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Stochastic resonance analysis 
of a coupled high‑speed maglev 
vehicle‑bridge coupled system 
under bounded noise
Yan‑xia Li 1,2*, Zhi‑wu Yu 1,2 & Lei Xu 1,2

Coupled oscillations typically occur in maglev vehicle-bridge coupled systems excited by bounded 
noise caused by guideway irregularities. The paper employed Hamilton equations to derive the 
corresponding canonical transformation equations and determined the critical stable regions for two 
kinds of resonances using the largest Lyapunov exponents. The results show that the critical stable 
region between the excitation amplitude and the resonant frequency ratio is a valley shape when 
the system has external resonance only. When considering both internal and external resonances, 
the critical stable region between the excitation amplitude and resonant frequency ratio presents a 
small saddle shape. Energy transfers from the first to the second oscillator under with both internal 
and extrinsic resonance. As the guideway irregularities’ coefficients increase, the maximum Lyapunov 
exponents of the two conditions change from negative to positive, which means that the system 
varies from a stable state to instability.

Electromagnetic suspension (EMS) system1 is becoming increasingly popular in urban transportation due to 
its high speed. Compared with wheel/rail trains which are typically propelled by motors and adhesive forces, 
maglev vehicles are suspended in the air through electromagnetic induction 2–5 and are more sensitive to internal 
excitation, external excitation, air gap floating, circuit fluctuations, and bridge vibrations. Therefore, suppression 
methods for resonances have encountered various challenges such as moving loads, dynamic deflection, heteroge-
neous frequencies, invalid controllers, faulty suspension magnets, bridge’s lightweight, and unmatched indices 6.

The test results of the Shanghai maglev line and the German EMSLAND line show that the dynamic loads’ 
factor of the two-span track beam is less than 1.2 and the local dynamic loads’ factor is less than 1.5 over the 
whole speed range. To prevent the vehicle-bridge coupled system’s resonance, the DIN (Deutsche Industrie 
Norm) standards stipulate that the product of the beam’s fundamental frequency and a single hole span need to 
be equal to 1.1 times the speed limit. It has been observed that the natural frequencies of the suspension system 
and the track are equal to 4.8 Hz and 17 Hz, respectively. However, because the track has a large oscillation 
amplitude7, the resonance needs to be calculated based on thorough analyses.

In this paper, a series of approaches for calculating resonance were presented including the average power 
for moving distribution loads’ method and the Lyapunov method. The average power technique was based on 
the transfer function and the stable condition described by Li Jinhui8–10, who provided the minimum model 
of the maglev vehicle-bridge interaction system, the necessary conditions for its stability, and three principles 
underlying the self-excited vibration. The resonant conditions under moving distribution loads were improved 
by Fryba, Yau J. D., Kwark, Xia H., and Yang Y. B.11–15, who gave the critical speeds at which the resonance may 
occur, thought the maximum acceleration responses of the beam to be dominated by the fundamental vibration 
modals, presented the numerical method technique concerning the dynamic behavior of bridges, explained the 
mechanisms of resonances and cancellation, and proposed the resonant formulas for calculating the span and 
frequency. The effect of fuzzy controller was discussed by Sun Yougang16, which can improve the dynamic per-
formance of the system, make the maglev system obtain a large stable range, and restrain the vehicle–guideway 
interaction vibration effectively.

