictions 
by learning group-specific prognostic  models13,22–24.

In this context, Carreiro et al.12 conducted a pioneer study proposing prognostic models to predict the 
need for NIV in ALS based on clinically defined time windows. More recently, Pires et al.22 stratified patients 
according to their state of disease progression achieving three groups of progressors (slow, neutral and fast), and 
proposed specialized learning models according to these groups. They further used patient and clinical profiles 
with promising  results23. However, none of their studies took into account the temporal progression of the 
features. Recently, Martins et al. proposed to couple itemset mining with sequential pattern mining to unravel 
disease presentation and disease progression patterns and used these patterns to predict the need for NIV in 
ALS  patients25. Despite their relevant results, they did not consider the contiguity constraint imposed by the 
temporality of the patient’s follow-up data. Matos et al.26 proposed a biclustering-based classifier. Biclustering 
was used to find groups of patients with coherent values in subsets of clinical features (biclusters), then used as 
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features together with static data. Besides promising, none of this approach also did not take into account the 
temporal dependence between the features.

In previous work, a preliminary assessment of the role of classic triclustering approaches for predicting ven-
tilation support needs in ALS was  undertaken27, and, biclusters discovered in the static dimension of data were 
considered to predict the need for NIV within specific time  windows28. Differently from these earlier works, our 
research proposes a novel triclustering approach grounded on temporal contiguity constraints that yield both 
higher predictability and better explainability.

Complementarily to the above pattern-centric stances, Pancotti et al.29 recently applied state-of-the-art deep 
learning methods to study disease progression in ALS using a publicly available database (PRO-ACT), showing 
competitive performance.

Despite the extent of research on ALS prognostic ends, most of the existing works focus on survival predic-
tion, NIV needs, or general changes to the ALS functional rating scale (ALSFRS-R), generally neglecting specific 
clinical endpoints of interest. Specific clinical endpoints, such as the need for a wheelchair or percutaneous endo-
scopic gastrostomy, have been primarily studied under descriptive stances, including the analysis of cumulative 
time-dependent  risks30. To our knowledge, their predictability under the machine learning stance using time 
windows and explainable progression patterns remains unassessed.

Methods
This section describes the proposed methodology to learn a triclustering-based classifier from three-way data, 
from preprocessing (including creating learning examples) to classifier performance evaluation. It further 
describes TCtriCluster, the proposed triclustering algorithm to mine temporally constrained triclusters. Fig-
ure 1 depicts the overall workflow.

In what follows, consider that a three-way dataset, D, is defined by n objects X = {x1, . . . , xn} , m features 
Y = {y1, . . . , ym} , and p contexts Z = {z1, . . . , zp} , where the elements dijk relate object xi , feature yj , and context 
zk . Consider also that, a bicluster B = (I , J) is a subspace given by a subset of objects, I ⊆ X , and a subset of 
features, J ⊆ Y2. Similarly, a tricluster T = (I , J ,K) , contains I ⊆ X objects, J ⊆ Y  features and K ⊆ Z contexts, 
and tijk denote the elements of T , where 1 ≤ i ≤ |I| , 1 ≤ j ≤ |J| and 1 ≤ k ≤ |K |1. In this context, each tricluster 
T can be represented as a set of biclusters T = {B1,B2, . . . ,Bs}:

Preprocessing data. The three-way dataset, composed of several heterogeneous features measured over a 
number of time points, is first preprocessed to obtain learning examples. Depending on the dataset, dealing with 
missing values and class imbalance might also be needed. Some triclustering searches, such as the one proposed 
in this work, can ignore missing values, tackling imputation needs.

TCtriCluster: a new temporal triclustering algorithm. triCluster5, a pioneer and highly cited tri-
clustering approach proposed and implemented by Zhao and Zaki is selected. It is a quasi-exhaustive approach, 
able to mine arbitrarily positioned and overlapping triclusters with constant, scaling, and shifting patterns from 
three-way data. Given that triCluster was proposed to mine coherent triclusters in three-way gene expres-
sion data (gene-sample-time), at this point, it is important to understand that clinical data can be preprocessed 
in order to have a similar structure, in which patient-feature-time data resembles the gene-sample-time data 
considered in earlier works. triCluster is composed of 3 main steps: (1) constructs a multigraph with similar 
value ranges between all pairs of samples; (2) mines maximal biclusters from the multigraph formed for each 
time point (slices of the 3D dataset); and (3) extracts triclusters by merging similar biclusters from different time 
points. Optionally, it can delete or merge triclusters according to the placed overlapping criteria.

As our goal is to mine temporal three-way data, meaning the Z context dimension corresponds to time, we 
borrow a pivotal idea behind CCC-Biclustering31, a state-of-the-art and highly efficient temporal biclustering 
algorithm, and introduce a temporal constraint in triclustering to promote interpretability, predictive accuracy, 
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Figure 1.  Proposed Workflow to Learn a Triclustering-based Classifier.
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and efficiency. The goal thus becomes to mine Time-Contiguous Triclusters (TCTriclusters), triclusters with 
consecutive time points. In this context, we re-implemented triCluster in Python and extended it to cope 
with a time constraint. The new TCtriCluster algorithm implements this time constraint on its 3rd phase, as 
shown in Algorithm 1 (line 9).

TCtriCluster allows different combinations of input parameters (from the input parameters of  triCluster5 
that should be explored in order to discover the best parameters with which the final classifier should be learned. 
The input parameters are: ε,mx,my,mz, δx , δy , δz , η and γ , corresponding to maximum ratio value, the minimum 
size of tricluster dimensions x, y and z, maximum range threshold along dimensions x, y and z, overlapping and 
merging threshold, respectively. More details about the input parameters are referred  to5.

