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Comparative study on landslide 
susceptibility mapping based 
on unbalanced sample ratio
Li Tang 1, Xianyu Yu 1,2*, Weiwei Jiang 1,2 & Jianguo Zhou 1,2

The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study 
to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and 
determine the sample ratio interval with the best performance for different models. We employ 12 
LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and 
C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution 
Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide 
susceptibility zoning in the study area, respectively. The prediction performance of the model is 
evaluated by the receiver operating characteristic curve area under the curve value, five statistical 
methods, and specific category precision. The results show that the CNN, SVM, and LR models in the 
sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the 
importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in 
a state of overfitting in this study and needs to be further studied. The conclusions put forward in this 
study help improve the scientificity and reliability of LSM.

A large number of geological disasters occur worldwide every year, resulting in damage to human infrastructure 
and lives1. Landslides are geological disasters related to the movement of natural materials, usually accompanied 
by the movement of rocks and debris. Due to active geological movements, extreme changes in the global climate, 
and frequent human engineering activities, the landslide disasters in the Three Gorges Reservoir area (TGRA) 
have been increasing annually. There are also many new active landslides, which threaten the lives and property 
of residents on both sides of the TGRA, seriously affecting the shipping safety of the Yangtze River and reducing 
the service life of the reservoir2,3. The Shuping landslide and the Baijiabao landslide are typical of landslides in 
the study area, as shown in Fig. 1.

Landslide Susceptibility Mapping (LSM) is an effective tool for landslide disaster prevention and manage-
ment, which can directly predict and describe the spatial distribution and probability of possible landslides4. 
With the rapid development of computer technology and Geographic Information Systems (GIS), an increasing 
amount of Machine Learning (ML) models have been introduced into LSM research, significantly enriching 
the application of quantitative methods in LSM5–7. Peng et al. successfully used rough set theory to extract the 
optimal LSM factor as the input of the SVM model, and the results showed that the prediction performance of 
the hybrid model was better than the general SVM model8. Mehrabi et al. combined genetic, particle swarm opti-
mization, differential evolution, and ant colony optimization algorithms with an Adaptive Neuro-fuzzy Inference 
System (ANFIS), respectively, and used it for the spatial prediction of landslide distribution in Qazvin County 
in northwestern Iran. The accuracy of the ANFIS model after optimizing the calculation parameters with the 
above four types of algorithms can reach up to 91.6%9. Chen et al. compared the best first decision tree, random 
forest (RF), and naive Bayes tree models and evaluated the prediction ability of 14 factors, including elevation 
and slope. Finally, the Receiver Operating Characteristic (ROC) curve results showed that the RF model had 
the best performance, the maximum Area Under the Curve (AUC) value was 0.869, and the minimum standard 
error value was 0.02510. Although ML significantly improves accuracy and precision compared with traditional 
methods, it is not the optimal method for LSM due to issues of over-fitting, parameter adjustment, and low 
accuracy under the condition of sparse data11.

As an improved ML method, Deep Learning (DL) has been employed successfully in search technology, data 
mining, and other fields in recent years and has also made significant achievements in LSM12. Convolutional 
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Neural Network (CNN) is a powerful DL technology designed by LeCun using the concept of updating param-
eters by gradient descent. CNN can autonomously learn the relationship between massive input and output data 
without needing to classify the input data, where latent rules are used to extract the local features of data for 
high-precision classification13. In 2019, Wang, Fang, and Hong first used CNN to extract features from factors 
for LSM in Yanshan County, China, constructing CNN-1D, CNN-2D, and CNN-3D for the spatial prediction 
of landslides. The three kinds of CNN convolutional networks were used and compared with the ML method of 
SVM. The experimental results showed that the CNN method greatly alleviated the problem of overfitting in ML 
and was more practical in LSM14. Yu et al. proposed an intelligent landslide detection algorithm based on deep 
CNN and an improved region-growing algorithm, where the experimental results confirmed the superiority of 
the algorithm in terms of detection accuracy and sensitivity12. Li, Fang, and Wang used a stacked ensemble to 
combine the CNN and Recurrent Neural Network (RNN) models. The hybrid framework was employed for land-
slide spatial prediction in the TGRA, obtaining a higher AUC value (0.918) than the single CNN model (0.904) 
and RNN model (0.900)15. Experiments have also demonstrated that the DL method has a superior prediction 
performance over traditional ML models, which is conducive to promoting the development of the theoretical 
and practical application of LSM16,17. However, these models adopt a 1:1 ratio of landslides and non-landslides 
when the training sample set is established; that is, the balanced sample (sample ratio is 1:1) set is used to train 
the model18,19, no discussion was developed for using unbalanced sample sets for LSM.

