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Aberrant topology of white 
matter networks in patients 
with methamphetamine 
dependence and its application 
in support vector machine‑based 
classification
Ping Cheng 1, Yadi Li 1*, Gaoyan Wang 1, Haibo Dong 1, Huifen Liu 2, Wenwen Shen 2 & 
Wenhua Zhou 2*

Brain white matter (WM) networks have been widely studied in neuropsychiatric disorders. However, 
few studies have evaluated alterations in WM network topological organization in patients with 
methamphetamine (MA) dependence. Therefore, using machine learning classification methods to 
analyze WM network topological attributes may give new insights into patients with MA dependence. 
In the study, diffusion tensor imaging‑based probabilistic tractography was used to map the weighted 
WM networks in 46 MA‑dependent patients and 46 control subjects. Using graph‑theoretical analyses, 
the global and regional topological attributes of WM networks for both groups were calculated and 
compared to determine inter‑group differences using a permutation‑based general linear model. In 
addition, the study used a support vector machine (SVM) learning approach to construct a classifier 
for discriminating subjects with MA dependence from control subjects. Relative to the control group, 
the MA‑dependent group exhibited abnormal topological organization, as evidenced by decreased 
small‑worldness and modularity, and increased nodal efficiency in the right medial superior temporal 
gyrus, right pallidum, and right ventromedial putamen; the MA‑dependent group had the higher 
hubness scores in 25 regions, which were mainly located in the default mode network. An SVM 
trained with topological attributes achieved classification accuracy, sensitivity, specificity, and kappa 
values of 98.09% ± 2.59%, 98.24% ± 4.00%, 97.94% ± 4.26%, and 96.18% ± 5.19% for patients with 
MA dependence. Our results may suggest altered global WM structural networks in MA‑dependent 
patients. Furthermore, the abnormal WM network topological attributes may provide promising 
features for the construction of high‑efficacy classification models.

Substance use disorder refers to a range of abnormal behaviors associated with use of psychoactive substances that 
alter normal brain activity and have a wide range of effects on an individual’s  health1. Use of methamphetamine 
(MA), a synthetic drug widely abused globally, is growing rapidly. According to the 2020 World Drug Report 
by the United Nations, which included data up to 2018, the total number of MA abusers was approximately 27 
million, which ranked second to marijuana in illegal drug use worldwide. The Annual Report on the National 
Narcotic Control Commission (NNCC) of China showed that 1.35 million of 2.4 million current drug users were 
MA abusers, which accounted for 56.1% through 2021. Moreover, excessive use of MA causes serious health 
consequences and is associated with high crime  rates2.

Diffusion tensor imaging (DTI), a new technology developed and optimized based on diffusion-weighted 
imaging, has allowed for the noninvasive study of the orientation and integrity of white matter (WM) fiber 
 bundles3. Information about WM organization of brain microstructure can be obtained from fractional 
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anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), etc. Among them, FA is considered to be an 
indicator of WM integrity, which may be related to the integrity of the axon membrane, the degree of myelina-
tion, neuronal fiber density, and fiber orientation. Diffusion tensor imaging has been widely used to study drug 
addiction and mental  disorders4,5. In MA dependence-related research, have characterized changes in the brain 
microstructure of individuals addicted to MA at the molecular level based using  DTI6, and reported abnormal 
WM integrity. However, the results of these studies have been inconsistent. Reduced FA in the frontal lobes of 
MA-dependent subjects has been reported in several  studies7,8. Zhuang et al.9 have shown microstructural defects 
in WM surrounding the basal ganglia in MA-dependent subjects. Huang et al.10 found the extensive reduction of 
FA in WM in MA-dependent subjects using TBSS (tract-based spatial statistics). Significantly reduced FA values 
in these brain regions may be a result of demyelination or axonal  damage11. Although these previous imaging 
studies provided valuable information on the anatomical characteristics of nerve fiber bundles in individuals 
with MAdependence, system-level understanding is limited. Therefore, we explored the effects of MA addiction 
on the brain at the system or network level.

The brain is an example of a complex network consisting of a large number of interacting components. There-
fore, understanding the operation of the brain in realtime is a major challenge. Fortunately, complex networks 
are ubiquitous and can withstand detailed analysis. Common examples include transportation systems, social 
networks in the online and real-world, and the World Wide  Web12–14. In the past two decades, the development 
of graph theory has begun to provide a conceptual framework for the study of the structural characteristics of 
complex networks. A key finding in this work is that the structural and functional networks of the brain share 
common  features15, such as small-worldness, network hubs, and hierarchical modularity, with many other com-
plex systems. The value of brain network research is reflected in a range of network changes found in neurological 
and psychiatric disorders, including  epilepsy16,  depression17, Alzheimer’s  disease18,  schizophrenia19, and others. 
Moreover, there is evidence that specific pathological conditions are associated with changes in brain network 
 topography20–23. Functional MRI studies of Alzheimer’s disease by Buckner et al.24 showed that amyloid deposi-
tion occurs preferentially in the locations of cortical hubs, and the level of functional connectivity across the 
brain was positively correlated with the level of amyloid deposition. However, few studies have reported the aber-
rant topological structure of brain functional networks in MA-dependent  individuals25,26. Siyah et al.26 showed 
that the whole-brain resting-state functional networks in MA-dependent individuals were likely shifted toward 
the random organization. Analysis of EEG (electroencephalogram) data from 36 MA abusers by Khajehpour 
et al.25 suggested decreased characteristic path length and increased clustering coefficient in resting-state brain 
functional networks. However, MA dependence-related changes in brain structural connectivity and topological 
organization of brain WM networks require further characterization.