Hyperparameterizing the triclustering search. In this step, we find the best hyperparameters used as 
input by the triclustering algorithm (described above) in order to optimize predictive performance. The work-
flow, depicted in Fig. 2, starts by performing triclustering on the preprocessed data to obtain triclusters. Next, 
and since our triclustering-based classifier uses the triclusters as features, we compute a 3D virtual pattern for 
each tricluster.

The proposed 3D virtual pattern corresponds to the tricluster most representative pattern, an extension of 
the 2D version defined  in32, and is computed as follows.

Definition 1 (3D virtual pattern). Given a tricluster T , its virtual pattern P is defined as a set of elements 
P = {ρ1, ρ2, . . . , ρ|I|} , where ρi , 1 ≤ i ≤ |I| is defined as the mean (or the mode, in case of categorical features) 
of values in the ith row for each context:

Considering as example a tricluster T=(I,  J,  K), mined from three-way data, (X,  Y,  Z), com-
posed by 3 objects, 3 features ( y1 and y7 are categorical features) and 3 contexts, such that 
I = {x1, x3, x7}, J = {y1, y3, y7}, K = {z2, z3, z4} . For simplicity, consider T = {B2,B3,B4}:

a n d  a n  o b j e c t  ( p a t i e n t )  P(Xp, I ,K)  d e f i n e d  a s  P = {C2,C3,C4} : C2 =
[

1 2.22 5
]

;

C3 =
[

1 2.26 7
]

; C4 =
[

2 2.35 8
]

 . In this settings, the Virtual Patterns are: ρ(B2) =
[

1 2.6667 5
]

 ; 
ρ(B3) =

[

3 2.9 3
]

 ; ρ(B4) =
[

3 2.7333 3
]

 ; and ρ(T ) =
[

3 2.7667 3
]

.

(1)ρi =
1

|J| × |K |

∑

zk∈K

∑

yj∈J

bijk .

B2 =

[
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Note that, optionally, in cases where triclustering could capture heterogeneous triclusters, we can detach 
the biclusters which compose the tricluster and use those biclusters as features (computing virtual pattern 2D) 
instead of the pattern that describe the whole tricluster. Notice that in this previous example, if we detached the 
tricluster, we will use three patterns—ρ(B2) , ρ(B3) and ρ(B4)—in which the first one is far different from the 
two others. This optional step gives more information to the classifier, promoting its predictive performance.

With the virtual patterns computed, to assess how well a specific object (patient), pi , follows the general 
tendency of a given tricluster T we have to compare pi with the 3D virtual pattern, P , which is the most repre-
sentative pattern of the tricluster T . To do this, we propose two approaches: (1) compute the Euclidean distance; 
or (2) compute Pearson correlation between the 3D virtual pattern P and the equivalent pattern (same features 
and contexts) of pi.

We denote these assessments as Virtual Distance 3D and Virtual Correlation 3D, and define them as follows:

Definition 2 (Virtual distance 3D). The virtual Euclidean distance between an observation pi and a tricluster 
T is defined as

Triclustering Task

Param: Xi

Compute Virtual Patterns

Compute Similarities between
patients and virtual patterns

Similarities Matrix

5 x 10-fold Stratified cross-validation

Testing Data Training Data

Training Classifier

Testing Classifier

Performance
Evaluation

Exploring Triclustering 
Parameters Values

Best Triclustering
Parameters

Preprocessed
Data

Learning Triclustering Best Parameters

Triclusters Biclusters

detachment

Figure 2.  Learning triclustering best parameters: workflow.
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Definition 3 (Virtual correlation 3D). The virtual linear correlation between an object pi and a tricluster T is 
defined as

After computing similarities matrices based on the virtual patterns (using distances or correlations), these 
matrices are used as learning examples by the classifier (having the triclusters as features) and evaluated with 
a 5 ×10-fold Stratified Cross-Validation in order to find the best triclustering parameters, using classification 
performance as metric. The best parameters are then fed to the next step.

Learning the final classifier. Figure 3 depicts the steps involved in learning the final model. With the best 
parameters found in the previous step, an additional iteration is performed in order to obtain the final triclusters. 
The final triclusters are then used to create a classic multivariate data space by creating one variable per tricluster 
and computing the virtual distance/correlation between each training object and the given tricluster to produce 
the transformed data. Using this multivariate data space, a traditional classifier can be learned and used to make 
predictions in the next step.

Testing stage. After learning the target triclustering-based predictive model, new three-way objects can 
be classified. To do this, it is necessary to first calculate the array of similarities between the new object and the 
triclusters (virtual patterns) obtained in the previous steps. This array will be fed to the classifier that will, in 
turn return the classification for the new object with a percentage of accuracy. Figure 4 depicts an example using 
clinical three-way data (case study described in the next section).

Ethics approval and consent to participate. The study was conducted in accordance with the Declara-
tion of Helsinki and was approved by the local (Faculty of Medicine, University of Lisbon) ethics committee. 
Informed consent to participate in the study was obtained from all participants. Data access was granted in the 
context of project AIpALS (PTDC/CCI-CIF/4613/2020), where the authors’ institutions participate.

Case study: prognostic prediction in ALS
In this study, we want to predict whether a given patient will evolve to a critical endpoint within k days (time 
window) since the last clinical appointment using data from the patients’ follow-up. The target endpoints con-
sidered and validated by the clinicians are the following:

• C1—need for non-invasive ventilation (NIV), as decided by the international  guidelines11

• C2—need for an auxiliary communication device (question 1 of the ALSFRS-R with a score of 1 or lower)
• C3—need for percutaneous endoscopic gastrostomy (PEG) (question 3 of the ALSFRS-R with a score of 2 

or lower)
• C4—need for a caregiver (question 5 or 6 of the ALSFRS-R with a score of 1 or lower)
• C5—need for a wheelchair (question 8 of the ALSFRS-R with a score of 1 or lower)

In order to apply the triclustering-based classification approach, the three-way data corresponds to longitudi-
nal data collected at the patient’s follow-up, and in particular, the dimensions X, Y, and Z correspond to patients, 
features, and time, as shown in Fig. 5.