Noise is commonly considered undesirable. However, some special nonlinear systems have nonintuitive 
dynamic behaviors after noise is introduced. Indeed, in recent years, there have been several studies to demon-
strate the phenomenon of stochastic resonance (SR). Examples were: (i) an experiment demonstrating stochastic 
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resonance in a bistable electronic device: a tunnel diode 17. Stochastic resonance was detected using a simple 
experimental setup by investigating the time evolution of the voltage measured across the tunnel diode as a 
function of the input noise intensity. (ii) the stochastic resonant phenomena was studied experimentally and 
theoretically for a state-of-the-art metal-oxide memristive device based on yttria-stabilized zirconium dioxide 
and tantalum pent-oxide, which has exhibited bipolar filamentary resistive switching of the anionic type 18. The 
optimal noise intensity corresponding to the stochastic resonance phenomenon was interpreted using a stochastic 
memristor model by adding an external noise source to the control voltage. Furthermore, dynamical systems have 
been studied in the presence of relevant noise-induced phenomena with a constructive role in stability, such as, 
(i) the damping-enhanced stability of a Brownian particle starting from an unstable initial position and moving 
in a metastable system was explored 19; (ii) a memristor used for resistive switches behaved as multistable non-
linear systems between low-resistance and high-resistance states in a random telegraphic signal mode 20; (iii) an 
approach using a real stable polynomial combined with a Gauge transformation was presented and the bistability 
of polynomials corresponding to factors of the original multi-graph model resulted in real stable polynomials of 
each factor in various multi-graph models of the aforementioned contraction sequence 21; (iv) a nonstationary 
function within a memristive system was investigated to devise a simplified description of transient processes 
under different noise intensities, and the relaxation time was obtained, which depended nonmonotonically on the 
intensity of the fluctuations 22. Finally, in other scientific study fields, such as quantum phase transitions in complex 
biological and physical systems, the positive role of noise has also been demonstrated. For example: (i) the Gaussian 
non equilibrium steady states of the quantum characteristics of such critical phenomena have been reviewed 23. 
(ii) a quantum case has been detected in which the indeterminacy arising from the uncertainty principle reduced 
the accuracy of the parameter estimation in a way that cannot be neglected, even in the limit of infinite copies24. 
(iii) the phenomena of dissonance and consonance have considered, where two sensory neurons were driven by 
noise and subthreshold periodic signals, and their outputs plus noise were applied to a third neuron with noise 
added to them 25; (iv) the noise in the high resistive state was found to be featured by nearly the same probability 
density functions and spectrum as the inner noise of the experimental setup 26.

Compared with previous research frameworks of time-domain samples in Newtonian mechanics, a Hamiltonian 
system with narrow-band random excitation is more complex. Some theoretical bases have been proposed. Colored 
noise refers to a fixed centre frequency, white noise intensity, and a uniform distribution angle with a triangular 
relationship 27, 28, which examined the responses. This noise was utilized in a Wiener process by an equivalent to 
measured power spectra in methods put forward by Chen Zeshen, Jin Zhibin, and Jin Shi 29–31, who performed the 
theoretical modeling analysis in the time domain with covariance analysis method, generated guideway irregularities 
by combining the shape filter with the time delay system, and considered short-wavelength track irregularities. Some 
examples substantiated in bridge responses under wind loads have been obtained by Dimentberg M, Lin Y.K., and 
Jian Deng. 32–34, who obtained the subcritical responses to an external broadband random, considered turbulence 
stabilize even a single-degree of freedom structural motion, and provided insights on how to analyze and control 
parametric resonances under a bounded noise process in engineering applications. Since Lyon et al. first applied a 
stochastic averaging method35 proposed by R. L. Stratonovich36, it was subsequently applied by Zhu W. Q., Huang 
Z. L., Liu Zhonghua, and W.Y. Liu37, 38, who proposed a stochastic averaging method to predict approximately the 
response of quasi-integrable Hamiltonian systems excited by bounded noise, determined the threshold of bounded 
noise amplitude for the onset of chaos. They have applied to duffer oscillator analyses using the random mean prin-
ciple and the limited differential technique. Although Bo Zhang39 investigated the random stability of a suspended 
wheelset system considering Gaussian white noise by the random average method. At present, there are few studies 
on resonance based on stochastic stability. Solving the resonant behaviour of the complex maglev vehicle-bridge 
coupled system is key to the further development of EMS.

The study presented in this paper aims to build a model to explore the critical conditions of stochastic reso-
nance over the whole bridge span with the aerodynamic loads and guideway irregularities. Hamilton’s theory is 
applied to derive the differential equations and their dimensionless equations 28. The appropriate stable domains 
at different resonances based on stochastic averaging theory and canonical transformations are given. The stabil-
ity probability according to the Fokker–Planck–Kolmogorov (FPK) equation utilized in this study. Moreover, 
a unique numerical method for assessing the effects of aerodynamic loads and the guideway excitation on the 
stochastic resonance of the maglev vehicle-bridge coupled system is also presented.