Although traditional univariate methods (such as t-tests and analysis of variance) used in previous studies 
can help to locate brain regions that differ significantly between groups, these traditional univariate methods 
have many  limitations27–29: ① group-level analysis tends to ignore individual differences, and the results of 
the group-level analysis can only provide qualitative descriptions without prediction of individual performance; 
② univariate analysis methods are susceptible to noise; ③ univariate methods cannot be used to perform joint 
analysis of the influence of multiple features, and further multiple comparisons are prone to generation of false 
positives. Multivariate analysis is an extension of univariate analysis and can be used to overcome some limita-
tions of univariate analysis. Machine learning, which mainly uses multivariate analysis methods, looks for laws 
from a large amount of observed data and uses these laws to predict future data or unobservable data. There 
are many kinds of machine learning algorithms, including naive Bayes, k-nearest neighbors, decision trees, 
regression, support vector machines (SVM), and artificial neural networks. Among these, the most used in the 
field of neuroimaging is SVM, which seeks the best compromise between model complexity and learning ability 
according to the limited sample information to obtain the best generalization ability. Moreover, SVM excels at 
solving small sample, nonlinear, and high-dimensional pattern recognition problems, and can be extended to 
other machine learning problems such as function fitting. Support vector machine learning has been extensively 
used to analyze structural and functional MRI data for the classification of various substance use  disorders30, 
such as  MAdependence31,  heroindependence32,  cocainedependence33, and  nicotinedependence34.

Abnormal brain network topological attributes, which identified novel potential biomarkers for the diagnosis 
of neurological diseases, have been found in various brain diseases, such as  schizophrenia35 and Alzheimer’s 
 disease36. However, few studies have focused on the use of topological attributes to diagnose MA dependen-
cies. Based on these studies, we used DTI-based probabilistic tractography and graph theory to describe the 
WM networks of MA-dependent individuals, and an SVM was used to construct a classifier with WM network 
topological attributes that displayed significant inter-group differences, which was expected to discriminate 
individuals with MA dependence from controls.

We hypothesized that (1) MA-dependent individuals were likely to have altered global and regional topologi-
cal attributes of whole-brain WM networks compared to controls; (2) since MA dependence can cause psychiatric 
symptoms including anxiety, depression, and hostile suspicion, we hypothesized that abnormal topological 
attributes of the brain in MA-dependent patients were significantly correlated with the severity of psychiatric 
symptoms; (3) WM network topological attributes could be used as effective features in constructing a classifier 
to identify MA-dependent individuals.

Materials and methods
Subjects. Forty-six right-handed, male, MA-dependent patients were recruited from Ningbo Kangning hos-
pital, Ningbo, PR China. There were very few female MA-dependent patients at this hospital. Forty-six age and 
education-matched, right-handed, healthy male subjects were recruited as controls from local communities. 
The inclusion criteria for MA users were (1) meeting the Diagnostic and Statistical Manual of Mental Disorders, 
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Fourth edition, Text revision (DSM-IV-TR) criteria for current MA dependence. All patients received an MRI 
scan within 4 to 7 days after the time of last use of MA; and (2) no current, or history of, dependence on other 
drugs of abuse (except nicotine). The exclusion criteria included (1) a history of psychiatric illness, neurologi-
cal disorder, or major chronic medical illnesses before MA use; and (2) having metallic or electronic devices or 
implants. The same inclusion and exclusion criteria were used for the normal controls, except these individuals 
had no history of drug abuse or dependence, other than nicotine.

The psychiatric symptoms of MA dependence were evaluated by 2 psychiatrists using the Brief Psychiatric 
Rating Scale (BPRS) and the Hamilton Anxiety Scale (HAMA) within the first 2 days of hospital admission, 
and 3 days prior to MRI scanning. The BPRS contains five factors: anxiety-depression, lack of vitality, activity, 
hostility-suspicion, and thinking disorder. The former factors reflect negative symptoms, the third and fourth 
reflect positive symptoms, and thinking disorders may be affected by both positive and negative symptoms.

This study was approved by the Institutional Review Board of Ningbo Medical Center Lihuili Hospital, 
Ningbo University, Zhejiang, China. Written informed consent was obtained from all subjects or their relatives.