In the actual situation, the number of non-landslide samples is much higher than the number of landslide 
samples20. King and Zeng pointed out that the number of majority class events is usually two to five times 
more than minority class events in binary classification problems21. The ratio between the number of positive 
and negative samples in binary classification models was also found to affect the predictive performance of 
ML models22. Zhi, Guo, and Fan found that the prediction performance of the ML model depended on a large 
amount of training data23, and the sample size of the balanced sample set could not fully explain the diversity of 
LSM factors in the study area due to the small sample size so that the training model passively lost a lot of non-
existent data. The important feature information of landslides made the prediction results of the trained model 
extremely dependent on random samples. While the prediction model trained using the balanced positive and 
negative sample data set had a good performance, the phenomenon that the same sample set had different AUC 
values made the LSM results unreliable. Wang et al. extracted 22 LSM factors and applied synthetic minority 
oversampling technology to the landslide dataset to solve the problem of unbalanced proportions of landslide 
and non-landslide sample sets. With the increase of samples, the performance of the four ML models of SVM, 
Logistic Regression (LR), artificial neural network, and RF all showed different degrees of improvement24. Zhang 
et al. used the class-weighted algorithm to transform the imbalance between landslide samples and non-landslide 
samples into a cost-sensitive problem. According to the results, the performance of the weighted model was 
better than that of the unweighted model and the class-weighted algorithm was suitable for solving the problem 

Figure 1.   Example of landslide in the study area.
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of unbalanced landslide samples in LSM25. The above scholars attempted to solve the problem of sample imbal-
ance in LSM from the aspects of data processing or algorithm models and have achieved certain results26,27. 
However, they neglected to evaluate the proportion difference between the numbers of landslide samples and 
non-landslide samples in LSM, because for the traditional LSM, using the training sample training model with 
a same number of landslide samples and non-landslide samples is easy to cause false positives, resulting in the 
waste and loss of prevention costs, so it is necessary to further research on the impact of sample proportion on 
model prediction performance is required.

Based on the previous studies on LSM, this study employs LR, SVM, C5.0 decision tree (C5.0), and one-
dimensional CNN models, taking the Zigui–Badong section of the TGRA as the study area. Five groups of 
landslide samples with a fixed number of landslide samples and a certain proportion of non-landslide samples 
are input into the training set (1:1, 1:2, 1:4, 1:8, and 1:16), providing five different LSM results. The impact of 
unbalanced sample sets on the LSM results is determined and discussed. One type of model can locate an optimal 
sample ratio interval and fully exploits the application potential of these four types of models in the actual LSM, 
providing a certain theoretical significance and scientific value for the research on LSM.

Study area, data sources, and data processing platform
Study area.  The study area is the Zigui to Badong section of the Three Gorges reservoir area, and the bank 
slope area extends 2–4 km along the Yangtze River to both sides, with an area of 388 km2. The longitude and 
latitude coordinates are 110° 18′ 44″–110° 52′ 30″ E and 30° 01′ 52″–30° 56′ 58″ N. The study area traverses two 
natural geographical units of the TGRA. The eastern part of the reservoir is the Three Gorges area in the Wushan 
Mountain range, and the western part is a low mountain and hilly area in eastern Pengdi of Sichuan Province. 
The terrain generally rises from southeast to northwest, with an elevation range of 80–2000 m. The geological 
structure features in the study area were formed between the late Yanshanian Movement and the early Hima-
layan Movement, and the main structural forms are folds and faults, including the Guandukou syncline in the 
west of Badong County and the Zigui syncline in the south of Xingshan County. The faults mainly include the 
Niukou, Xiangluping, Xiannushan, and Jiuwanxi faults from west to east. The strata in the study area are well-
developed. The west of Xiangxi River is dominated by sandstone, shale, and other sedimentary clastic rocks, 
while the east of Xiangxi River is dominated by dolomite, limestone, and other carbonate rocks. The study area is 
in the mid-latitude zone, with a subtropical monsoon climate. The climate and rainfall change with the seasons 
and the temperature change affected by the elevation difference is obvious. The average annual rainfall in Badong 
County is 1034.3 mm, and the average annual rainfall in the Zigui area is 1158.9 mm. The location of the study 
area is shown in Fig. 2.

