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Spatial antiferromagnetic spin 
texture as a nano‑oscillator
Victor S. Gerasimchuk 1, Yuri I. Gorobets 1,2, Oksana Yu. Gorobets 1,2 & Igor V. Gerasimchuk 1,2*

We report a theoretical study of the localized spatial magnetization configuration, which is a confined 
spin configuration of the target skyrmion/hopfion type in an antiferromagnet with perpendicular 
magnetic anisotropy, and then we solve the particular problem of self‑oscillations of such a topological 
spin texture. Using the energy approach, a self‑consistent account of inhomogeneity of the 
characteristics of the topological magnetic spin texture was carried out. On this basis, the equation of 
free oscillations of the confined spin configuration magnetization was derived and its quasi‑classical 
solution was found. For a thin ring spin texture, the frequency, period of oscillations and relative 
amplitude of the main tone of oscillations are found. For the first time, we determined the topological 
mass, inertial mass and total energy of the main tone of oscillations of such spatial spin texture. The 
self‑oscillatory process of a spatial spin texture is interpreted as a magnetic nano‑oscillator.

Two-dimensional solitons in magnets—skyrmions and vortices, topologically protected inhomogeneities of the 
magnetization field—are promising as information carriers for magnonics and  spintronics1–5. Stable magnetic 
skyrmions were observed at room temperature and zero external magnetic fields in antiferromagnets (AFM) 
with perpendicular magnetic  anisotropy6. It is AFM skyrmions that are considered the best carriers of informa-
tion for data storage devices.

Let us pay attention to axisymmetric target skyrmions—spin configurations with a multi-ring structure, 
constant chirality, and continuous rotation of the z component of the magnetization in common chiral ferro-
magnets. Comparison of the results of numerical simulation with experimental measurements in chiral magnet 
 FeGe7 demonstrates switching between two states of target skyrmions with opposite polarities and directions of 
rotation. Stable spatially localized states are also demonstrated by 3D topological solitons called hopfions. These 
axisymmetric variations of magnetization, closed and interlinked within the magnetic bulk of a toroidal shape, 
turns out to be energetically more favorable than chiral magnetic skyrmions in a wide range of  parameters8. 
Numerical simulations for a chiral magnet FeGe demonstrated the transformation of the target skyrmion into 
a  hopfion9 and the existence of static solitons having a different Hopf index in magnetic nanostructures with 
perpendicular magnetic  anisotropy10.

Possible spin configurations realized in magnets are not limited to skyrmions and hopfions. Recently, it was 
shown that in fact a standard model of chiral magnet possesses an infinite set of skyrmion solutions having a 
different value and sign of topological charge and diverse  morphology11.

The dynamics of magnetic spin textures seems to be quite complex. Thus, skyrmions exhibit several well-
known dynamic regimes, among them are breathing modes when the skyrmion radius  changes12,13, and rotational 
 modes14,15 when the position of the skyrmion core fluctuates. Various combinations of these modes and transi-
tions between  them16, as well as inertial  dynamics17–19, can take place. Of course, more complex spin textures, 
i.e., those breaking more symmetries, have potentially more complex dynamics and eigenmodes.

To describe the oscillations of skyrmions and their translational motion, the Thiele  equation20 is often used, 
in which inertial effects are taken into account when introducing the inertial mass of a  skyrmion18,19. However, 
the real oscillations of spin textures, which take into account the non-uniform distribution of the density of 
solitons’ inertial masses and the densities of driving forces, have not been sufficiently studied. Oscillations of 
spin textures as a physical process are almost not discussed.

It is noteworthy, however, that the term nano-oscillator is widely used in spintronics. It is known that in 
magnetic nanostructures there can be a direct (contact) interaction between current and magnetization, which 
can lead to magnetization reversal processes. Using the concept of spin  current21, this interaction is treated as 
the transfer of angular momentum from a spin-polarized charge current, or an input spin current, to a local 
magnetization. For this reason, systems in which the magnetization precession is excited in such a way are 
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called oscillators based on the spin-transfer torque. According to physical principles, spin torque nano-oscilla-
tors (STNO) and spin-Hall nano-oscillators (SHNO) are  distinguished22. In the first of them, current-induced 
switching by spin-transfer torque effects takes place, and in the second, the spin Hall effect interconverts spin 
and charge currents, that enables the electrical generation of collective spin excitations. Both types of oscillators 
were originally developed on the basis of ferromagnets and consist of a soft magnetic free layer and an adjunct 
spin-current source. The magnetization precession frequency depends on the bias magnetic field and current 
density, and lies in the GHz range.