Magnetic resonance imaging data acquisition. Magnetic resonance imaging data were collected 
using a 3.0-T clinical MR image unit (Discovery MR750, GE Healthcare, Milwaukee, Wisconsin) using an 
eight-channel head coil. Conventional axial T2-weighted images had previously been obtained to rule out cer-
ebral infarction or other lesions. Structural MRI scans were acquired using a sagittal three-dimensional (3D) 
T1-weighted sequence (repetition time, 7.4 ms; echo time, 3.2 ms; inversion time, 450 ms; flip angle, 12°; field of 
view, 25.6 × 25.6 mm; matrix, 256 × 256; slice thickness, 1 mm). A single-shot echo-planar imaging sequence was 
then used to acquire DTI images in the axial plane. Magnetic resonance images with 30 non-collinear diffusion 
gradients and without diffusion gradients were acquired (repetition time, 8175 ms; echo time, 80.8 ms; flip angle, 
90°; field of view, 25.6 × 25.6 mm; matrix, 128 × 128; slice thickness, 2 mm; B factor, 1000 s/mm2).

Data pre‑processing and network construction. The topological properties of the brain were studied 
using the binary graph method G = (V, E), and nodes/vertices (V, E) were used to represent brain regions (i.e. 
ROI) and edges (E) between two nodes in the graph. To analyze complex networks, we applied a generalization 
of a simple graph called a weighted graph.

For graph construction, nodes and edges needed to be defined. The details of each node and edge were as 
follows:

Node definition. In this study, all image processing, including image registration, standardization, and custom 
templates to create space, was performed using PANDA software (PANDA, version 1.3.1, https:// www. nitrc. 
org/ proje cts/ panda/)37. The T1-weighted image of each subject was co-registered with the B0 image in the DTI 
space. Then, the transformed T1 image was nonlinear transformed into the MNI152 T1 template in MNI space. 
The inverse transform was used to distort the Brainnetome Atlas (BNA) (http:// atlas. brain netome. org/) from 
the MNI space to the DTI native space. Finally, 105 cortical and 18 subcortical regions were obtained from each 
hemisphere. Then, ANTs (https:// sourc eforge. net/ proje cts/ advan ts/) software was used to co-register the 246 Gy 
matter (GM) regions masks into the individual diffusion space to complete the node definition of the brain 
structural network.

Edge definition. PANDA software, a matlab toolbox for analyzing brain diffusion images, was used to process 
DTI images. The steps included head motion and eddy current correction, removal of brain tissue, estimation of 
the probability distribution of dispersion direction using BedPostx, and probabilistic fiber tracking between two 
brain regions using Protrackx2, to obtain the probability value of the connection between brain regions, which 
represented the edge of the network. We averaged the mean probability values of the connected streamlines 
between two regions as the weights of the network edges. These steps resulted in a weighted WM network for 
each subject.

Network analysis. We characterized the weighted global topological attributes (shortest path length  Lp, 
clustering coefficient  Cp, modularity, and small-worldness σ) and regional topological attributes (nodal effi-
ciency  Enod and hubness score) of the WM networks using the brain graph package (https:// cran.r- proje ct. org/ 
packa ge= brain Graph) in R language (version: 3.6.3, https:// www.r- proje ct. org/). The traditionally used small-
worldness is highly sensitive for classifying small-world networks. However, this measure is associated with low 
specificity, resulting in networks being classified as small-world when they are essentially random, with only 
minor clustering. Therefore, we performed a cluster-correction analysis of the small-worldness to better match 
the original description of small-world networks by Watts and  Strogatz38.

Connectivity analysis. A network-based statistic (NBS) approach was used to identify the specific altered 
WM connections associated with MA dependence. We first used a one-tailed test at each edge to determine the 
significant between-group differences in structural connection. A primary threshold (P < 0.05) was applied to 
define a set of suprathreshold edges. Then, we identified any connected subnetworks and their sizes (number 
of links). Under the null hypothesis of random group membership (5000 permutations), the empirical zero 
distribution of the maximum component size was used to obtain the statistical significance of each observed 
component size.

https://www.nitrc.org/projects/panda/
https://www.nitrc.org/projects/panda/
http://atlas.brainnetome.org/
https://sourceforge.net/projects/advants/
https://cran.r-project.org/package=brainGraph
https://cran.r-project.org/package=brainGraph
https://www.r-project.org/
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Graph theory analysis and inter‑group comparisons. To avoid errors caused by a single threshold 
and to facilitate comparisons of topological attributes between groups, the area under the curve (AUC) of each 
topological attribute within a threshold range was used to conduct a statistical analysis of network topology 
 attributes39. The network consensus threshold range in this study was 0.001 to 0.01 with an interval of 0.00140.

The statistical significance level was set at P < 0.05. Each network topological attribute was compared to assess 
group differences using a general linear model (p < 0.05, permutation test, 10,000 times for global topological 
attributes and 5000 times for regional topological attributes).