The stochastic averaging method
To explain the theoretical basis of our model’s analysis, the derivation process of the stochastic averaging method 
is introduced below.

Consider a quasi-integrable Hamiltonian system under bounded noise excitation governed by the following 
equations of motion37: 

where Qi and Pi are the generalized displacements and momentum, respectively; H = H(Q, P) is the Hamiltonian; 
εcij = εcij(Q, P) are the coefficients of lightly linear or nonlinear damping; εhij = εhij(Q, P) denotes the ampli-
tudes of weak bounded noises; and ξk(t) represents independent bounded noises of the form

where �k and σ 2
k  are constants representing the center frequencies and strengths of the frequency perturbations, 

respectively; Bk(t) are independent units in the Wiener processes; and �k are independent random phases that 

(1)Q̇i =
∂H

∂Pi
Ṗi = −

∂H

∂Qi
− εcij

∂H

∂Pi
+ εhijξk(t) i, j = 1, ..., n; k = 1, ..., l

(2)ξk(t) = cos[�kt + σkBk(t)+�k] k = 1, ..., l
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are uniformly distributed in [0, 2π]. ξk(t)are independent stationary random processes in a wide sense with 
spectral densities

and auto correlation functions

The bandwidths of the processes ξk(t) depend mainly on the parameters σk . The processes are narrow-banded 
when σk are small and wide-banded processes when σk are large. It is assumed that σk are small and thus the 
corresponding processes are narrow-band.

Suppose that the Hamiltonian system shown with Eq. (1) with ε = 0 is integrable, i.e., there exists a set of 
canonical transformations

through which new Hamiltonian equations are of  the following form:

where Ii and ωi are action variables and frequencies, respectively; θi  are the angle variables conjugated to Ii ; and 
H(I) is the transformed Hamiltonian, which is independent of θi . The Hamiltonian system is resonant if there 
exist α(1 ≤ α ≤ n− 1) resonant relations such that

where Lui  are integers that are not all zero for a fixed u.
By using the canonical transformations of Eq. (5), the differential equations for the action and angle variables 

of the quasi-integrable Hamiltonian system (1) can be obtained from Eq. (1) as follows:

The form and dimension of the averaging equations depend on the resonance of the Hamiltonian system 
described in Eq. (8). In the following subsections, two cases are considered.

External resonance only.  Consider a system with external resonance but no internal resonance. Suppose 
that there are β external primary resonant relations between the first β oscillators and the first β bounded excita-
tions, i.e.,27

where Mv and Lv are positive or negative integers and there is no summation over subscript υ. Introduce β new 
variables:

Using the transformation in Eq. (10), the differential equations for I1, ..., In,ψ1....,ψn, θ1...., θn can be obtained 
from Eq. (8) as follows:

(3)Sk(ω) =
σ 2
k

4π

σ 2
k + ω2 + σ 4

k /4

(ω2 −�2
k − σ 4

k /4)+ σ 4
k ω

2
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1

2
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k

2
|τ |)cos�kτ
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∂H(I)
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where I = (I1, ..., In),ψ = (ψ1, ...,ψβ),θ = (θ1, ..., θn)
As shown in Eq. (11), I1, ..., In , and ψ1, ...,ψβ are slowly-varying processes, while θ1, ..., θn are rapidly varying 

processes. By applying deterministic averaging to θ1, . . . , θn , the averaged ITȮ equations can be defined as follows:

where

The averaged FPK equation associated with Eq. (12) is

where p = p(I ,� , 0|I0,ψ0) is the transition probability density. The initial condition of Eq. (14) is

The boundary conditions with respect to ψv are periodic, i.e.,

The boundary conditions with respect to Ir are defined as

The reduced FPK equation with its boundary conditions can be solved numerically by using the combination 
of  finite difference method and the successive over-relaxation method.

Both  internal and external resonance.  Consider a system with β external resonant relations and α 
internal resonant relations, i.e.,

where Mv and Lv are positive or negative integers and there is no summation over subscript v . The Nu
i  are also 

integers that are not all zero for a given u . Then new variables are introduced37:

The transformation is shown in Eq. (20), the differential equations for I ,ψ ,�, and θ1 can be obtained from 
Eq. (8) as follows.