Of course, within these well-known approaches, various variations are possible. The most interesting among 
them are related to the use of AFM materials as free layers instead of ferromagnetic ones. Thus, it is proposed 
to use a DW-type magnetic texture located in an AFM with an easy-axis anisotropy as an active element of a 
high-frequency  SHNO23. The dynamics of the Néel vector is described by a σ-model  equation24 based on the 
Landau–Lifshitz equations. The peculiarity of this approach is related to the exchange enhancement of the AFM 
dynamic parameters and, accordingly, to the possibility of growth of the operating frequencies, even in the 
absence of an external field. For AFM-based SHNO, using Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equa-
tions it was solved the problem of excitation of a spin wave in a thin AFM film subjected to a nano-constriction25. 
Such an AFM-SHNO was considered as a plane AFM film that is subjected to a spin current injected locally in 
a circular region of a certain radius. As expected in this case, the solutions are radially propagating spin waves, 
and the spin pumping is again completely due to exchange enhancement.

In the present work, we put forward a new approach to research in this highly promising area. Due to the 
practical necessity of studying the dynamics of spatial topological spin configurations, we solve the problem of 
analytical calculation of eigenexcitations of an axisymmetric circular spin texture in a thin AFM layer with per-
pendicular magnetic anisotropy in the absence of applied external magnetic field. We discuss the self-oscillatory 
dynamics of the AFM spin texture regardless of existing models of nano-oscillators, and introduce nano-oscillator 
based directly on a non-uniform antiferromagnetic dynamical spin texture (NUST-NO).

3D theoretical model of topological spin textures in antiferromagnets
Let us consider a two-sublattice AFM with the easy-axis magnetic anisotropy, assuming that 
|M1| = |M2| = M0 = const , where M1 and M2 are the magnetizations of the AFM sublattices. The Néel vector 
L and magnetization vector M of the magnetic system are defined via M1 and M2 as follows: L = M1 −M2 and 
M = M1 +M2 . Consequently, we can write M · L = 0 , M2 + L2 = 4M2

0 . The ground state of a two-sublattice 
AFM in the absence of an applied magnetic field corresponds to the complete mutual compensation of the 
magnetizations of the sublattices: M1 = −M2 , M = 0 and |L| = L0 = 2M0.

The excited states of a two-sublattice AFM in the absence of dissipation are described by the Landau–Lifshitz 
equations in the following  form26,27:

where g = 2µ0

/
� is the gyromagnetic ratio, µ0 = |e|�

/
(2mec) is the Bohr magneton, and F is the AFM energy 

density functional.
In the case of a purely uniaxial AFM, the anisotropy axis of which coincides with the axis Oz , we obtain 

Lx , Ly ≪ Lz ≈ |L| = L0 ≈ 2M0 . In the natural for an AFM assumption |M| ≪ |L|24,26–28, magnetic energy density 
of an AFM can be written as follows:

where A is the homogeneous exchange energy constant, α is the inhomogeneous exchange energy constant, β is 
the anisotropy constant, and H is the external magnetic field. Normally, A ∼ J

/
µ0M0 , where J is the exchange 

integral, α ∼ a2A , α > 0 , where a is the linear dimension of a crystal unit cell, and β ≪ A . In Eq. (2) we omitted 
the terms with 

(
∂M

/
∂xi

)2 in the inhomogeneous exchange energy and ignored the dependence of the anisotropy 
energy density on M.

In the long-wave approximation, when the characteristic linear dimension of the inhomogeneity of the 
magnetization field is far beyond that of the linear dimension of a crystal unit cell, the second equation in (1) 
can be approximately rewritten  as27

Equation (3) can be solved for M:

and the first equation in (1) can be rewritten as
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where ez is the unit vector of the axis Oz . Substituting (4) into (5), we come to the equation for the Néel vector L:

Here c = 2gM0

√
A · α is the characteristic velocity which is equal to the minimum phase velocity of spin waves 

of the linear theory for H = 024,26–28, and ω0 = c
/
ℓ0 = 2gM0

√
A · |β| , where ℓ0 =

√
α
/
|β| is the characteristic 

magnetic length.
Equation  (6) can be conveniently written in angular variables θ and ϕ for the Néel vector 

L = L0 ·
{
sinθ · cosϕ · ex + sinθ · sin ϕ · ey + cos θ · ez

}
 . Using vector L parameterization and assuming that 

the magnetic field H is directed along the anisotropy axis ( H = H · ez ), Eq. (6) can be written in the form of the 
system of dynamic equations for the angular variables:

where ωH = gH.
The system of equations for a uniaxial two-sublattice AFM in the form analogous to (7) was obtained by 

Bar’yakhtar and  Ivanov24,28. Some multidimensional vortex solutions in models of easy-axis and isotropic AFM 
were found in Ref.29. A new class of self-similar 3D nonlinear solutions of the system of Eq. (7) was derived in 
Ref.30. Three cases were investigated therein, viz., the spin wave velocity υ is less, greater and equal to the char-
acteristic velocity c . We will use the following nonlinear solution of the system (7)30:

where sn(P, k) is the Jacobi elliptic function with modulus k . The solution (8) is obtained in the case when the 
spin wave velocity is less than the characteristic velocity, υ < c , and the Lorentz-like transformation of coordi-
nates is applied: X = x , Y = y , Z = z

/√
1− υ2

/
c2 . This transformation means that Eq. (7) are Lorentz invari-

ant regarding coordinates and any nonlinear solution of these equations can move straightly with a constant 
velocity along the axis Oz.