The topological attributes with significant inter-group differences were examined using Pearson’s partial 
correlations with clinical parameters (duration of MA use, age at first MA use, HAMA score, BPRS score, and 
five-factor scores). Age, education, and cigarette smoking were used as covariate inputs to correct for their pos-
sible effects.

SVM‑based classification. The Least Absolute Shrinkage and Selection Operator (LASSO) is a regulariza-
tion and variable selection algorithm implemented in the glmnet package in R (https:// cloud.r- proje ct. org/ packa 
ge= glmnet) for select an optimal feature subset from global and nodal topological properties, and perform 10 
repeats of fivefold cross-validation. The selected features were used to build a linear SVM using the caret package 
in R (https:// github. com/ topepo/ caret/). SVM is a supervised learning method, which has been widely used in 
statistical classification and regression analysis. It’s mapping vectors to a higher dimensional space, where we set 
up a hyperplane with maximum spacing. Two hyperplanes are built parallel to each other on either side of the 
hyperplane separating the data, and the difference between the two types of data is maximized by calculating 
the hyperplane separating the two data optimally. This process is similar to that detailed in our previous  work31. 
In short, the fivefold cross validation framework is applied to evaluate the performance of the  classifier41. Before 
each cross-validation, scale the training dataset between 0 and 1 and use the obtained parameters to scale the 
test  dataset42,43. Since the fivefold separation was random, we repeated the fivefold cross-validation 100 times. 
The presented performance was the average of 500 (fivefolds × 100) trials (expressed as mean values ± standard 
deviation). The only parameter C, which controls the trade-off between the whitespace width and the misclas-
sification penalty, is set to the default value (C = 1).

Accuracy, sensitivity, specificity, and Kappa were calculated to quantify the cross-validation prediction per-
formance of these classifiers. Specifically, accuracy was related to the proportion of subjects who were correctly 
classified as MA-dependent or HC (healthy control), and sensitivity and specificity were related to the proportion 
of individuals who were correctly classified as MA-dependent or HC. Kappa is similar to accuracy, except that 
it is normalized over a baseline of random probabilities on the dataset.

A one-tailed permutation test was used to assess the probability of obtaining a cross-validation precision 
value higher than that obtained by chance. All subjects were randomly relabeled and classified with fivefold cross-
validation. The above process was repeated 5000 times, and the number of times the accuracy of the permuted 
label was higher than that of the true label was recorded. Then calculate the P perm value for the classification 
by dividing that number by 5000.

Ethical approval. All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.

Consent to participate. Written informed consent was obtained from all of the participants.

Table 1.  Demographic and clinical characteristics of methamphetamine (MA)-dependent patients and 
normal controls (NCs). FTND, Fagerstrőm test for nicotine dependence.

Variables

Group

t PMA NC

Sample size, n 46 46 – –

Age (years) (mean ± SD) 34.9 ± 7.3 33.1 ± 10.9 0.727 0.471

Education (years) 13.20 ± 4.21 13.59 ± 3.67  − 0.331 0.740

FTND 6.30 ± 1.98 4.85 ± 2.35 0.497 0.505

Ages of the first MA use 30.50 ± 7.09 – – –

Total dose (g) 1065.91 ± 925.91 – –

Brief Psychiatric Rating Scale 42.8 ± 11.04 – – –

Anxiety-depression factor 13 ± 3.57 – – –

Lack of vitality factor 8.43 ± 2.88 – – –

Thinking disorder factor 7.03 ± 2.33 – – –

Activity factor 7.3 ± 3.24 – – –

Hostility-suspicion factor 7 ± 2.99 – – –

Hamilton Anxiety Scale 22.39 ± 8.60 – – –

https://cloud.r-project.org/package=glmnet
https://cloud.r-project.org/package=glmnet
https://github.com/topepo/caret/
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Results
Demographic and clinical characteristics. The demographic and clinical characteristics of the sub-
jects are presented in Table 1. There were no statistically significant differences in age, education level, or the 
Fagerstrőm test for nicotine dependence (FTND) between patients with MA dependence and controls.

NBS analyses. There were no differences in WM connections between the MA-dependent group and the 
control group.

Global topological attributes. Compared with the normal control group, the MA-dependent group 
exhibited significantly decreased small-worldness σ and reduced modularity of the WM network (Table  2) 
(Fig. S1 in Supplementary Materials). In addition, as shown in Fig. 1, at each threshold, the small-worldness σ 
and modular values of the MA-dependent group were lower than those of the control, and the σ values of both 
groups were greater than 1, which indicated that the MA-dependent group and the control group showed small-
worldness in the WM networks.

Regional topological attributes. In the MA-dependent group,  Enod was significantly increased in the 
right medial superior temporal gyrus (mSTG), the right pallidum, and the right ventromedial putamen (Fig. 2).

