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Stabilization of a chaotic oscillator 
via a class of integral controllers 
under input saturation
Ricardo Aguilar‑López 1 & Juan L. Mata‑Machuca 2*

This work presents the straightforward design of an integral controller with an anti‑windup structure 
to prevent undesirable behavior when actuator saturation is considered, and the proposed controller 
improves the performance of the closed‑loop dynamics of a class of nonlinear oscillators. The 
proposed integral controller has an adaptive control gain, which includes the absolute value of the 
named control error to turn off the integral action when it is saturated. Closed‑loop stability analysis is 
performed under the Lyapunov theory framework, where it can be concluded that the system behaves 
in an asymptotically stable way. The proposed methodology is successfully applied to a Rikitake‑
type oscillator, considering a single input‑single output (SISO) structure for regulation and tracking 
trajectory purposes. For comparison, an equivalent fixed gain integral controller is also implemented 
to analyze the corresponding anti‑windup properties of the proposed control structure. Numerical 
experiments are conducted, showing the superior performance of the proposed controller.

The control of nonlinear systems with highly complex behavior is currently an important issue in science and 
 engineering1–4. As is well known, nonlinear systems present steady-state multiplicity, where unstable homoclinic 
and heteroclinic manifolds are  possible5,6 and the local presence of zero eigenvalues in equilibrium  points7,8, 
the input multiplicity phenomena, and so  on9,10 can affect the controllability properties of a specific nonlinear 
system, complicating the correct design of control  laws11–13.

The control of nonlinear systems or even the control of chaotic dynamical systems has been studied for sev-
eral  years14–18. Controlling chaos via adaptive, sliding-mode, predictive, input-to-state linearizing, fuzzy-logic, 
neural network, and robust proportional-integral (PI) controllers, among other approaches, has been successfully 
published in the open  literature19–25. However, most of the abovementioned control designs are based on complex 
mathematical frameworks and need to be coupled, for example, with sophisticated optimization algorithms and 
nonlinear models of systems, which can complicate their real-time application and operational adjustment by 
 engineers25. In addition, several other issues remain, one of which is related to the physical restrictions of the 
chaotic oscillators and the respective manipulable control inputs, as it is well known that the corresponding state 
variables of oscillators can belong to a compact set that is upper-lower bounded and that the manipulable control 
inputs also belong to intervals with a minimum and maximum physical  value26–28.

From the above, a traditional control problem arises, which is the saturation of the control actions. The sig-
nificance of taking control input saturation into consideration in the design of practical control systems has been 
well studied. The saturation of a controller diminishes the anticipated closed-loop performance of the system’s 
dynamics and, in extreme condition, may lead to closed-loop  instability29.

Now, the analysis of the saturation of control has been performed by anti-windup designs, where the appli-
cations to linear systems and PI controllers have been dominant in the open  literature30–33. PI controllers are 
widely employed in a vast majority of linear and nonlinear systems, and the proportional term acts to stabilize 
the dynamic behavior of the system close to the required reference or set point, but high proportional gain val-
ues are needed to diminish the  offset34, i.e., the difference in the current value of the controlled variable and the 
set point, making the control action very sensible. In addition, proportional controllers are sensitive to noisy 
measurements, and if the system reaches the set point, proportional control is turned off and the system is in 
open-loop operation; in this case, if an external disturbance is present, the system can become  unstable34. To 
improve the performance of a proportional controller, an integral term of the control error can be added; the 
integral term is able to eliminate the offset, keep the controller turned on and reject some external  disturbances35. 
From the abovementioned information, only the integral term of the linear controllers has been considered to 
regulate several systems.
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Indeed, the saturation of the actuators from the focus of linear controllers has been analyzed by integral win-
dup phenomena, integrator windup or reset windup, which refers to the situation in a proportional integral (PI) 
feedback regulator, where a large change in set point occurs and the integral term accumulates a significant error 
as it increases; therefore, the controller is overran and continues to increase as this accumulated error is unwound.

The abovementioned physical restrictions have important impacts on the control designs with an integral 
term of the PI controller, such that if the controller reaches a saturation condition without reaching the required 
reference point or trajectory, the whole system in closed-loop operation is considered to be under the named 
windup condition, whereas the integral part of the controller continues to theoretically add control effort, but it 
is physically saturated and the ideal affair is physically insolvable due to process saturation; i.e., the output of the 
process is limited at the bottom or top of its physical scale, making the control error constant, where the specific 
problem is the redundant  overshooting35.