The solution for the functions P and Q can be written in the form

where parameter χ = ω0

/(
c ·

√
1− υ2

/
c2
)
= 1

/(
ℓ0 ·

√
1− υ2

/
c2
)
 , and the functions p and Q should 

satisfy the Cauchy–Riemann equations ∂p
/
∂x = −∂Q

/
∂y , ∂p

/
∂y = ∂Q

/
∂x.

The relations (8), (9) define the indicated solution for θ and ϕ.

Results and discussion
Equation of free oscillations of topological spin texture magnetization. Let us choose a certain 
form of the solution (8), (9) defining the function p(x, y) as follows:

where r =
√

x2 + y2 and r̃0 is an arbitrary parameter of the dimension of length. The order of magnitude of r̃0 
is in line with the characteristic size of the topological spin texture. Then from the Cauchy–Riemann equations 
we find the solution for the function Q(x, y) : Q = −ψ + const , where the parameter ψ = arctan

(
y
/
x
)
 . As a 

result, solution (8) takes the final form:

In the limit k → 1 , that corresponds to the transition sn(P, k → 1) → tanh(P) , solution (11) is simplified:

(5)
∂M

∂t
= −g · {α · [L ×�L]+ [M×H]+ β · Lz · [L × ez]},

(6)
[
L ×

(
c2�L −

∂2L

∂t2

)]
= 2g · (L ·H) ·

∂L

∂t
+ g2 · (L ·H) · [L ×H]− ω2

0Lz · [L × ez].

(7)





∂2θ

∂t2
− c2�θ −

��
∂ϕ

∂t
− ωH

�2

− c2(∇ϕ)2 − ω2
0sgnβ

�
sin θ cos θ = 0,

∂

∂t

�
sin2 θ ·

�
∂ϕ

∂t
− ωH

��
− c2div

�
sin2 θ · ∇ϕ

�
= 0,

(8)





tan
θ

2
=

�
1− sn(P(X,Y ,Z), k)

1+ sn(P(X,Y ,Z), k)
,

ϕ = ωHt + Q(X,Y ,Z),

(9)

{
P = χ · (z − υt)+ p

(
x, y

)
,

Q = Q
(
x, y

)
,

(10)p = ln
r

r̃0
,

(11)





tan
θ

2
=

�
1− sn

�
χ · (z − υt)+ ln

�
r
�
r̃0
�
, k
�

1+ sn
�
χ · (z − υt)+ ln

�
r
�
r̃0
�
, k
� ,

ϕ = ωHt − ψ + const.



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6613  | https://doi.org/10.1038/s41598-023-33220-0

www.nature.com/scientificreports/

Let us discuss the main topological parameters of such a spin texture. The variation in spin configuration 
along the axis of symmetry, coinciding with the z axis, is bounded on the z axis. Indeed, an arbitrary constant 
r̃0 in (10)–(12) affects only the shift of the spin texture as a whole along the z axis. It follows from (12) that the 
size of the spin texture along the z axis depends only on the characteristic magnetic length ℓ0 . Therefore, by 
appropriately choosing the parameter ℓ0 , one can adjust the thickness of the spin texture. Numerical analysis of 
solution (12) testifies that at the selected value of ℓ0 = 0.7 nm , the turn of the polar angle θ by −π (from θ = π 
at z ≃ z1 = −2.5 nm to θ = 0 at z ≃ z2 = 2.5 nm ) occurs at the thickness of the spin texture d ≈ 5 nm . The 
selected value of ℓ0 = 0.7 nm assumes a small exchange energy constant or a large uniaxial anisotropy constant, 
which is achievable in  AFM31,32. In some cases it is convenient to put r̃0 = 50 ℓ0 , it allows the spin texture to be 
symmetrically positioned about the plane z = 0.

At a fixed angle θ , we obtain from Eq. (12) the following dependence for z = z(r) at the initial time t = 0 : 
z = −ℓ0 · ln

[
tan

(
θ
/
2
)
· r
/
r̃0
]
 , which defines the locus of points having the same polar angle (for any value 

of the angle ψ).
Taking into account the limitation of the Néel vector distribution in height (along the z axis), we can con-

sider the spin texture to be rather thin if its characteristic radius r significantly exceeds its thickness d , i.e., the 
condition d

/
r ≪ 1 is met.

As follows from the above, in our case, a Néel-type spin configuration can be realized, in which the Néel 
vector is oriented along the easy axis, and the rotation of atomic magnetic moments occurs in the film plane.