As shown in Fig. 3 (Table S1 in Supplementary Materials), the control group had the higher hubness scores in 
26 regions compared with the MA-dependent group, most of which belonged to the dorsal attention network 
(DAN) and the somatomotor system. The MA-dependent group had the higher hubness scores in 25 regions 
compared with the control group, these regions were mainly located in the default-mode network (DMN).

Clinical/demographic correlations. At the global level, small-worldness σ was negatively correlated with 
BPRS total scores and hostility/suspicion factor scores in patients with MA dependence.

Table 2.  Global topological attributes of brain WM structural networks in the methamphetamine (MA)-
dependent patients (MA) and the normal controls (Control). σ = small-wordness;  Cp = weighted clustering-
coefficient;  Lp = weighted characteristic path length;  Qm = weighted modularity. Cohen’s d indicates the value of 
effect size. The small, medium and large levels of the effect size are 0.2, 0.5 and 0.8, respectively, according to 
Cohen’s definition.

Network topological attributes Contrast P value Cohen’s d

σ Control > MA 0.008 0.5107

Cp Control > MA 0.734 − 0.1309

Lp Control > MA 0.060 0.3153

Qm Control > MA 0.023 0.4213

Figure 1.  Network modularity and small-worldness (σ) in control and MA groups at each threshold. MA: 
methamphetamine-dependent patients; control: healthy controls.
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At the regional level, the hubness scores of the left superior temporal gyrus, and the nodal efficiency of the 
right pallidum and right putamen, were positively correlated with the severity of positive psychotic symptoms 
in patients with MA dependence. The severity of anxiety/depression was negatively correlated with the hubness 
scores of the left insula, and the severity of anxiety was positively correlated with the hubness score of the right 
hippocampus (Fig. 4).

SVM classification. Based on the general linear model, 57 network topology attributes with evident inter-
group differences are obtained. After performing LASSO filtering features, 12 optimal topology attributes are 
selected as features to construct a machine training model using a linear SVM. The SVM exhibited excellent per-
formance, with cross-validated prediction accuracy, sensitivity, specificity, and kappa values of 98.09% ± 2.59%, 
98.24% ± 4.00%, 97.94% ± 4.26%, and 96.18% ± 5.19%, respectively. (P.perm < 0.001) (for detailed feature impor-
tance of 12 topological attributes values, see Table 3).

Discussion
The present study showed altered topological organization of the WM network in MA-dependent patients. The 
main findings for patients with MA dependence were as follows: (1) there were no differences in WM connec-
tions between the MA-dependent group and the control group.; (2) significantly decreased small-worldness and 
modularity in MA-dependent patients; (3) the regions with increased  Enod were located in the right mSTG, right 
pallidum, and right ventromedial putamen in MA-dependent patients; (4) the MA-dependent group had higher 
hubness scores in the DMN compared with the control; (5) small-worldness σ was negatively correlated with 
BPRS total scores and hostility/suspicion factor scores in patients with MA dependence. The hubness scores of 
the left superior temporal gyrus, and the nodal efficiency of the right pallidum and right putamen, were positively 
correlated with the severity of positive psychotic symptoms in patients with MA dependence. The severity of 
anxiety/depression was negatively correlated with the hubness scores of the left insula, and the severity of anxiety 
was positively correlated with the hubness scores of the right hippocampus; (6) a classifier trained on network 
topological attributes had excellent classification performance for MA dependence and suggested that these 
topological attributes could be promising features for diagnosis of MA dependence. These findings improved 

Figure 2.  Brain regions with significant differences in nodal efficiency between methamphetamine-dependent 
patients and healthy controls. STG_R_6_1 = the weighted nodal efficiency of the right medial superior temporal 
gyrus; BG_R_6_2 = the weighted nodal efficiency of the globus pallidus; BG_R_6_4 = the weighted nodal 
efficiency of the ventromedial putamen. MA: methamphetamine-dependent patients; control: healthy controls.

Figure 3.  Brain regions with significant differences in hubness scores between methamphetamine-
dependent patients and healthy controls. Different colors of brain nodes represent different subnetworks 
of the Yeo_7networks. The statistical criterion for between-group differences was set at p < 0.005 after 
5,000 permutation test. Detailed brain regions are described in Table S1, Supplementary Materials. MA: 
methamphetamine-dependent patients; control: healthy controls. SCGM = Subcortical gray matter.
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our understanding of the neuropathological mechanisms of development of MA dependence at the level of a 
large-scale whole-brain WM networks.