Data and data processing platform.  The data sources used in this study are shown in Table 1.
Table 1 shows that the basic topographic and geological maps of the 1:50,000 scale and the landslide disaster 

map of 1:10,000 scale, DEM data and remote sensing data with resolution of 30 m. The average annual precipita-
tion has a temporal resolution but does not have a spatial resolution30. All data layers were subsequently converted 
into the lowest resolution(30 m)31.

The following data processing platform used in this study:

–	 ArcGIS 10.8 (https://​www.​esri.​com/​en-​us/​arcgis/​about-​arcgis/​overv​iew);
–	 ENVI 5.3 (https://​envi.​geosc​ene.​cn);
–	 SPSS Modeler 18 (https://​www.​ibm.​com/​produ​cts/​spss-​model​er);
–	 SPSS Statistics26 (https://​www.​ibm.​com/​produ​cts/​spss-​stati​stics);
–	 PyTorch 1.7.1 (https://​pytor​ch.​org).

Landslide inventory mapping.  The quantitative method for LSM is an engineering geological analogy 
method. Its core principle is to analyze and extract the spatial relationship between past landslides and LSM fac-
tors based on assuming that future landslides and existing landslides have the same environmental conditions 
and then to determine the distribution and probability of future landslides32,33. Through the investigation and 
study of Landsat 8 remote sensing image data, a landslide distribution map of 1:10,000 scale, a basic geological 
map of 1:50,000 scale, and a landslide survey report, a total of 202 landslides are identified in the study area. The 
landslides have a total area of 23.4 km2, accounting for 6.03% of the study area.

Methods
Factor analysis model.  Pearson correlation coefficient analysis.  The Pearson Correlation Coefficient 
(PCC) can be used to analyze the linear correlation between two variables. In the LSM, most of the factors are 
calculated by DEM and have natural correlation. Therefore, it is necessary to analyze and screen the factors 
through correlation analysis by PCC to ensure the mutual independence of the evaluation factors34. The calcula-
tion formula is shown in Eq. (1).

where cov is the covariance, σX and σY are the sample standard deviations, E is the mathematical expectation, 
and X and Y are a single sample point.

(1)ρX,Y =
cov(X,Y)

σXσY
=

E(XY)− E(X)E(Y)
√

E
(

X2
)

− E2(X)
√

E
(

Y2
)

− E2(Y)

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://envi.geoscene.cn
https://www.ibm.com/products/spss-modeler
https://www.ibm.com/products/spss-statistics
https://pytorch.org
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The value of the PCC is between − 1 and 1, which indicates that the correlation of these two variables is from 
negative correlation to positive correlation; when its value is 0, it means that the two variables have no correla-
tion, that is, they are independent of each other. Two variables whose absolute value of correlation coefficient 
is greater than a certain threshold is usually regarded as two variables that are strongly correlated. When two 
variables have a strong correlation, one of them should be removed to eliminate the correlation35.

Multicollinearity analysis.  It is necessary to perform a multilinear analysis before using the landslide factor 
dataset to train the model. The selection of evaluation factors directly affects the accuracy and reliability of 
LSM36. Multicollinearity analysis refers to judging whether an independent variable or multiple independent 
variables can be linearly combined into one independent variable, usually using Variance Inflation Factor (VIF) 
or Tolerance (TOL) to evaluate the evaluation factor multicollinearity. The formula for calculating the VIF value 
is shown in Eq. (2):

Figure 2.   Geographical location of the study area (drawn with ArcGIS 10.8 software, and the URL is: https://​
www.​esri.​com/​en-​us/​arcgis/​about-​arcgis/​overv​iew).