Let us define the surface density and surface energy density of the spin texture. Let us write the expression 
for the total energy of a uniaxial  AFM27:

where integration is taken over the volume of an AFM.
Using solution (12), from relation (13) in the approximation υ/ c ≪ 1 , we obtain the energy density of the 

spin texture in the form: ε(r) = ε0(r)+ εk(r) ≡ ε0(r)+ γ (r) · υ2
/
2 , where ε0(r) is the surface energy density, 

and εk(r) = γ (r) · υ2
/
2 is the kinetic energy density of the spin texture. Hence, taking into account the ratio 

ω0

/
c = 1

/
ℓ0 =

√
|β|

/
α , we find an expression for the surface density of the topological spin texture:

and surface energy density of the spin texture:

where parameter r0 = ℓ0

/√
2.

Self-consistent account of inhomogeneity of the surface density and surface energy density of the spin texture 
is performed for the first time, and this makes it possible to estimate the value of the spin texture mass caused 
by its topology:

where m0 = ℓ0
/
(Ag2) = 4αM2

0ℓ0
/
c2 . Indeed, the skyrmion spin texture can be described as a deformable 

 quasiparticle18, into the equation of motion of which the so-called “topological mass” is introduced, due to the 
topology of the structure.

From the positiveness of expression (14), it follows, in particular, the condition of applicability of this model 
with a function p(x, y) in the form (10), namely r > r0.

The solution (12) can also be considered as a motion of the initial spin texture with the constant velocity υ 
along the z axis.

Let us use solution (12) for the analytical study of axisymmetric oscillations of circular nanoscale spin texture 
in AFM film with easy-axis magnetic anisotropy.

Let us approximate axisymmetric circular spin texture by a thin non-uniform membrane of variable density, 
the free oscillations of which are described by the wave equation

where the function u(r, t) characterizes the displacement along the axis of symmetry (anisotropy axis). In the 
polar coordinate system, in the simplest case of free axisymmetric oscillations, the right side of Eq. (17), taking 
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into account (15), is reduced to ε0(r) ·
(
∂2u
∂r2

− 1
r ·

∂u
∂r

)
 . As a result, we obtain the equation of free oscillations of 

the topological spin texture with variable coefficients:

where the ratio ε0(r)
/
γ (r) characterizes the “magnetic rigidity” of the spin texture and is expressed in terms of 

the characteristic velocity c:
ε0(r)
γ (r) = c2

(r/ r0)2−1
.

We write Eq. (18) in the form of a wave equation with variable coefficients,

and formulate the problem of intrinsic excitations of an axisymmetric circular spin texture caused by initial 
perturbations. Let us consider a confined configuration of the Néel vector distribution as an axisymmetric spin 
isosurface. By virtue of solution (12) and the restriction r > r0 arising from expression (14), the spin isosurface 
can be represented as a circular ring, similar, for example, to  hopfion8–11 with its toroidal topology or target 
 skyrmion7 with an inner radius of circular edge twists exceeding r0 ( r0 ≪ 1 ). The implementation of a spin iso-
surface bounded by concentric rings, apparently, is also possible in confined geometry, for example, in nanotubes.

The standard procedure for separating the variables u(r, t) = R(r) · T(t) applied to Eq. (19) leads to a linear 
differential equation for the time component

and to the equation for the radial component

with the separation constant �.
Equation (20) has obvious oscillating solutions, but the exact solution of Eq. (21) is not known in general. 

However, for a new unknown function y(x) = R(r) with a dimensionless variable x = � r2
/
r0 , Eq. (21) can be 

reduced to an equation of the type of the stationary Schrödinger equation,

with the potential U(x) = �r0
/
(4x).

Solution of the magnetization free oscillations equation. Axisymmetric oscillations of the 
circular nanoscale spin texture. The quasi-classical consideration, in particular, the WKBJ method is 
applicable to Eq. (22). Following Ref.33,34, we assume that the changes of U(x) at the wavelength are so small 
that over several wavelengths the potential U(x) can be considered to be constant in the vicinity of the turning 
point x = x0 . For the effective wavenumber q(x) =

(
1
/
4− U(x)

)1/ 2 , the condition for a slow change of the 
potential U(x) = �r0

/
(4x) at a wavelength (the quasi-classical condition) at small values |x − x0| is determined 

by the inequality

One more condition for q(x) , namely q(x) = 0 33 defines the isolated classical turning point x = x0:

Thus, Eq. (22) (and along with it Eq. (21)), in accordance with the WKBJ  method33,34, has a certain set of 
solutions: (i) in the immediate vicinity of the turning point (24), and (ii) some set of solutions to the right and 
left of the turning point, in the quasi-classical region defined by inequality (23). In the first case, the solution is 
written in terms of the Airy functions, and in the second one, the WKBJ method for the potential U(x) ∼ x−1 
gives oscillating solutions to the right of the turning point and exponential solutions to the left of it. Note that 
Eq. (23) is consistent with the condition of applicability of the model under consideration, r > r0.