Cohort data. Our study is conducted using the Lisbon ALS clinic dataset containing Electronic Health 
Records from ALS Patients regularly followed at the local ALS clinic since 1995 and last updated in October 
2021. Its current version contains 1321 patients (740 males and 581 females) with age at onset average 63± 13 
years. Each patient incorporates a set of static features (demographics, disease severity, co-morbidities, medi-
cation, genetic information, exercise, and smoking habits, past trauma/surgery, and occupations) along with 
temporal features (collected repeatedly at follow-up), like disease progression tests (ALSFRS-R scale, respiratory 
tests, etc.). Table 1 shows the patient cohort characterization.

As the proposed methodology is focused on three-way clinical data analysis and in order to test its potential, 
we first restrict our data to temporal data only, discarding static data (described in Table 1). We considered 7 
features per time point, the Functional Scores (ALSFRS-R), briefly described next, and a respiratory test: Forced 
Vital Capacity (FVC). Following recent  studies33,34, we computed an extra temporal feature based on ALSFRS-R 
scale: MITOS  stage33. The values for this feature range between 0-5 and provides information about the patient’s 
disease stage at the moment of the assessment. Concretely, the value represents the number of compromised 
ALSFRS-R  domains33–35. The value 5 represents death.

(2)VD3D(pi ,T ) = E(pi , ρ) =

√

√

√

√

I
∑

e=1

(pie − ρe)2.

(3)VC3D(pi ,T ) = r(pi , ρ) =

I
∑

e=1

(pie − p̄i)(ρe − ρ̄)

√

√

√

√

I
∑

e=1

(pie − p̄i)
2

I
∑

e=1

(ρe − ρ̄)2
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ALSFRS-R scores for disease progression rating are an aggregation of integers on a scale of 0 to 4 (where 0 
is the worst and 4 is the best), providing different evaluations of the patient functional abilities at a given time 
 point35. This functional evaluation is based on 12 questions, explained in Table   2. Different functional scores 
are then computed using subsets of scores, as shown in Table 3.

Preprocessing. Data were preprocessed in accordance with the approach proposed by Carreiro et  al.12, 
which assumes the patients are followed up regularly and perform a normative set of tests after each appoint-
ment. As patients may not be able to perform all tests in a single day, the method takes their temporal distri-
bution into account when learning from the available clinical records by computing snapshots of the patient’s 
condition by grouping tests performed within a clinically accepted time window.

Following these assumptions, we performed a hierarchical (agglomerative) clustering with constraints to 
compute the patient’s snapshots, a state-of-the-art procedure to perform alignments along a follow-up12. The 
constraints applied when grouping the sets of evaluations followed well-established principles as  in12: (1) the 
evaluations that compose a snapshot cannot belong to the same test as clinicians do not prescribe the same test 
twice; and (2) all the evaluations considered in the same snapshot should be consistent regarding the critical 
features of interest (i.e., the patient should be either in the critical endpoint or not in all the records composing 

Triclustering Task

Best Params

Triclusters

Compute Virtual Patterns

Compute Similarities between
patients and virtual patterns

Similarities Matrix

5 x 10-fold Stratified cross-validation

Testing Data Training Data

Training Classifier

Testing Classifier

Performance
Evaluation

Triclustering-based
Model

Best Triclustering
Parameters

Learning Final Model

Triclusters

Biclusters
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Figure 3.  Learning final triclustering-based model: workflow.
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the snapshot). For this study, the cutting point for creating the snapshots was defined as 100 days and goes in 
line with Carreiro et al.12.

At this stage, we compute five datasets (one for each of the critical endpoints) with the patient’s snapshots 
which have a critical feature, establishing, for each snapshot, if the patient is or is not in a critical endpoint 
(binary feature). The critical feature value (target to be learned by the classifier) was computed for each criti-
cal endpoint based on the date on which a patient’s critical status was detected. For each one, the critical date 
considered and validated by the clinicians was the date of the first evaluation with the following ALSFRS-R 
conditions (see Table 2):

• C1: critical when Q12 ≤ 3
• C2: critical when Q1 ≤ 1
• C3: critical when Q3 ≤ 2
• C4: critical when Q5 ≤ 1 ∨ Q6 ≤ 1
• C5: critical when Q8 ≤ 1

As an example, for the target endpoint C1 (need for NIV), the critical feature identifies whether a patient will 
evolve to a critical status (need for NIV), occurring when the patient has a date within the defined interval where 
the Q12 score is lower than 3. Figure 6 depicts an example of the computation of patient snapshots.

After creating the patients’ snapshots, we have to compute the learning examples used by the predictive 
models. According to its critical point of interest, each dataset needs to have the patient’s evolution for a critical 
state, depending on the observed changes k days from the snapshot. We create the binary target class Evolution 
(E), where 1 represents an evolution for a critical status within k days from the snapshot, and 0 represents an 
unchanged critical status within the same time window.

The process of labelling the snapshots is performed based on the date on which a critical status was  detected12. 
A patient’s snapshot (with date i) in which he/she was in a critical state between i and i + k is labelled as E=1 (situ-
ation A). The snapshots having a date more than k days before the critical status date (outside the time window) 
are labelled as E=0 (situation B). In the case of patients for who a crtical status has never been detected, their 
snapshots are labelled as E=0, existing at least one snapshot after i + k days (situation C). The snapshots with 
no critical status information after i + k days are considered not eligible for the analysis since it is impossible 
to ensure an evolution or not to a critical status in the considered time window (situation D). The snapshots 
in which the patient is in a critical status are also not eligible for the analysis since we aim to predict the evolu-
tion from a non-critical state to a possible critical one (situation E). Figure 7 shows examples of the Evolution 
computing process.