Abnormal global topological organization in WM network. The small-world network topology 
model is characterized by a high clustering coefficient and a small shortest path  length44. Small-worldness 
reflects the optimal balance between local specialization and global integration of brain regions and the ability 
of the brain to adapt to various external  stimuli45. Consistent with the results of previous studies of individuals 
with MA  dependence46, the whole-brain structural network of the MA-dependent group and that of the con-

Figure 4.  The correlation between weighted topological attributes and HAMA scores or Brief Psychiatric 
Rating Scale (BPRS) (total scores or factor scores) in methamphetamine-dependent patients. Sigma = small-
worldness scalar; INS_L_6_6 = the hubness scores of the left dorsal dysgranular insula; Hipp_R_2_1 = the 
hubness scores of the rostral hippocampus; STG_L_6_5 = the hubness scores of the left superior temporal gyrus 
caudal area; BG_R_6_2 = the weighted nodal efficiency of the globus pallidus; BG_R_6_4 = the weighted nodal 
efficiency of the ventromedial putamen.

Table 3.  The importance of 12 topological attributes values in the classifying process. Hub (i) = weighted hub 
of node I; Weights = the importance of topological attributes.

Topological attributes Weights

Hubness (left superior parietal lobule caudal area) 0.215

Hubness (right precentral gyrus head and face region) 0.273

Hubness (right caudal lingual gyrus) 0.329

Hubness (right medial superior occipital gyrus) 0.0498

Hubness (right medial superior frontal gyrus) 0.136

Hubness (left inferior parietal lobule caudal area) 0.312

Hubness (left dorsal dysgranular insula) 0.14

Hubness (right occipital polar cortex) 0.2466

Hubness (right precentral gyrus tongue and larynx region) 0.258

Hubness (right inferior frontal gyrus caudal area) 0.2137

Hubness (right inferior parietal lobule caudal area) 0.044

Hubness (left dorsomedial parietooccipital sulcus) 0.4139
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trols had conserved small-worldness, but the brain network of the patients with MA dependence was not opti-
mally configured. This suggested that the function of the small-world network in patients with MA dependence 
patients was impaired and tended toward randomness. In addition, lower small-world score was associated with 
higher BPRS total scores and higher hostility/suspicion disorder factor scores in our study. Several studies have 
reported that abuse of MA can lead to greater hostility than  controls47,48. Therefore, the transformation of the 
structural network to a random network in patients with MA dependence may be the initiating factor in subse-
quent development of positive psychotic symptoms such as hostility/suspicion.

At the global level, we observed lower modularity in patients with MA dependence that in controls. Modular-
ity measures the division of a network into separate  modules44. A module is defined as having denser connections 
between nodes within the module but sparser connections with nodes outside the module. Lower modularity in 
patients with MA dependence may indicate fewer connections within the module, but more connections between 
modules. Yafei et al.49 found that the degree of modularity in individuals with MA addiction was significantly 
lower than that of healthy controls in a resting-state MRI study. This was consistent with our results. Modular 
network organization is adaptable and can  evolve50. Chronic MA abuse leads to reorganization of brain networks. 
For example, the exchange of information between modules (systems) was abnormally increased in patients with 
MA. During long-term exposure to drugs or drug-related cues, the sensory system (visual or auditory) rapidly 
transmits relevant information to the memory system, leading to overactivation of the reward and motivational 
systems, which results in compulsive drug use. Similar reductions in modularity have also been observed in 
patients with cognitive  deficits51,52. These results indicated that impaired cognitive function in individuals with 
MA dependence may be related to disruption of cognition-related intramodular connectivity.

Between‑group differences in node efficiency. We observed significantly increased  Enod in the right 
mSTG, the right pallidum, and the right ventromedial putamen in individuals with MA dependence compared 
with that in normal controls. The superior temporal cortex (gyrus and sulcus) is part of a complex facial pro-
cessing system related to emotional  perception53 and regulation of response to negative visual social  stimuli54. 
Abnormal superior temporal gyrus function is often accompanied by psychological  changes55 such as anxiety, 
auditory hallucinations, and delusions. The findings of Tsujii et  al.56 showed that abnormal superior tempo-
ral gyrus function was related to impaired emotional control and behavioral inhibition. They suggested that 
changes in the superior temporal gyrus may result in cognitive symptoms and social disorders in some patients 
with bipolar disorder. Patients with MA dependence often develop mood regulation  disorders57 and experience 
abnormal social cognitive  function58. Previous studies have reported superior temporal gyrus abnormalities 
in patients with MA, such as abnormal  volume59 and changes in regional  homogeneity60. Increased  Enod of the 
superior temporal gyrus in our study may further indicate the importance of this region in emotional process-
ing network disorder. The pallidum is a point of convergence for limbic reward signals and the intermediate 
stages of various cognitive, emotional, and motor processes. It is a central site for coding and promoting reward 
learning, enjoyment, and  motivation61. In patients with MA dependence, increased  Enod in the pallidum results 
in enhancement of reward and motivation through periodic bursts of excitation and hedonic stimuli, leading to 
compulsive drug intake. The putamen is a part of the mesocorticolimbic reward circuit. Previous studies found 
that MA- and cocaine-induced cravings were associated with activation of the  putamen62,63. Drug craving is the 
main motivation for increased drug use, and is thought to be a significant factor in relapse. Cravings are per-
sistent in patients with MA dependence, which suggests that the putamen is a critical component of addiction-
related networks.