Let us restrict ourselves here to the second case, which is more interesting from a practical point of view. 
Let the ring nanoscale spin isosurface bounded by two concentric circles lie entirely in the region of the quasi-
classical solution of Eq. (22). We assume that the inner x1 and outer x2 radii of the ring spin configuration sig-
nificantly exceed the distance to the turning point x0 ( x1, x2 ≫ x0 ). Then it follows from (23) that the ring spin 
isosurface lies entirely in the outer region (with respect to the turning point) of the quasi-classical approximation. 
The other quasi-classical region, internal with respect to the turning point, is a circle of radius x0 centered at the 
origin of coordinates. However, we are not interested in this region here.
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The magnetization configuration (12) at the initial time t = 0 for the magnetic length ℓ0 = 0.7 nm , parameter 
r̃0 = 50 ℓ0 and the thickness of the spin texture d ≈ 5 nm is shown in Fig. 1a,b. Figure 1a presents the ring spin 
texture, and Fig. 1b demonstrates the turn of the polar angle θ by −π (from θ = π at z ≃ −2.5 nm to θ = 0 at 
z ≃ 2.5 nm ) at a fixed radius between inner and outer ones.

The boundary value problem in the region under consideration ( x ≫ x0 ) is formulated, for example, as 
follows: to find nontrivial solutions of Eq. (22) that satisfy the condition of fixing spin isosurface on circles of 
inner and outer radii,

caused by the radially symmetric initial perturbation

where xi = � r2i
/
r0 (i = 1, 2) . Conditions (26) correspond to the initial profile of the ring spin isosurface in the 

form of a paraboloid of revolution with height h (h ≪ x1, x2) , which is symmetric with respect to the middle of 
the ring at zero initial oscillation velocities.

If we expand the potential U(x) in Eq. (22) near x = x0 in a power series of |x − x0| , restricting ourselves 
to the linear term of the expansion, then the square of the effective wavenumber q2(x) ≃ (x − x0)

/
(4�r0) and 

Eq. (22) is reduced to the differential equation

which has an asymptotic solution, determined by the  formula33

where w(x) =
x∫
x0

q(x)dx.

Having required the fulfillment of boundary conditions (25) for the solution (28), we derive a homogeneous 
system of linear equations, from the condition of non-trivial compatibility of which we obtain the equation

for finding the eigenvalues �:

where ρi ≡
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)3/ 2  (i = 1, 2).
Using solution (28), we find the eigenfunctions corresponding to the eigenvalues (29):
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Figure 1.  Ring spin configuration (12) at the initial time t = 0 for the magnetic length ℓ0 = 0.7 nm , 
parameter r̃0 = 50 ℓ0 and the thickness of the spin texture d ≈ 5 nm . (a) Ring spin texture. (b) Magnetization 
configuration and turn of the polar angle θ by −π from θ = π at z ≃ −2.5 nm to θ = 0 at z ≃ 2.5 nm for a 
fixed radius between inner and outer ones.
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As a result, we obtain a solution of the eigenvalue problem for Eq. (21) and boundary conditions (25):

where we used q(r) = ρ1/ 3
/
(2r0).

Taking into account the eigenvalues (30) of the boundary value problem, we write the solution of the linear 
differential Eq. (20):

 and the general solution of the wave Eq. (19):

Now we require the fulfillment of the initial conditions (26). Based on the conditions of orthogonality and 
normalization of the main system of trigonometric functions, we obtain an expression for determining the coef-
ficients An (coefficients Bn = 0):

where

The final solution of the boundary value problem for the ring spin isosurface (19), (25), (26), taking into 
account (33), takes the form

Coefficients An (33) are not possible to calculate in an analytical form. With the selected characteristic mag-
netic length ℓ0 = 0.7 nm and the sizes of the ring spin texture r1 = 25 nm and r2 = 50 nm ( d

/
(r2 − r1) ≪ 1 ), the 

first 10 coefficients Un(ρ2 − ρ1) of series (34), normalized to h (we denoted Unh ≡ Un

/
h , where n = 1, 2, ..., 10 ), 

lie in the interval

and decrease with increasing n . Therefore, the solution of the boundary value problem, normalized to h ,  
uh(r, t) ≡ u(r, t)

/
h  can be presented in the form

The dependence uh(r, t) (35) on the radius r at the initial time t = 0 is presented in Fig. 2 (we put the char-
acteristic velocity to be equal to c = 5 · 103m/ s).

Spin texture as a nano‑oscillator. Topological and inertial masses of the localized spin tex‑
ture. For the main tone of oscillations (the first term in (35) for n = 1 ), the obtained solution (35) allows 
finding the relative amplitude, frequency and period of oscillations:

(30)y

(
x =

�

r0
r2
)

≈ A sin
�n(ρ − ρ2)

3r20
.