We chose 3 clinically relevant time windows for this study: 90, 180 and 365 days (3, 6 and 12 months). There-
fore, the process resulted in 3 datasets for each target endpoint and time window (15 in total). The number of 
snapshots in each dataset (discriminated by the classes) is documented in Table 4.

Finally, since the underlying triclustering algorithm is a quasi-exhaustive  algorithm1 and we want to make 
the predictions based on current and recent clinical evaluations, we defined a maximum length on historical 
data to assist the prognostic tasks. With this assumption, we need to transform our datasets coupling snapshots 
to create the final learning instances which will feed to the model. The process of grouping snapshots is depicted 
in Fig. 8 and consists in defining a maximum size L and grouping consecutive snapshots for each patient. The 

Triclustering-based
Classifier

Computing Similarities
between new Patient

and Triclusters

Similarities Array

New Patient
3-way Data

Triclusters

Figure 4.  Example of using the triclustering-based classifier to classify new 3-way example from patient 
follow-up.
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Figure 5.  Overview of triclustering-based classifier applied to ALS case study. Three-way data corresponds to 
longitudinal data collected at patients’ follow-up, and in particular, the dimensions X, Y, and Z correspond to 
patients, features and time.

Table 1.  Characterization of the population used in the case study.

N = 1321

Gender

   Male 740 56.0%

   Female 581 44.0%

Onset

   Spinal 856 64.8%

   Bulbar 348 26.3%

   Respiratory 40 3.0%

   Axial 28 2.1%

   Generalized 39 3.0%

   FTD 10 0.8%

Revised El Escorial

   Definitive 231 17.5%

   Probable 680 51.5%

   Possible 86 6.5%

   PMA 190 14.4%

   PLS 4 0.3%

   NA 130 9.8%

Family history

   Yes 95 7.2%

   No 1143 86.5%

   NA 83 6.3%

C9orf72 HRE

   Yes 40 3.0%

   No 461 34.9%

   Unknown 820 62.1%

Age at onset (years)

   Median, IQR 64 55–72

   Average, Std 62.6 12.5

Diagnostic delay (months)

   Median, IQR 12 7.5−20

   Average, Std 18.1 21.5

BMI at diagnosis (kg/m2)

   Median, IQR 24.5 22.4–27.1

   Average, Std 24.85 3.8
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Table 2.  ALSFRS-R questions.

Q1—Speech

Q2—Salivation

Q3—Swallowing

Q4—Handwriting

Q5—Cutting food and Handling Utensils

Q6—Dressing and Hygiene

Q7—Turning bed and adjusting bed clothes

Q8—Walking

Q9—Climbing Stairs

Q10—Dyspnea

Q11—Orthopnea

Q12—Respiratory Insufficiency

Table 3.  Functional scores and sub-scores according to ALSFRS-R.

Functional score Description

ALSFRS-R (total score) Sum of Q1–Q12

ALSFRSb Q1 + Q2 + Q3

ALSFRSsUL Q4 + Q5 + Q6

ALSFRSsLL Q7 + Q8 + Q9

R Q10 + Q11 + Q12

Figure 6.  An example of the transformation of the original data into patient snapshots following Carreiro et al. 
 approach12. Patient 2 is the only individual who reached a C2 critical status (Q1 ≤ 1), with the corresponding 
date being identified in its snapshots. Other critical dates based on tests are further computed based on well-
established clinical criteria.
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size of sets (number of snapshots) will be defined by min(L, nP) where nP is the number of available snapshots 
for a given patient.

The final learning examples, used in the experiments, considered 3, 4, and 5 consecutive snapshots (CS) per 
patient, corresponding to clinical evaluations at 3, 4, and 5 consecutive appointments, respectively. The Evolution 

Figure 7.  Definition of class Evolution (E) according to the patient’s evolution to a critical status in the interval 
of k days where i is the median date of the snapshot.

Table 4.  Initial class distribution concerning each critical endpoint of interest and time windows (after 
snapshots creation)—N is the number of snapshots in which the patient will not evolve within the considered 
time window since the date of the snapshot, and Y is the number of snapshots in which the patient will evolve. 
C1, need for NIV; C2, need for an auxiliary communication device; C3, need for PEG; C4, need for a caregiver 
and C5, need for a wheelchair.

90 days 180 days 365 days

N Y N Y N Y

C1 3803 (96%) 176 (4%) 3315 (83%) 664 (17%) 2693 (68%) 1286 (32%)

C2 4845 (98%) 117 (2%) 4574 (92%) 388 (8%) 4193 (85%) 769 (15%)

C3 5548 (99%) 60 (1%) 5358 (96%) 250 (4%) 5031 (90%) 577 (10%)

C4 2519 (93%) 190 (7%) 2072 (76%) 637 (24%) 1513 (56%) 1196 (44%)

C5 4593 (97%) 125 (3%) 4208 (89%) 510 (11%) 3583 (76%) 1135 (24%)

P1

P2

P4

Time

 t1  t2  t3  t4  t5  t6  t7  t8  t9  t10

E = N E = N E = N E = N E = Y

E = N E = N E = N E = Y

E = N E = N E = N E = N E = N E = N E = N E = N E = Y

E = N E = Y

Snapshots

P3

Figure 8.  Example on the computation of snapshots with maximum length min(L, nP) , in this case, L = 3 and 
nP is represented by the number of snapshots (where the patient was not in a critical state) availabe for each 
patient. P4 has only 2 ( nP = 2 ) snapshots before the critical state, and only one set with these 2 snapshots was 
considered.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6182  | https://doi.org/10.1038/s41598-023-33223-x

www.nature.com/scientificreports/

(Y or N) label of the last snapshot is considered as the target class. The new class distributions and the coupled 
snapshots are depicted in Table 5.