Identification of network hubness. Hubness were defined as nodes with high nodal centrality, which 
is an indicator of the importance of nodes in networks of interacting brain regions. In our study, the MA-
dependent group had higher hubness scores in 25 regions compared with the control group, these regions were 
mainly located in the default-mode network (DMN), most of which were located in the DMN. The locations of 
these DMN regions included the superior frontal gyrus, the inferior frontal gyrus, and inferior parietal lobule. 
The DMN is a cluster of brain regions that are spontaneously active in resting states and associated with internal 
directed cognition. Many neuropsychiatric disorders are associated with DMN  dysfunction64,65. Changes in rest-
ing state functional connectivity in the DMN have been observed in individuals with MA  dependence66. The 
frontal brain regions of the DMN are involved in excitatory and inhibitory regulation of cravings associated with 
 addiction67,68. The inferior parietal lobule was shown to simulate future behavior using mnemonic imagery-
based  processes69. Therefore, reorganization of hubness distribution in the DMN may reflect enhanced memory 
for drug-related cues, strong drug craving, and drug-seeking behavior in individuals with MA dependence.

In contrast, the patients with MA dependence in our study had lower hubness scores in the DAN, the somato-
motor system. Recent studies of substance addiction have shown varying degrees of attention disorders in 
individuals with addiction, as evidenced by attention bias for substance-related  cues70,71. Attention is based on 
choosing between conflicting needs at different processing levels and in different cognitive fields using limited 
resources. The DAN plays an important role in top-down (proactive) attention  processing72. Patients with MA 
dependence patients lose DAN hubness for multiple reasons. Long-term use of MA may damage the DAN, 
the lack of attention and indifference to surrounding things are often accompanied by external symptoms (e.g. 
apathy, disorientation, etc.) of MA-dependent patients. Impairment of the DAN may promote decreased spatial 
attention ability. Methamphetamine is a potent psychoactive stimulant that can increase physical strength and 
energy in small doses. However, long-term use of large doses can result in inhibition of cholinergic receptors 
in skeletal muscle motor endplates, resulting in the decline of body vitality and the weakening of the body’s 
response to external stimuli. Therefore, the somatomotor system showed decreased activity in patients with MA 
dependence compared with controls.
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Correlation between topological attributes and clinical variables. We used correlation analysis 
to gain a preliminary understanding of factors associated with onset and progression of psychotic symptoms 
observed in individuals with MA dependence. Our results showed that changes in nodal efficiency in the left 
superior temporal gyrus, and in hubs within the right pallidum and right putamen, were positively correlated 
with positive psychotic symptoms. The temporal lobe is the perceptual center in humans, and positive symptoms 
of schizophrenia are strongly associated with sensory perceptions, such as  hallucinations73,74. Sabri et al.73 ana-
lyzed brain imaging data from 24 patients with schizophrenia who were not treated with antipsychotic drugs, 
and found that delusions, hallucinatory behaviors, suspicion, and victimization were positively correlated with 
rCBF (regional cerebral blood flow) in the left temporal lobe. This study agreed with our finding of a significant 
positive association between the hubness scores of the left superior temporal gyrus and BPRS factor scores, 
especially positive symptoms. Galati et al.75 reported a case of paranoid schizophrenia with carbon monoxide 
poisoning-induced pallidum damage, which resulted in complete remission of some positive symptoms, such 
as paranoia. This indicated that the pallidum may be associated with positive symptoms of schizophrenia. In 
patients with schizophrenia, the  volume76, nodal  efficiency77, betweenness  centrality39, and the amplitude of low-
frequency  fluctuations78 in the putamen were abnormal. Hong et al.76 found that putamen volume was associated 
with positive symptoms of psychosis, and speculated that putamen volume might be an indicator of risk and 
clinical course prediction for development of clinical psychosis. These studies support our findings that these 
psychiatric symptoms may not be caused by abnormalities in single brain regions or neural pathways, but by a 
combination of multiple neural pathways or brain regions. Future studies of MA-induced psychiatric symptoms 
should focus on networks of neural pathways and brain regions.

Anxiety is one of the most common psychiatric symptoms in MA  users79. Individuals with anxiety are more 
prone to anxiety symptoms in response to uncertainty, and processing of uncertain information is an important, 
but often neglected factor in anxiety. The insula receives interoceptive information. Paulus and Stein proposed 
that “the difference between the insula in determining the internal perception expected from the stimulus and the 
prediction of its results is very important”80. The difference between the observed and expected body state may 
lead to an anxiety state, and the emotional, cognitive, and behavioral components representing anxiety may be 
a result of a change in this prediction  signal80. The hippocampus is the brain structure that processes emotions, 
integrates sensory, emotional, and cognitive components of pain, and processes information about the body. 
The hippocampus exerts tonic inhibitory control over the hypothalamic stress-response system. Considering 
the association between the hubs in the above-mentioned area (the insula and hippocampus) and the anxiety 
scores in our study, we hypothesize that the long-term effects of MA lead to adaptive changes in the central role 
of these regions in patients with MA dependence. When individuals see drug-related cues (such as videos or 
pictures), relevant information is transmitted to the brain, which results in generation of internal feelings (such 
as ’ hunger and thirst ’). The insula and the hippocampus process and integrate internal feelings, and the hip-
pocampus inhibits the stress system of the hypothalamus, and prevents release of γ-aminobutyric acid (GABA), 
resulting in anxiety  symptoms81.