(31)Rn(r) ≈

√
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πρ1/ 3
A

cos
(
�nρ2
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− π
12

) sin
�n(ρ − ρ2)

3r20
,

Tn(t) = An cos (�nct)+ Bn sin (�nct),

(32)u(r, t) =
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πρ1/ 3
·
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(33)An = C̃n(r0) · Un(ρ2 − ρ1),
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√
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1
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12

)
, ρ ≡
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3r20
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2
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·
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U1h ≃ 3.130 · 10−26 m7/2, . . . , U10h ≃ 7.844 · 10−28 m7/ 2

(35)uh(r, t) ≈
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The oscillation frequency ω 1 coincides in order of magnitude with the frequency of the gyrotropic mode of 
the  skyrmion19, with the frequency due to the inertial  effect35, and with the frequencies of the oscillations of 
magnetic domain walls in confined  geometries36–38.

Using solution (34), one can estimate the total oscillation energy of the ring spin isosurface:

where the coefficient before the sum is identified with its mass

The resulting value gives an estimate of the mass due to the axisymmetric oscillations of the spin texture and 
which can be interpreted as the inertial mass of the spin isosurface. The value of inertial mass (38) is less than 
the inertial masses of a skyrmion found using different  methods19,35,39,40, but comparable with the corresponding 
value obtained from the microscopic description of the kinematic properties of  skyrmions41,42 and antiferromag-
netic domain walls in antiferromagnet–heavy-metal  bilayers43. In addition, it correlates with the  statement44 that 
for nanometer skyrmions, the inertial mass is in the ballpark of a few electron masses.

In the general case, as noted in Ref.18, the inertial mass differs from the topological mass. In our case, the 
inertial mass m inert indeed has an order of magnitude different from the topological mass m tp calculated by the 
formula (16):

The value of the topological mass (39) is in line with a typical mass scale of skyrmion spin  texture17 and with 
the mass of geometrically confined magnetic domain  walls36,45,46.

Finally, note that the total oscillation energy of the ring spin isosurface (37) is proportional to the square of 
the amplitude of its oscillations, just as for the classical harmonic oscillator.

Let us notice that in our case there are no external fields and/or currents that can affect the inertial effects (in 
particular, oscillations) of the spin texture and its mass (Schütte et al.17). The oscillations of the ring spin isosur-
face (34) take place in the absence of dipole interaction, Dzyaloshinskii–Moriya interaction, and external fields. 
In this regard, one can see a certain analogy between the radial oscillations of the AFM spin texture considered 
by us, and a dynamically stabilized magnetic skyrmion, which exists due to the coherent internal precession of 
its moments around the anisotropy axis while its diameter is in general oscillating with  time5.

(36)
u 1h(r, t) ≃

2.862 · 10−4

(
r2 − r20

)1/ 4 · cos (�1ct) · sin
�1(ρ − ρ2)

3r20
, � 1 ≃ 21113.276,

ω 1 = � 1c ≃ 1.056 · 108 s−1, T1 =
2π

ω 1
≃ 5.952 · 10−8 s.

(37)E =
1

2

r 2∫

r 1

[
γ (r)

(
∂u

∂t

)2

+ ε0(r)

(
∂u

∂r

)2
]
rdr ≃ 11.36m0

∞∑

n=1

ω2
n

U2
n (ρ2 − ρ1)

ℓ0(ρ2 − ρ1)
2
,

(38)m inert = 11.38 ·m0 = 11.38 · 4αM2
0ℓ0

/
c2 ≃ 1.3 · 10−27 kg.

(39)m tp =
πm0

2

(
r22 − r21

r20
− 2 ln

r2

r1

)
≃ 6.6 · 10−24 kg.

Figure 2.  Ring spin isosurface (35) at the initial time t = 0.
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Conclusions
Based on the Landau–Lifshitz equations, we proposed a model of the spatial distribution of magnetization, which 
is a confined spin configuration of the target skyrmion/hopfion type in a two-sublattice antiferromagnet with 
perpendicular magnetic anisotropy. Using a three-dimensional non-uniform antiferromagnetic magnetization 
distribution, which can be imagined also as the motion of the spin texture along the anisotropy axis, and an 
energy approach, the surface energy density and surface density of the topological spin texture are calculated 
as functions of the radius of spin isosurface. Taking these characteristics into account, we derived the equation 
of free oscillations of topological spin texture magnetization in the form of a wave equation with variable coef-
ficients, and found its quasi-classical solution. For a thin axisymmetric circular nanoscale spin configuration, 
the main characteristics of eigenexcitations are determined, viz., frequency, relative amplitude and period of 
oscillations. In addition, we found the topological and inertial masses of such a dynamical magnetization texture, 
which correlate with the known numerical and experimental results.