Table 5 shows we face considerable class imbalance. In some time windows considered in this case study, 
the expression of non-evolution patients (class N) is far superior to that of evolution patients (class Y). To tackle 
this evident imbalance and prevent its drawbacks in the classification process, when the number of examples 
belonging to the majority class (N instances) is higher than 2/3, we first perform a Random Undersample (RU) 
until obtaining a representation of 2/3 in the dataset and then used  SMOTE36 to oversample the minority class 
examples achieving an equal number of both classes.

Baseline results: prognostic models based on patient snapshots. Reproducing the methodology 
based only on patient snapshots and time windows presented by Carreiro et al.12, we performed experiments to 
predict the evolution of a given patient to a critical status for each of the critical endpoints of interest. Predicting 
the progression to assisted ventilation (need for NIV) is further included. The experiments were conducted with 
the datasets preprocessed, as explained in previous sections. Resulted from the creation of snapshots, missing 
values are observed (ranging between 8 and 15% prevalence). To surpass this problem, and since we are dealing 
with temporal data, we imputed missing values using the values in the previous snapshot (Last Observation Car-
ried Forward). After this, for the snapshots that had not an earlier snapshot (which were residual in number), we 
imputed missings with the mean/mode for the specific feature.

We evaluated four classifiers: Naive Bayes (NB), SVM with Gaussian kernel, XGBoost (XGB), and Random 
Forests (RF) due to their state-of-the-art performance in this kind of predictive  task23,25.

The evaluation was made using a 5 × 10-fold stratified cross-validation scheme where we ensured that all the 
assessments from a given patient were all in the train/test fold. Moreover, to improve the model performance, 
we tackled the class imbalance within cross-validation, applying the same steps explained in the previous section 
only in the training folds.

Tables 6 and 7 show the benchmark results. Superior results are observed against the reference state-of-the-
art results gathered in a previous study (need for NIV)12. As observed in the original  study12, the results for 
Sensitivity are lower than for Specificity, understandable as positive cases (Evolution = Y) are the minority class.

Triclustering‑based classification results. To prove that historical clinical evaluations improve the 
model predictions, using triclusters as features, we applied our triclustering-based classification approach in 
accordance with the principles introduced in section “Methods”. For this case study, we opted to detach the tri-
clusters into biclusters and then use them as features. Note that these biclusters are slices of the mined triclusters 
representing the temporal disease progression. As introduced, each slice is used individually to better represent 
the state of patients at a specific time point, given the expected differences across the temporal dimension.

As for the baseline, we performed experiments using four classifiers: Naive Bayes, SVM with Gaussian ker-
nel, XGBoost, and Random Forests. The full results are documented in Supplementary Information File SI1 
corresponding to the prognostic models for predicting the progression to the critical status C1, need for NIV; 
C2, need for an auxiliary communication device; C3, need for PEG; C4, need for a caregiver and C5, need for a 
wheelchair, respectively. We present the results for AUC, Sensitivity, and Specificity obtained with the models for 

Table 5.  Initial class distribution concerning each target endpoint and time window, after creating the 
learning examples considering 3, 4, and 5 consecutive snapshots of patient historical assessments. C1, need 
for NIV; C2, need for an auxiliary communication device; C3, need for PEG; C4, need for a caregiver, and C5, 
need for a wheelchair.

90 days 180 days 365 days

N Y N Y N Y

C1

3 CS 2640 (94%) 176 (6%) 2228 (83%) 445 (17%) 1868 (85%) 331 (15%)

4 CS 2229 (93%) 176 (7%) 1839 (81%) 423 (19%) 1571 (85%) 282 (15%)

5 CS 1912 (92%) 175 (8%) 1537 (79%) 408 (21%) 1338 (84%) 255 (16%)

C2

3 CS 3533 (97%) 128 (3%) 3304 (92%) 285 (8%) 3093 (94%) 199 (6%)

4 CS 3045 (96%) 127 (4%) 2822 (91%) 279 (9%) 2668 (94%) 176 (6%)

5 CS 2647 (95%) 127 (5%) 2434 (90%) 269 (10%) 2317 (94%) 159 (6%)

C3

3 CS 4058 (98%) 62 (2%) 3888 (96%) 183 (4%) 3669 (97%) 126 (3%)

4 CS 3474 (98%) 62 (2%) 3308 (95%) 179 (5%) 3144 (97%) 97 (3%)

5 CS 3001 (98%) 62 (2%) 2846 (94%) 168 (6%) 2721 (97%) 75 (3%)

C4

3 CS 1692 (87%) 263 (13%) 1298 (71%) 523 (29%) 1005 (72%) 388 (28%)

4 CS 1415 (84%) 263 (16%) 1041 (67%) 504 (33%) 833 (70%) 356 (30%)

5 CS 1226 (82%) 263 (18%) 866 (64%) 490 (36%) 714 (68%) 329 (32%)

C5

3 CS 3246 (96%) 146 (4%) 2907 (88%) 398 (12%) 2479 (89%) 309 (11%)

4 CS 2730 (95%) 146 (5%) 2402 (86%) 387 (14%) 2066 (89%) 266 (11%)

5 CS 2328 (94%) 146 (6%) 2009 (84%) 378 (16%) 1750 (89%) 223 (11%)
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Table 6.  Baseline results using data preprocessed following the approach proposed by Carreiro et al.12 learned 
with 4 classifiers: Naive Bayes (NB), Support Vector Machine (SVM), Random Forests (RF) and XGB (eXtreme 
Gradient Boosting) to predict the Evolution for each of the target endpoints, C1, C2, and C3, within the 
considered time windows (90, 180 and 365 days), respectively.