+Mvσv
dBV (t)

dt
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where I = (I1, ..., In),ψ = (ψ1, ...,ψβ) , � = (�1, . . . ,�α), θ1 = (θα , ..., θn) and θ1, ..., θn are replaced by 
�1, ...,�α , θα+1, ..., θn.

In Eq. (21), I , ψ , and � are slowly varying processes, while θ1 is a rapidly varying process. By applying deter-
ministic averaging to θ1 to Eq. (21), the averaging IT ̂O equations for I , ψ , and � can be expressed as:

The averaging FPK equation associated with Eq. (22) is of the form

Reduced averaged FPK equation (24) under similar boundary conditions can be solved numerically by using 
a finite difference method and the successive over-relaxation method.

Motion model
To better introduce the case applications, we first provide a detailed description of the composition of the specific 
model and the parameter settings is provided.

Theoretical hypothesis.  In general, model complexity is determined according to the purpose of the 
model. The model should be sufficiently comprehensive to allow the reliable and accurate analysis of vibration 
response analyses in terms of ride comfort and safety. Motion stability of an EMS model refers to the parameters 
for a minimal coupling model composed of a maglev vehicle and a bridge including the elite segments proposed 
by Jin-hui Li 6. Depending on the basic elements analyzed, the complex systems is then simplified to minimum 
models, which is more efficient. Table 1 lists the correlation variables.

The fundamental assumptions are described as follows:
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•	 Electromagnet forces are linear.
•	 The system is decoupled both laterally and vertically without considering the turning radius, height difference 

or rolling freedom.
•	 The random irregularity is bounded noise applied with the shaping filter technique.
•	 A Bernoulli–Euler beam is adopted for the calculation of the bridge model.
•	 The moving mass and the action point of the concentrated force are at the geometric center of the electro-

magnets.

Modelling of substructures.  Bridge model.  Based on the above analysis, the minimal model is presented 
in Fig. 1 6, 10, 40. The loads of vehicle and passengers are equivalent to a weight force acting on the center of the 
electromagnetic mass. The vehicle-bridge coupled system can be described using the structure is shown in Fig. 1. 
The electromagnetic forces are uniformly distributed on the bridge and the electromagnet. The current or volt-
age of the magnet that controls the electromagnetic action is applied to adjust the gap between the electromagnet 
and the bridge. The bridge is also shown in Fig. 1, where the endpoint marked with “0” is taken as the coordinate 
origin. The direction of the hammer is the positive direction of y-axis. Considering the high stiffness of the elec-
tromagnet, its deformation in the y-direction can be ignored. The dynamic characteristics have a considerable 
influence on the elastic deformation of the bridge in the y direction.

Based on the above assumptions, Fig. 1 illustrates a simplified suspension electromagnet-bridge coupling 
model. Where yB is the vertical displacement of the bridge, yE is the vertical displacement of the electromagnet 
relative to the reference plane, and δ is the distance between the electromagnet and the bridge.

The vertical motion of the bridge can be formulated as:

Table 1.   Variables used in the model.

Variables

x Axial coordinate of the bridge N Number of coils

T Time A Electromagnet area

EIB Bending rigidity μ0 Magnetic permeability of the vacuum

ρB Density of the bridge u0 Initial voltage

f(x,t) Electromagnetic forces, which depend on the vehicle
location i0 Initial current

λB Spatial wavelength of the first mode FE0 Initial electromagnetic force

FEi (t) Electromagnetic forces (x = 0.5LB) kp Gap feedback coefficient

Ω Spatial circular frequency of the guideway irregularity kd Gap first feedback derivative

S(Ω) PSD (mm2∙m) kep Equivalent magnetic dynamic stiffness

A ~ G Spectral characteristic parameters ked Equivalent magnetic dynamic damping

α2 Interference intensity of the Gaussian white noise ρ Canonical transformation variate

β center frequency ξB Damping ratio of the bridge

σ2 Variance of the guideway irregularity, with ξ(x) = Rξ(0) ωB Self-frequency of the bridge