Furthermore, the analysis of saturation in terms of control has been performed by anti-windup designs, 
where the applications to linear systems have been dominant in the open  literature36–39. Anti-windup designs 
can involve the controllers being turned off for ranks of time until a response falls back into a satisfactory range, 
which occurs when the regulator’s process can no longer affect the controlled variable. In practical applications, 
this task is manually done by process engineers.

This problem can be addressed by initializing the integral regulator to a preset value according to, the value 
before the problem by adding a set point in a suitable range to disable the integral function until the process vari-
able that needs to be controlled enters the controllable region. This prevents the integral term from accumulating 
above or below predetermined bounds, and the integral term is back-calculated to constrain the process within 
the doable bounds. The integral term must be forced to zero every time the control error crosses or is equal to 
zero. This eliminates the need for the regulator to drive the system to have the same error integral in the opposite 
direction as the  disturbance40.

The anti-windup control designs for nonlinear systems are currently a real challenge due to the practical need 
to design realizable controllers, for example, linearizing controllers via plant inversion; however, this approach 
is based on a predictive phenomenological model, which is a drawback, as well as optimal control techniques 
based on Pontryagin’s maximum principle or the Euler-Lagrange approach with important applications, such 
as secure data transmission and the stabilization of chemical systems via chaotic  oscillators41–43. For the above 
reasons, linear PI controllers have been successfully considered, and several approaches have been designed to 
avoid windup  phenomena44–48 by turning off the integral part of the controllers for different algorithms; however, 
these controllers have complex structures, and their physical implementation is difficult.

In this work, a simple control strategy is proposed that only considers an integral of the control error with an 
adaptive gain, which automatically turns off the control action when the controller is under saturation, avoiding 
the windup phenomena. The proposed controller is successfully applied to a class of nonlinear chaotic oscillators 
for regulation and tracking trajectory purposes.

Chaotic oscillator model
Nonlinear oscillator models have been employed as a benchmark for synchronization purposes under the frame-
work of secure data transmission, and practical examples can be found in Chen, Van der Pool, Rikitake and other 
works on nonlinear chaotic oscillator models.

The Rikitake chaotic dynamical system is a model that attempts to explain the irregular polarity switching 
of the Earth’s geomagnetic  field49,50. The frequent and irregular reversals of the Earth’s magnetic field inspired 
several early studies involving electrical currents within the Earth’s molten core. One of the first such models 
to report reversals was the Rikitake-type two-disk dynamo  model51. The system exhibits Lorenz-type chaos 
and orbits around two unstable fixed points. This system describes the currents of two coupled dynamo disks.

The 3-D dynamics of the Rikitake-type dynamo system are described as follows:

They can also be described in vector form:

where x =
[

x1
x2
x3

]

, A =
[−1 1 0

0 − 1 0

0 0 − δ

]

, f(x) =





0

x1x3
γ 2(1− x1x2)



, and B =
[

0

0

1

]

.

The parameter values are δ = 0.01 and γ = 2.0.
Here, x ∈ R

3 is the state variable vector, which belongs to a compact set � and, is naturally bounded, and 
f(x) is assumed to be a smooth vector field, where f(·) : R3 → R

3 and u(x) ∈ R.

Control design

Proposition 1 The integral controller in (3) stabilizes the dynamic behavior of the system (2) for regulation and 
tracking trajectory purposes:

(1)
ẋ1 = x2 − x1
ẋ2 = x1x3 − x2
ẋ3 = γ 2(1− x1x2)− δx3 + u

(2)ẋ = Ax + f(x)+ Bu
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Proof of Proposition 1 Let us define the control error dynamic of system (1) under controller (Eq. 3) as:

Then, Eq. (4) is rewritten in vector notation:

with: e =







e1
e2
e3
e4






, Ŵ(e) = −







1 − 1 0 0

0 1 0 0

0 0 δ − k3abs(e3)
0 0 − 1 0






, F(e) =







0

e1e3
−γ 2e1e2

0






, and � =







0

0

γ 2 + δx3r
0






.

The abovementioned control error is defined as e = x − xr , i.e., the difference between the actual values of 
the state variable vector and the reference vector. The reference vector, xr is a constant vector for the regulation 
case, and it is variable for the tracking case.