The localized oscillating spin texture is not only a source of rich physics, but also a promising candidate for 
advances in spintronics. Our results are applicable for finding the amplitude and spectra of oscillations of topo-
logical spin textures in confined geometry. We treat the self-oscillatory process of a localized spin texture as a 
magnetic harmonic nano-oscillator and can recommend it as a new tunable radio-frequency oscillation source.

In contrast to the well-known nano-oscillators driven by spin current such as STNOs or SHNOs, the nano-
oscillator based on a non-uniform antiferromagnetic dynamical spin texture (NUST-NO) proposed by us has a 
different principle of operation and is not a technological structure. Therefore, its physical dimensions are the 
real dimensions of the spin texture itself (nanometers). It does not require spin currents. Its oscillations are a 
natural physical process of harmonic oscillations excited in the spin texture in one way or another. However, 
this does not exclude the use of the dynamical magnetization texture studied by us also as an active element of 
a high-frequency oscillator based on the spin-transfer torque.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 26 November 2022; Accepted: 10 April 2023

References
 1. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 

(2006).
 2. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 

(2017).
 3. Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic Skyrmion: Stability. Creation and Manipulation. Sci. Rep. 6, 24795 (2016).
 4. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
 5. Zhou, Y. et al. Dynamically stabilized magnetic skyrmions. Nat. Commun. 6, 8193 (2015).
 6. Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).
 7. Zheng, F. et al. Direct Imaging of a zero-field target Skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys. Rev. Lett. 

119(19), 197205 (2017).
 8. Kent, N. et al. Creation and observation of Hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).
 9. Sutcliffe, P. Hopfions in chiral magnets. J. Phys. A: Math. Theor. 51(37), 375401 (2018).
 10. Tai, J.-S.B. & Smalyukh, I. I. Static Hopf solitons and knotted emergent fields in solid-state noncentrosymmetric magnetic nano-

structures. Phys. Rev. Lett. 121(18), 187201 (2018).
 11. Rybakov, F. N. & Kiselev, N. S. Chiral magnetic skyrmions with arbitrary topological charge. Phys. Rev. B 99(6), 064437 (2019).
 12. Mochizuki, M. Spin-wave modes and their intense excitation effects in skyrmion crystals. Phys. Rev. Lett. 108(1), 017601 (2012).
 13. Kim, J.-V. et al. Breathing modes of confined skyrmions in ultrathin magnetic dots. Phys. Rev. B 90(6), 064410 (2014).
 14. Makhfudz, I., Krüger, B. & Tchernyshyov, O. Inertia and chiral edge modes of a skyrmion magnetic bubble. Phys. Rev. Lett. 109(21), 

217201 (2012).
 15. Moon, K.-W., Chun, B. S., Kim, W., Qiu, Z. Q. & Hwang, C. Control of skyrmion magnetic bubble gyration. Phys. Rev. B 89(6), 

064413 (2014).
 16. McKeever, B. F. et al. Characterizing breathing dynamics of magnetic skyrmions and antiskyrmions within the Hamiltonian 

formalism. Phys. Rev. B 99(5), 054430 (2019).
 17. Schütte, C., Iwasaki, J., Rosch, A. & Nagaosa, N. Inertia, diffusion, and dynamics of a driven skyrmion. Phys. Rev. B 90(17), 174434 

(2014).
 18. Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).
 19. Shiino, T., Kim, K.-J., Lee, K.-S. & Park, B.-G. Inertia-driven resonant excitation of a magnetic skyrmion. Sci. Rep. 7, 13993 (2017).
 20. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30(6), 230 (1973).
 21. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1–2), L1–L7 (1996).
 22. Chen, T. et al. Spin-torque and spin-hall nano-oscillators. Proc. IEEE 104(10), 1919–1945 (2016).
 23. Ovcharov, R. V., Galkina, E. G., Ivanov, B. A. & Khymyn, R. S. Spin hall nano-oscillator based on an antiferromagnetic domain 

wall. Phys. Rev. Applied 18(2), 024047 (2022).
 24. Bar’yakhtar, I. V. & Ivanov, B. A. Nonlinear magnetization waves in the antiferromagnet. Sov. J. Low Temp. Phys. 5, 361 (1979) [Fiz. 

Nizk. Temp. 5, 759 (1979)].
 25. Hamdi, M. & Grundler, D. Terahertz Slonczewski propagating spin waves in antiferromagnetic spin-Hall nano-oscillators. arXiv: 

2206. 07844 v1 (2022).
 26. Kosevich, A. M., Ivanov, B. A. & Kovalev, A. S. Nonlinear Magnetization Waves. Dynamical and Topological Solitons (Naukova 

Dumka, Kiev, 1983) (in Russian).
 27. Kosevich, A. M., Ivanov, B. A. & Kovalev, A. S. Magnetic solitons. Phys. Rep. 194(3–4), 117–238 (1990).
 28. Bar’yakhtar, I. V. & Ivanov, B. A. Dynamic solitons in a uniaxial antiferromagnet. Sov. Phys. JETP 58, 190 (1983) [Zh. Eksp. Teor. 