Sξ(ω) Spectral density of the shaping filter R Resistance

mE Mass of the maglev vehicle −fv Aerodynamic drop

mB Mass of the bridge ξ1 (t) Random irregularity

yE Vertical displacement of the electromagnets σ(H) Diffusion coefficient

yB Bridge vertical displacement ρ Canonical transformation variate

LE Magnet length δ Measurement gap between the electromagnet and bridge

 + fv Aerodynamic lift δ0 Initial measurement gap

B(t) Unit Wiener process H(t) Slowly varying stochastic process

m(H) Drift coefficient α1 Canonical transformation variate

Figure 1.   Minimal model.
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where x is the transverse coordinate of the bridge, EIB is the bending stiffness of the bridge, ρB is the linear density 
of the bridge, and f (x, t) is the vertical force acting on the bridge.

When only the first mode is considered, �B = π/LB . The solution to Eq. (1) can be expressed as,

where qB is the first-order generalized time domain coordinate of the bridge. By multiplying both sides of the 
above resultant equation by ϕB(x) ϕB(x) and then integrating both sides from 0 to LB we obtain:

The bridge’s vertical displacement equation as

Levitation model with feedback control.  The electromagnetic forces can be simplified as long as the basic accu-
racy requirements are satisfied. Simplifications for the magnet-current relationship is linear near the ideal equi-
librium point. The equivalent magnet dynamic stiffness and equivalent magnet dynamic damping are constant 
values [5]. The latter is related to the gap derivative. The equations of the electromagnetic forces as follows:

Guideway irregularity.  The rail irregularity in a maglev line is the main source of extrinsic interference. At 
present, both the maglev lines in Shanghai31 and the Korean Institute of Machinery and Materials 41 implement 
their own measuring methods and have collected corresponding data. Due to the guideway irregularity caused 
by concrete shrinkage, concrete creep and vehicle loads, the wavelength is considered equal to the span of the 
bridge and the frequency is related to the vehicle speed.

Bounded noise includes harmonic variations with a maximum amplitude, a constant frequency, and random 
phases 45–50. It can be expressed via the stationary random process ξ1(t) as follows:

where Ω is a constant center frequency with Ω = π V/L, with V being the vehicle speed and L being the bridge 
length, Av is the maximum deflection of the bridge in the vertical direction, t is time, σ1 is the strength of the 
frequency perturbations, B(t) is a unit Wiener process, and Δ is a random phase that is uniformly distributed in 
[0, 2π]37. Its auto covariance functions are

and their corresponding spectral densities are
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The variance of the bounded noise 43 is

A comparison between the filter, the experimental line, and the literature is shown in Fig. 2, where it is evident 
that there is numerical consistency.

Dynamic differential equations. 

In the above equations, σ is the amplification factor of multiple suspension units. Through simplification, the 
dynamic differential equations can be expressed as:
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Figure 2.   Comparison between the filter, the experiment line, and the literature reference.
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Analysis of the Lyapunov exponent and stationary probability
To better evaluate the case study, the calculation process is elaborated further.

The differential equations for the motion integrals H1 and H2 and the angle variables θ1 and θ2 are expressed 
as follows:

where

Only external resonant vibration.  Consider a system with external resonance but no internal resonance. 
Suppose that there is a single external resonant relation 36.

where ε and Θ can be regarded as small detuning parameters. The new variable ψ is introduced, as defined in 
Eq. (39).

The differential equations for H1, H2, and ψ, are stated below:

The differential equations for ρ and α1 can be formulated as follows

The averaging FPK equation presented by Zhu (2002) [17] that is associated with ψ is 

The solution that satisfies the periodic condition is
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If A(α) > 0 , α1 → 1 and p(α1,ψ) = p(ψ)δ(1) . if A(α) < 0 , α1 → 0 and p(α1,ψ) = p(ψ)δ(0).