SVM classifier. In the present study, we demonstrated that the SVM approach combined with graph-derived 
measures showed an excellent ability to distinguish patients with MA dependence from control subjects based 
on their WM network topological features.

In addition, we extracted the weight value of each feature in the classifier. Among these graph theory-related 
features, the hubness of the right superior frontal gyrus, the left superior parietal lobule, the left inferior parietal 
lobule, the right occipital pole cortex, the right precentral gyrus, left parietooccipital sulcus, and right lingual 
gyrus had larger weight values. The superior frontal gyrus is located in the upper part of the prefrontal cortex, 
and is an important region involved in tasks such as movement, working memory, and cognitive  control82. The 
precentral gyrus belongs to the primary motor cortex and mainly controls somatic motor behavior. Kim et al.83 
used voxel-based morphometry (VBM) to study the gray matter integrity of both long-term (30.6 months) and 
short-term (2.6 months) abstinent subjects with MA dependence. They found that density of the prefrontal cortex 
was lower in the subjects who abstained from MA compared with the control group. In addition, Kim et al.84 
found that MA use resulted in persistent low metabolism in frontal WM and impaired executive function of the 
frontal lobe. The parietal lobe is primarily involved in cognition, attention, and decision-making85. Yang et al.60 
observed increased parietal cortex thickness in abstinent users of MA. Impaired cognitive control in individuals 
with MA dependence can be understood as a result of disordered regional networks in the prefrontal and pari-
etal cortices. The occipital lobe is the key visual center, and is responsible for processing and synthesis of visual 
information. The parieto-occipital sulcus is located in the anterior border of the occipital lobe and is an important 
part of the brain functional area, which belongs to the visual motor processing area. The lingual gyrus is located 
in the primary visual cortex and plays an important role in visual perception and visual memory processing. 
In individuals with MA dependence, long-term search for drugs or drug-related clues leads to the activation of 
vision-related functional areas. These findings indicated that diagnosis of MA may be closely related to cognitive 
control functions and the visual system, and that these features may be potential predictive markers of MA abuse.

Limitation and future directions. Our study was subject to several limitations. First, the small sample 
size did not allow for comparisons of differences in brain structural networks between subgroups (for example, 
between MA dependence with or without psychotic symptoms) or evaluation of correlation with the BPRS scale, 
which may affect the generalizability of the study results. A larger sample size is needed for future subgroup 
studies. Furthermore, the small sample size may have resulted in overfitting during cross-validation for machine 
learning-based classification. To test the generalizability of the model, future studies should train the classifier on 
a larger dataset and validate the classifier on an independent dataset that was not used in any training iteration. 
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Second, as DTI depends on the diffusion parameters of water and its spatial resolution is relatively low com-
pared to the actual size of nerve fibers, DTI has difficulty identifying complex fibrous tissues, such as crossing, 
converging, and diverging  fibers86,87. However, DTI is currently one of few tools available for in vivo evaluation 
of human brain structural networks. To increase the sensitivity of fiber reconstruction, we used a probabilistic 
tractography method to reconstruct the networks. Use of probabilistic tractography with a crossing fiber model 
improved the sensitivity for capturing the complexity of neural fiber  organization88. Third, as this was a cross-
sectional study, we cannot determine whether the differences in topological attributes were a consequence of 
MA exposure or were present as predisposing factors for development of addiction. Genetic and longitudinal 
imaging studies are needed to resolve this issue. Last but not the least, since there is no widely accepted stand-
ard to construct the cortex and subcortical area of the brain, the nodes of the structural network are defined by 
predefined templates, such as automatic anatomical marker map. It is well known that the topological proper-
ties of brain networks constructed with different brain maps are not  consistent89,90. In future research, it will be 
important to study the brain network with more advanced segmentation methods—for example, dividing the 
brain into smaller and more compact  areas91, or trying to define functional areas based on resting state or task 
induced  response92.

Conclusion
In summary, the present study provided evidence that MA dependence was associated with abnormal WM 
network topological attributes, such as disturbed small-worldness and altered nodal efficiency, which could be 
used as features for construction of a machine learning-based classifier to accurately diagnose MA dependence.

Data availability
The datasets analyzed during the current study are not publicly available but are available from the correspond-
ing author on reasonable request.
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