By assuming that 0 ≤ �e� ≤ eB ; 0 ≤ eB < ∞ , where eB is the finite upper bound of the control error, let us 
define:

Let us consider the following quadratic form as a Lyapunov function:

The corresponding time derivative is defined as:

Substituting Eq. (5) into Eq. (9) yields:

Equation (10) yields:

By applying the Rayleigh inequality to Eq. (11):

Then, Eq. (12) to Eq. (15) are substituted into equation (11):

where:

In Eq. (17), �e�Ŵ∗ is defined as

(3)u(x) = k3abs(e3)

∫ t

0

e3(σ )dσ

(4)

ė1 = e2 − e1
ė2 = e1e3 − e2
ė3 = γ 2(1− e1e2)− δe3 + δx3r + k3abs(e3)e4
ė4 = e3

(5)ė = Ŵ(e)e + F(e)+�

(6)Ŵ∗ =







1 1 0 0

0 1 0 0

0 0 δ k3eB
0 0 1 0







(7)F̄ =









0

f̄2
f̄3
0









(8)V(e) = e
T
e

(9)V̇(e) = 2eT ė

(10)V̇(e) = 2eT (Ŵ(e)e + F(e)+�)

(11)V̇(e) = −2eTŴ(e)e + 2eTF(e)+ 2eT�

(12)�min(Ŵ
∗)�e�2 ≤ �e�2Ŵ ≤ �max(Ŵ

∗)�e�2

(13)e
TŴ∗

e ≤ �min(Ŵ
∗)�e�2

(14)�eTF(e)� ≤ �F̄��e�

(15)�eT�� ≤ ����e�

(16)V̇(e) ≤ −2�min

(

Ŵ∗)�e�2 + 2(�F̄� + ���)�e�

(17)�2eT (F(e)+�)� ≤ 2(�F̄� + ���)�e�Ŵ∗

(18)�e�Ŵ∗ =
√

�max(Ŵ∗)�e�
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Therefore, from the above, it can be concluded, by the ultimate boundedness, that the regulation error e(t) is 
uniformly bounded for any initial condition e(t0) , such that e(t) = {e(t)| �e� ≤ R; R > 0} , and finally:

Numerical experiments and results
Numerical simulations were carried out on a personal computer with an Intel Core i7 processor, and the system 
in Eq. (5) of ordinary differential equations was numerically solved employing the ode23s library of MATLABTM , 
with the corresponding initial conditions x10 = 0.1 , x20 = 0.1 and x30 = 0.1 , according to  McMillen51. A single-
input single-output control (SISO) configuration is selected for the system. The system is in the open-loop regime 
from start up until t = 100-time units, where controller (Eq. 3) is turned on, and x3 is proposed as the controlled 
variable. A first set of simulations is performed for regulation purposes, where the selected reference point or set 
point is x3r = 1.0 , and a second set of simulations are performed for the tracking case, where system (1) is forced 
to follow the trajectory described for x3r = 2.5 sin(0.1t + 0.5) . For both control requirements, that is, regulation 
and tracking, the control saturations are given by the following lower and upper bounds:

We set umin = −10 and umax = 20.
For comparison purposes, a similar standard integral controller with a fixed gain is applied as follows:

Here, to achieve the most similar conditions for the operation of controller (Eq. 21) and controller (Eq. 3), the 
control gain k1 = −1.0 is equal for both control laws.

Figure 1 shows both the open-loop and the closed-loop dynamic behavior of the controlled state variable x3 
for the regulation case. As observed, the corresponding trajectory almost immediately reaches the reference point 
x3r = 1.0 for the proposed controller. Additionally, when the integral controller is in operation, the correspond-
ing trajectory has higher oscillatory overshoots and moreover, the integral controller is not able to regulate the 
dynamic behavior of the controlled state x3 , which has a sustained oscillation.

Figures 2 and 3 show the open-loop and closed-loop performance of the uncontrolled state variable trajecto-
ries, x1 and x2 , respectively. As a consequence of the performance of the controlled state variable x3 , the oscillatory 
behavior is suppressed, and the trajectories are smoothly led to a steady state under the action of the proposed 
controller. Additionally, the trajectories of the uncontrolled state variables under the action of the integral con-
troller maintain oscillatory behavior even after the control action is started, and it finally reaches a steady state.

The performance of the state variables is shown in Fig. 4, where a phase portrait is presented under the condi-
tions mentioned in Figs. 1, 2 and 3. The corresponding orbit under the proposed controller arrives at the above-
mentioned steady state, with x3 = x3r and the oscillatory behavior is suppressed. However, the corresponding 

(19)R =
(�F̄� + ���)

√
�max(Ŵ∗)

�min(Ŵ∗)

√

�max(Ŵ
∗)

�min(Ŵ∗)
> 0

(20)u(x) =
{

umax if u(x) = umax

u(x) if umin < u(x) < umax

umin if u(x) = umin

(21)uin(x) = k1

∫ t

0

e3(σ )dσ

Figure 1.  Regulation control of x3.
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orbit induced by the integral controller maintains oscillations with a wide ratio, and the orbit maintains oscil-
latory behavior.