AUC Sensitivity Specificity

C1—Need for NIV

 90 days

  NB 77.23 ± 3.55 62.84 ± 7.56 74.30 ± 1.53

  SVM 74.06 ± 4.34 71.41 ± 9.55 66.00 ± 3.43

  RF 74.97 ± 3.20 57.52 ± 7.85 76.34 ± 1.96

  XGB 77.59 ± 2.78 61.70 ± 7.57 77.17 ± 1.77

 180 days

  NB 76.23 ± 1.86 63.70 ± 4.41 74.87 ± 1.63

  SVM 75.35 ± 1.66 71.32 ± 3.65 66.99 ± 2.33

  RF 76.11 ± 1.69 61.08 ± 4.53 76.72 ± 1.88

  XGB 76.75 ± 1.70 61.83 ± 4.16 76.16 ± 1.79

 365 days

  NB 72.23 ± 1.43 55.96 ± 2.71 74.49 ± 2.34

  SVM 71.66 ± 1.49 67.50 ± 2.36 65.33 ± 2.52

  RF 78.34 ± 2.03 63.50 ± 3.57 78.11 ± 1.84

  XGB 75.60 ± 1.77 61.20 ± 3.00 75.68 ± 1.78

C2—need for an auxiliary communication device

 90 days

  NB 87.69 ± 2.82 81.93 ± 6.24 78.19 ± 1.90

  SVM 83.31 ± 4.46 75.28 ± 10.58 73.85 ± 3.06

  RF 85.71 ± 3.20 70.14 ± 9.34 81.80 ± 2.19

  XGB 86.44 ± 2.93 73.86 ± 7.64 80.87 ± 1.94

 180 days

  NB 88.68 ± 1.36 82.94 ± 4.64 78.74 ± 1.15

  SVM 89.81 ± 1.45 84.43 ± 4.25 79.76 ± 1.29

  RF 89.31 ± 1.03 78.56 ± 4.20 82.94 ± 1.40

  XGB 89.53 ± 1.03 81.34 ± 3.53 82.33 ± 1.38

 365 days

  NB 86.66 ± 1.83 78.93 ± 3.46 80.22 ± 1.21

  SVM 88.13 ± 1.67 81.82 ± 2.78 80.85 ± 1.26

  RF 88.28 ± 1.27 75.87 ± 3.94 83.47 ± 1.26

  XGB 88.18 ± 1.28 76.59 ± 3.56 82.88 ± 1.33

C3—need for PEG

 90 days

  NB 87.79 ± 2.64 82.33 ± 8.27 80.03 ± 1.77

  SVM 84.39 ± 4.70 83.00 ± 13.01 70.19 ± 4.14

  RF 86.28 ± 2.92 71.00 ± 12.05 83.91 ± 2.03

  XGB 88.32 ± 1.92 77.67 ± 8.41 82.98 ± 2.14

 180 days

  NB 88.24 ± 1.71 81.76 ± 5.44 79.09 ± 1.46

  SVM 90.30 ± 1.59 85.84 ± 4.83 79.80 ± 1.32

  RF 88.59 ± 1.55 75.92 ± 5.95 83.84 ± 1.39

  XGB 89.38 ± 1.56 81.04 ± 5.52 83.75 ± 1.27

 365 days

  NB 84.82 ± 1.62 76.08 ± 3.90 76.55 ± 1.45

  SVM 87.16 ± 1.67 80.21 ± 3.70 78.98 ± 1.48

  RF 86.76 ± 1.29 74.28 ± 3.06 82.62 ± 1.34

  XGB 86.74 ± 1.47 75.09 ± 3.92 81.76 ± 1.38
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time windows of 90, 180, and 365 days, identified by the clinicians as clinically relevant. We considered different 
numbers of historical assessments, creating datasets with 3, 4, and 5 consecutive snapshots (CS). Note that for 
each dataset (each one with examples with different history sizes) we applied the proposed approach using dis-
tances (D) and correlations (C) as the similarity criteria between the patients and the detached biclusters (from 
triclusters). Table 8 presents a summary of the best-obtained results for each target endpoint according to the 
three different considered time windows.

Comparing the gathered results with the baseline obtained by the state-of-the-art approach proposed by 
Carreiro et al.12 (see Fig. 9), we highlight the following:

• triclustering-based classification obtained promising results, predicting all the target endpoints with solid 
accuracy. The best models achieved AUC results up to 90% predicting the progression for the target end-
points;

• overall, triclustering-based predictors using current-and-past patient’s assessments are better than baseline 
models using only one evaluation (each snapshot individually) in predicting the progression to a critical 
status in ALS;

• prognostic models of progression to C5 (wheelchair need) were those with minor differences in results against 
the baseline;

• predicting progression to C1 – C4 states yield distinctively higher predictive accuracy using the proposed 
triclustering-based approach against baselines. Mid- and long-term predictions yield differences up to 10pp;

• prognostic models achieved AUC above 90% when predicting the need for an auxiliary communication 
device (C2), PEG (C3) and caregiver (C4). Most of the best predictions needed 5 appointments, but mid-

Table 7.  Baseline results using data preprocessed following the approach proposed by Carreiro et al.12 learned 
with 4 classifiers: Naive Bayes (NB), Support Vector Machine (SVM), Random Forests (RF) and XGB (eXtreme 
Gradient Boosting) to predict the Evolution for each of the target endpoints, C4 and C5, within the considered 
time windows (90, 180 and 365 days), respectively.