The equation can be expressed as:

Some results we obtained via simulations. The joint probability density p(α1, ψ) represents the centralized peak 
when Ψ = 0 and α1 = 0. In Fig. 3, when ψ = 0 and α1 = 0.5 , the stationary joint probability density p(α1, ψ) shows 
a peak. In Fig. 3, when �1−2ω1 = 0 , the first time of resonating to exceed is the shortest. As shown in Fig. 3 and 
Fig. 4, the cross-stable region in the frequency-excitation amplitude plane has a valley shape when �1 = 0 . As 
the guideway irregularity coefficient E11 increases, the maximum Lyapunov exponents increase gradually from 
their initial small stable state, as shown in Fig. 5. A comparison between the stochastic averaging method and 
the numerical simulation is also shown in Fig. 5, where the numerical consistency between the results is evident.
The random average method is more vivid from the grasp of the critical value of total energy and the changing 
trend. Through the grasp of displacement, the numerical simulation has a large amount of calculation.

Both internal and extrinsic resonance.  Consider a case with primary external resonance between the 
first bounded noise excitation and the first oscillator. The primary internal resonance between the two oscillators 
[36] can be expressed as:

 where � and η are detuning parameters 26. The new variables ψ and � are introduced as angle differences.

The differential equations for H1 , H2 , ψ , and � can be formulated as

(44)
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Figure 3.   Stationary probability densities in a system with external excitation only.

Figure 4.   Time–frequency-amplitude region of cross stability in a system with external excitation only.
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The differential equations for ρ and α1 can be formulated as

p(α1, ψ, Ф) can be derived from the following equation, the derivation of which can be found in 17.

The transition probability density is obtained from the solution of the FPK equa-
tion:p = p(α1,ψ ,�, t|α0,ψ0,�0).

The maximum Lyapunov exponent can be expressed as:

A numerical calculation is helpful for determining reason for this resonance. In Fig. 6, when ψ = 0, � = 0, 
the stationary joint probability density p(Φ, ψ) shows a peak. The joint probability density p(Φ, ψ) represents a 
centralized distribution with the angle differences Ψ = 0 and Φ = 0. Figures 6 and 7 show the stable and unstable 
regions in the frequency-excitation amplitude plane, which is resembles a saddle shape. As the guideway irregu-
larity coefficient E11 increases, the maximum Lyapunov exponents start from their initial small stable state and 
rise in a step-wise manner, as shown in Fig. 8. A comparison between the stochastic averaging method and the 
numerical simulation is also shown in Fig. 8, where numerical consistency between the stochastic averaging 
method and the numerical simulation is also shown in Fig. 8, where numerical consistency can be observed. 
The random average method is more vivid from the grasp of the critical value of total energy and the changing 
trend. Through the grasp of displacement, the numerical simulation has a large amount of calculation.  
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Figure 5.   Lyapunov exponent in a system with external excitation only.
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Summary
In this paper, stochastic averaging method for a quasi-integrable Hamiltonian system under bounded noise is 
proposed in this paper. The forms and dimensions of the averaging equations depend on the number of inter-
nal and external resonant relations in the system. The proposed procedures were applied in the prediction of 
a high-speed maglev train-bridge coupled system responses under bounded noise. The results obtained from 
the reduced averaging FPK equation by using the finite difference and the successive over-relaxation iterative 
methods are consistent with simulations of the original system. It is noted that the proposed procedure may 
also be applicable in studying the reliability and stochastic stability of these systems under bounded noise. The 
results conclusively show that

•	 The joint probability density of different phases has a peak when the phases are close to each other.
•	 The stable region shrinks when the two resonance conditions are satisfied.
•	 When the unstable region in the phase diagram (E11, Ω/2ω1) is affected by only one external resonance, the 

external resonance reduces the stable region. The closer the external resonance frequency is to the system 
frequency, the smaller the size of the stable region. Moreover, as E11 increases, the maximum Lyapunov 
exponent changes from negative to positive, and the system shifts from stability to instability in a nearly 
linear manner.

•	 When the unstable region in the phase diagram (E11, Ω/2ω1) is affected by both internal and external reso-
nance, the stable region shrinks as the energy is transferred from the first oscillator to the second oscillator 
during the two resonances. As E11 increases, the maximum Lyapunov exponent changes from negative to 
positive, and the system shifts from stability to instability in a step-wise manner.

Figure 6.   Stationary probability density of a system with both internal and external excitation.

Figure 7.   Time–frequency amplitude stable region in a system with both internal and external excitation.
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