Fiz. 85, 328 (1983)].
 29. Dzhezherya, Yu. I., Sorokin, M. V. & Bubuk, E. A. The vortex state of an antiferromagnet with uniaxial anisotropy. J. Exp. Theor. 

Phys. 100, 559–567 (2005).

http://arxiv.org/abs/2206.07844v1
http://arxiv.org/abs/2206.07844v1


10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6613  | https://doi.org/10.1038/s41598-023-33220-0

www.nature.com/scientificreports/

 30. Gorobets, Y. I., Gorobets, O. Y. & Kulish, V. V. Spin waves in a two-sublattice antiferromagnet: A self-similar solution of the Lan-
dau–Lifshitz equation. Commun. Nonlinear Sci. Numer. Simul. 42, 52–61 (2017).

 31. Wang, B., Oomiya, H., Arakawa, A., Hasegawa, T. & Ishio, S. Perpendicular magnetic anisotropy and magnetization of L10 FePt/
FeCo bilayer films. J. Appl. Phys. 115(13), 133908 (2014).

 32. Szunyogh, L., Lazarovits, B., Udvardi, L., Jackson, J. & Nowak, U. Giant magnetic anisotropy of the bulk antiferromagnets IrMn 
and  IrMn3 from first principles. Phys. Rev. B 79(2), 020403(R) (2009).

 33. Morse, P. M. & Feshbach, H. Methods of Theoretical Physics (Part II (McGraw-Hill Book Company Inc, 1953).
 34. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics. Non-Relativistic Theory, Course of Theoretical Physics, Vol. 3, 3rd ed. (But-

terworth-Heinemann, 1981).
 35. Liu, Y. & Liang, Z. Measurement of skyrmion mass by using simple harmonic oscillation. J. Magn. Magn. Mater. 500, 166382 (2020).
 36. Bedau, D. et al. Detection of current-induced resonance of geometrically confined domain walls. Phys. Rev. Lett. 99(14), 146601 

(2007).
 37. Sharma, S., Muralidharan, B. & Tulapurkar, A. Proposal for a domain wall nano-oscillator driven by non-uniform spin currents. 

Sci. Rep. 5, 14647 (2015).
 38. Khan, M. I. et al. Current-induced domain wall oscillations in a nanowire imaged by time-resolved photoemission electron 

microscopy. J. Magn. Magn. Mater. 476, 538–545 (2019).
 39. Martinez, J. C. & Jalil, M. B. A. Mass of a skyrmion under a driving current. J. Magn. Magn. Mater. 424, 291–297 (2017).
 40. Wang, K., Qian, L., Ying, S.-C., Xiao, G. & Wu, X. Controlled modification of skyrmion information in a three-terminal racetrack 

memory. Nanoscale 11(14), 6952–6961 (2019).
 41. Psaroudaki, C., Hoffman, S., Klinovaja, J. & Loss, D. Quantum dynamics of skyrmions in chiral magnets. Phys. Rev. X 7(4), 041045 

(2017).
 42. Psaroudaki, C. & Loss, D. Skyrmions driven by intrinsic magnons. Phys. Rev. Lett. 120(23), 237203 (2018).
 43. Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117(8), 087203 (2016).
 44. Capic, D., Chudnovsky, E. M. & Garanin, D. A. Skyrmion mass from spin-phonon interaction. Phys. Rev. B 102(6), 060404(R) 

(2020).
 45. Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain 

wall. Nature 432, 203–206 (2004).
 46. Rhensius, J. et al. Imaging of domain wall inertia in permalloy half-ring nanowires by time-resolved photoemission electron 

microscopy. Phys. Rev. Lett. 104(6), 067201 (2010).

Acknowledgements
I.V.G. acknowledges support by the Ministry of Education and Science of Ukraine (Project No. 0121U110090).

Author contributions
Y.I.G. and V.S.G. conceived the project; V.S.G. proposed the theoretical method; V.S.G., O.Y.G. and I.V.G. per-
formed the theoretical study; all authors contributed in the physical analysis of the results; the manuscript was 
written by V.S.G. and I.V.G., collecting comments from all the authors.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to I.V.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Spatial antiferromagnetic spin texture as a nano-oscillator
	3D theoretical model of topological spin textures in antiferromagnets
	Results and discussion
	Equation of free oscillations of topological spin texture magnetization. 
	Solution of the magnetization free oscillations equation. Axisymmetric oscillations of the circular nanoscale spin texture. 
	Spin texture as a nano-oscillator. Topological and inertial masses of the localized spin texture. 

	Conclusions
	References
	Acknowledgements