AUC Sensitivity Specificity

C4—need for a caregiver

 90 days

  NB 76.85 ± 3.44 64.00 ± 9.05 72.77 ± 2.31

  SVM 72.58 ± 3.71 63.89 ± 6.38 68.66 ± 3.29

  RF 75.35 ± 4.08 57.16 ± 8.70 77.13 ± 1.78

  XGB 76.10 ± 3.34 57.37 ± 8.36 76.89 ± 2.06

 180 days

  NB 79.45 ± 2.06 64.21 ± 3.74 75.93 ± 1.99

  SVM 78.63 ± 2.56 72.05 ± 4.84 70.42 ± 2.23

  RF 78.89 ± 1.63 64.46 ± 3.70 76.51 ± 2.32

  XGB 78.61 ± 1.75 64.81 ± 3.50 76.28 ± 2.25

 365 days

  NB 77.61 ± 2.05 58.76 ± 4.18 77.33 ± 2.64

  SVM 77.58 ± 2.10 65.22 ± 2.72 74.74 ± 2.81

  RF 83.33 ± 1.57 75.05 ± 3.20 76.55 ± 2.41

  XGB 80.83 ± 1.43 73.30 ± 2.85 74.07 ± 2.46

C5—need for a wheelchair

 90 days

  NB 80.83 ± 2.92 77.44 ± 8.53 72.16 ± 1.75

  SVM 79.32 ± 2.58 73.60 ± 6.60 68.66 ± 2.16

  RF 79.65 ± 3.23 64.16 ± 8.04 78.78 ± 2.02

  XGB 81.85 ± 2.75 68.48 ± 6.72 77.95 ± 1.96

 180 days

  NB 82.19 ± 1.79 73.14 ± 4.57 74.48 ± 1.60

  SVM 83.90 ± 1.87 81.80 ± 3.91 71.51 ± 1.76

  RF 81.31 ± 1.79 66.55 ± 4.68 79.53 ± 1.53

  XGB 82.13 ± 1.75 68.39 ± 4.73 79.56 ± 1.62

 365 days

  NB 78.53 ± 1.71 66.26 ± 2.98 74.47 ± 1.45

  SVM 81.13 ± 1.97 78.13 ± 3.93 69.66 ± 1.81

  RF 82.54 ± 1.64 68.46 ± 3.18 80.41 ± 1.63

  XGB 80.87 ± 1.30 66.43 ± 3.53 80.06 ± 1.79
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term prediction for the need for PEG (C3) and short-term prediction for the need for a caregiver (C4) only 
required 3;

• overall, the distance criteria between patients and triclusters, when compared against peer correlation criteria, 
yield the best predictive results. The models with the best results were typically learned from a patient history 
with 5 follow-ups. However, for C2 and C4 needs, short-term prognostics (90 days) yielded better results 
using only the 3 latest snapshots from patient follow-up;

• the high standard deviation of sensitivity estimates shows the inherent difficulty of predicting the positive 
class (Evolution=Y);

• the triclustering-based approach allows to collect discriminative patterns of disease progression, promoting 
better model interpretability in clinical domains.

Some limitations should be noted. First, the approach is focused on dynamic features. Note, nevertheless, 
that static features can be straightforwardly combined along triclustering-based features for the classification 
training step. Appendix  1 shows the results of using the static features described in Table 10 together with the 
triclustering features using the best model parameters and classifiers as shown in Table 8. Second, the triclus-
tering algorithm’s ability to deal with the heterogeneity inherent to this type of data is limited since categorical 

Table 8.  Summary of the best AUC results obtained with the triclustering-based classification approach for 
each of the target endpoints according to each of the considered time windows. D stands for distance matrices 
as learning examples, while C stands for correlation matrices. C1, need for NIV; C2, need for an auxiliary 
communication device; C3, need for PEG; C4, need for a caregiver, and C5, need for a wheelchair.

90 days 180 days 365 days

C1
86.24 ± 4.03 83.33 ± 2.71 86.63 ± 3.39

(XGB; D; 5 CS) (RF; D; 5 CS) (RF; C; 5 CS)

C2
94.12 ± 3.14 94.14 ± 1.84 93.63 ± 3.23

(RF; D; 5 CS) (RF; D; 4 CS) (RF; D; 5 CS)

C3
91.53 ± 5.28 93.23 ± 2.87 89.92 ± 5.38

(XGB; D; 4 CS) (XGB; D; 3 CS) (XGB; D; 5 CS)

C4
85.52 ± 4.10 86.35 ± 2.43 91.58 ± 2.36

(RF; D; 3 CS) (RF; D; 5 CS) (RF; D; 5 CS)

C5
85.18 ± 5.60 81.23 ± 3.34 81.45 ± 4.92

(SVM; C; 4 CS) (RF; D; 5 CS) (RF; D; 5 CS)

Figure 9.  Comparative plot of AUC results obtained by the baseline vs the triclustering-based classifier. Blue 
bars are referred to triclustering-based classifier results while orange bars are referred to the baseline.
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variables need to entail a denormalization step (nominal variables) or numeric encoding (ordinal variables). 
Finally, despite the considerably large size of the conducted cohort in light of ALS prevalence, the validation of 
predictors in international populations is highlighted as a subsequent relevant step.

Model interpretability
The relevance of a prognostic methodology should be evaluated not only by its predictive performance but also 
by its guarantees of interpretability. The proposed triclustering-based approach allows us to collect essential 
patterns of disease progression (used as features of the new space), promoting better model interpretability 
in clinical domains. In addition, the importance of the input patterns/features for the predictive model can be 
further recovered to rank the discriminative relevance of the underlying patterns.

To perform the model explainability and identify the more relevant patterns used by the models, the unified 
SHAP  approach37 was applied. In particular, we select the KernelExplainer, and TreeExplainer methods, which 
introduce the possibility of directly measuring local feature interaction  effects38. The goal is to understand what 
are the most relevant features, what features appear together, and whether the patterns found are clinically rel-
evant to understand the patient’s progression to the critical endpoints: C1, need for NIV; C2, need for an auxiliary 
communication device; C3, need for PEG; C4, need for a caregiver and C5, need for a wheelchair.