The abovementioned behaviors of the state variables under both controllers can be explained by the per-
formance of both controllers under comparison. Figure 5 demonstrates the control effort performance. The 
proposed controller has smooth behavior and practically does not reach saturation conditions. As expected, 
the controller has the desired anti-windup response, leading the trajectory of the controlled state variable to the 
required set point and preventing the oscillatory response of uncontrolled state variables, as mentioned above. 
The integral control law shows both lower and upper saturation while turning on, which is the named windup 
effect. It can be observed that the control effort is very high due to the large oscillation that occurs at the start of 
the closed-loop regimen and the sustained oscillation at steady-state conditions in practical applications. These 
characteristics are undesirable due to the potential of physical damage to the control actuator. Finally, for the 
regulation case, Fig. 6 shows the dynamic performance of the named regulation error E. When control occurs 
at t = 100 time units, the regulation error is zero when the proposed controller is turned on, which is in accord-
ance with all the above results. For the integral control law, the expected oscillatory behavior is observed, which 
shows that the required set point is not reached.

Now, the proposed controller is also able to force the controlled state variable to follow a specific sinusoidal 
trajectory, as previously described, changing the control objective to the tracking trajectory case. A similar set 
of numerical simulations was performed to show the performance of the proposed controller and the integral 
controller. Figure 7 shows the open-loop and closed-loop dynamic behavior of the controlled state variable x3 , 

Figure 2.  Trajectories of the uncontrolled variable x1.

Figure 3.  Trajectories of the uncontrolled variable x2.
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and the controllers are turned on at t = 100 time units. The proposed controllers lead to the dynamic trajectory 
and almost instantaneously to the required sinusoidal trajectory without overshoots, and at the setting time, as 
observed the integral control law provokes high overshoots and the controller is not able to reach the required 
trajectory.

Figures 8 and 9 show the dynamic behavior of the uncontrolled state variables, x1 and x2 , in the tracking 
trajectory case. The sinusoidal behavior of the controlled state variable x3 leads to the suppression of the complex 
oscillations of the uncontrolled state, where they reach a steady state faster.

As in the regulation case, a phase portrait of the tracking trajectory case is shown in Fig. 10. As in the above 
case, the wide orbit, which is related to the corresponding oscillatory behavior, is related to the action of the 
integral controller. This is different from the narrow orbit being forced by the action of the proposed control law, 
which forces the x3 trajectory to reach the sinusoidal reference trajectory.

Figure 11 is related to the performance of the control effort of both controllers. As can be observed, the inte-
gral control again suffers lower and upper saturation, making the controller unable to force the system to reach 
the reference trajectory and leading to high oscillations in the control effort, which is, as mentioned, undesirable. 
However, the proposed controller has an anti-windup effect, preventing the saturation phenomena, which allows 

Figure 4.  Phase portrait for regulation control.

Figure 5.  Control signals impacted by the regulation problem.
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the controller to force the required closed-loop objective well. Note that the proposed controller has a smooth 
oscillation, which is required to maintain the desired tracking trajectory. Finally, Fig. 12 shows the performance 
of the tracking error. Here, it is concluded that the proposed controller reaches its control objective adequately 
and without time delay, overshoots, or large setting times. Furthermore, the integral control law does not reach 
the desired trajectory, showing undesirable performance, with large oscillations.

Conclusion
This work presents an alternative design for a class of integral controllers with adaptive gain. The adaptive gain 
is a function of the absolute values of the control error, where the main objective is to turn off the control action 
when the controller is saturated, thus preventing the named windup phenomena. The proposed methodology is 
successfully applied to a Rikitake-type chaotic oscillator for both regulation and tracking trajectory purposes such 
that the proposed control design can prevent the windup phenomena in the control saturation case. Numerical 
experiments show the performance of the considered methodology, and the proposed controller is compared 
with an equivalent integral controller with a fixed control gain.

Figure 6.  Regulation error.

Figure 7.  Tracking trajectory.
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Figure 8.  Behavior of the uncontrolled variable x1.

Figure 9.  Behavior of the uncontrolled variable x2.
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Figure 10.  Phase portrait of the tracking trajectory.

Figure 11.  Control signals under the tracking trajectory.
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