We chose to analyze three target endpoints for three different time windows. All the outputs of the remaining 
endpoints and time windows are made available in a repository (see section “Data availability”). Figure 10 and 
Table 9 illustrate the top patterns found by TCtriCluster and selected by the classifiers to make the predictions. 
For the sake of simplicity, we reproduce only the outputs for Random Forest models.

An overall analysis reveals that the majority of the selected patterns refer to the last snapshot/time-point of 
the triclusters. This makes sense since this is the snapshot closer to the target. However, patterns corresponding 
to previous snapshots remain relevant since they can reveal other meaningful properties, including the underly-
ing disease progression rate.

Conclusions
A new methodology was proposed to learn predictive models from longitudinal data using a novel triclustering-
based classifier. To this end, TCtriCluster, an extension of triCluster, is proposed to handle heterogeneous clinical 
data with a temporal contiguity constraint. This restriction was shown to be effective in improving the efficacy 
of the target predictive models, highlighting its relevance for triclustering three-way time series data. We further 
show that triclustering-based classification enhances prognostic tasks with the potentialities of model interpret-
ability, enabling the discovery of domain-relevant temporal patterns, then used as features in the predictive models.

As the central case study, we targeted the problem of predicting the clinical progression of ALS patients 
towards disease endpoints within clinically relevant time windows (90, 180 and 365 days). In particular, we 
focus on the prognostic of five relevant endpoints (need for non-invasive ventilation, auxiliary communication 
device, PEG, caregiver, and wheelchair) and assess predictability limits using different lengths of patient histori-
cal assessments.

The triclustering-based models achieved good results in short-term predictions (AUC higher than 90%) for 
the need for an auxiliary communication device and the need for PEG. Short-term prognostics of the need for 
NIV, caregiver, and wheelchair also yield good predictive performance (AUC around 85%). Some of these mod-
els improved their performance while predicting in the mid and long-term. The proposed methodology shows 
general improvements against state-of-the-art in the capacity to predict the target endpoints, confirming the 
relevance of using triclusters to perform data transformations sensitive to local patterns of disease progression. 

Figure 10.  Top 20 patterns (triclusters) used by the triclustering-based classifiers. The terminology used is the 
following: patterns name starts with ‘Tric’ followed by an identifier, and the snapshot (bicluster) position in 
the set of snapshots, in which 0 is the first position. Class 0 represents ‘non-evolutions’, and Class 1 represents 
‘evolutions’.
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The possibility of extracting group-specific patterns along time frames of arbitrary length offers a higher degree of 
feature expressiveness, which is generally lacking in peer approaches. Another relevant property of the proposed 
transformation is the preserved interpretability of the produced features as they reveal informative progres-
sion patterns that discriminate a given outcome of interest. The inspection of those patterns unravels groups of 
individuals with coherent temporal variations on a subset of the clinical assessments throughout the follow-up.

This study represents a significant advance in prognostic prediction in ALS, showing generalized improve-
ments in the predictability of degenerative progression towards critical states, meaning clinical interventions. 
This offers the unique opportunity to better-preparing families for the next illness stages and further entails 
individualized management with the purpose of optimizing independence, function, and safety, therefore reduc-
ing symptom burden and improving the quality of life of the patients.

The proposed triclustering-based methodology can further be used to learn predictive models with different 
types of three-way data, encompassing prognostic problems in other diseases with available longitudinal cohort 
studies.

Data availability
The data acquired from the undertaken cohort study are not publicly available to ensure the patients’ rights 
to privacy and anonymity. Contact the corresponding author for further data access queries. The proposed 
triclustering-based classifier was coded in Python and is available in https:// github. com/ dfmso ares/ tricl uster 
ing- based- class ifier together with a demo example. The notebooks with model interpretability for all the target 
endpoints are available in the same repository.

Appendix 1
Adding static features. Although the proposed triclustering-based classifier itself does not consider using 
static features, we decided to add them to the learning matrices to understand if they improve the triclustering-
based classifier performance. Table 10 depicts the obtained results with the same parameters that proved to be 
the best depicted in Table 8. In fact, static features improved the prognostic prediction of some critical points 
while others remained similar. Table 1 shows the static features used.

Table 9.  Most relevant patterns used by the best three models. For simplicity’s sake, we reproduce here only 
the top 5 patterns. The terminology used is the following: each pattern’s name starts with ‘Tric’ followed by an 
identifier, and finally, the snapshot (bicluster) position in the set of snapshots, in which 0 is the first position.

C2—90 days

 Tric_18_2 [ALSFRSb=12, MITOS-stage=1]

 Tric_2_2 [ALSFRSb=12]

 Tric_11_2 [ALSFRSb=12, R=12, MITOS-stage=1]

 Tric_1_2 [ALSFRSb=12, R=12]

 Tric_2_1 [ALSFRSb=12]

C1—180 days

 Tric_232_4 [R=12, MITOS-stage=1]

 Tric_74_4 [ALSFRSb=12, R=12, MITOS-stage=1]

 Tric_109_4 [ALSFRSb=12, MITOS-stage=1]

 Tric_17_4 [ALSFRSb=12, R=12]

 Tric_19_4 [R=12]

C4—365 days

 Tric_22_1 [ALSFRSsUL=12, MITOS-stage=1]

 Tric_1_1 [ALSFRSb=12, ALSFRSsUL=12]

 Tric_19_1 [ALSFRSb=12, ALSFRSsUL=12, MITOS-stage=1]

 Tric_13_1 [ALSFRSsUL=12]

 Tric_162_1 [ALSFRSsUL=12, MITOS-stage=1]

https://github.com/dfmsoares/triclustering-based-classifier
https://github.com/dfmsoares/triclustering-based-classifier
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