Table 1.   Data sources were used in this study.

Name Data source Spatial resolution/Scale

DEM data https://​lpdaac.​usgs.​gov/​tools/​data-​pool/ 30 m

Basic geographic data Hubei Geological Survey Institute28 1:50,000

Basic geological data Hubei Geological Survey Institute28 1:50,000

Remote sensing data https://​earth​explo​rer.​usgs.​gov/ 30 m

Atmospheric rainfall data https://​data.​cma.​cn –

The landslides distribution data Landslide hazard map29 1:10,000

China’s border data http://​bzdt.​ch.​mnr.​gov.​cn/ –

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://lpdaac.usgs.gov/tools/data-pool/
https://earthexplorer.usgs.gov/
https://data.cma.cn
http://bzdt.ch.mnr.gov.cn/
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where Rj
2 is the coefficient of determination of the j-th independent variable to all other independent variables, 

and the TOL value is the reciprocal of the VIF value.
The larger the VIF value, the greater the possibility of collinearity between independent variables. Multiple 

covariance analysis is often used to evaluate the correlation between factors to ensure that there is no linear cor-
relation between factors37. In LSM, if the VIF value of a factor is greater than 10 or the TOL value is less than 0.1, 
it means that the factor has serious multicollinearity problems, and the factor should be removed38.

Relief‑F analysis.  Kira proposed a feature weighting Relief algorithm in 1992. The Relief-F algorithm evalu-
ates the value of the LSM factor by calculating the correlation between the LSM factor and landslide, to deter-
mine the relative importance of the factor to the occurrence of landslide36. The principle is to assign different 
weights to features according to the correlation between each feature and category. When the weight of a feature 
is less than a certain threshold, the feature will be removed39. The Relief-F algorithm adds the ability to process 
multiple types of data on the basis of the original Relief algorithm, overcoming its limitation of only processing 
two types of data. The principle of Relief-F is to randomly select a sample R from the sample set T, find the k 
neighboring samples H of R from the sample set of the same class of R, and then find the k neighboring samples 
N of R from the sample set of different classes of each R, for all features, update the weights of features according 
to Eq. (3):

where diff(A, R1, R2) represents the difference between the sample R1 and the sample R2 on the feature A, and 
the calculation formula is as follows:

When using the Relief-F method to evaluate the prediction ability of the landslide evaluation factor, the larger 
the value, the greater the weight of the evaluation factor feature, the stronger the influence ability of the feature, 
and the weaker the influence ability of the feature on the contrary10.

Models.  CNN model.  The convolutional neural network used in this study employs the CNN-1D 
structure14,40, which consists of a convolutional layer, a maximum pooling layer, and a fully connected layer, as 
shown in Fig. 3. In the LSM, the neural network layer of the convolutional neural network can be used to di-
rectly learn the inherent laws and feature representations of landslide data. In this CNN-1D structure, the input 
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



|R1[A]−R2[A]|
max (A)−min (A) , if A is continuous

0, if A is discrete and R1[A] = R2[A]
1, if A is discrete and R1[A] = R2[A]

Figure 3.   One-dimensional convolutional neural network structure, C represents the convolution layer, S 
represents the sampling layer, and F represents the fully connected layer.
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data can be regarded as an image with only one column of pixels, and the number of pixels is determined by the 
number of landslide evaluation factors.

It is assumed that the kernel size of the convolutional layer of the one-dimensional CNN structure is m × 1, the 
kernel size of the maximum pooling layer is n × 1, a landslide evaluation factor is input, and after one convolu-
tion, the output length is (m-a + 1). The column vector S then enters the maximum pooling layer and outputs a 
column vector Y with a length of ((m − a + 1)/n). The column vector Y is connected to the fully connected layer 
with neural units to extract features. Finally, two neural units on the output layer give the result of the binary 
classification problem14.

C5.0 model.  The C5.0 decision tree model selects attributes and sample partitions based on the information 
gain rate, and the information gain rate is derived from the concept of entropy. Some mathematical definitions 
in the C5.0 model are as follows:

where T is a data set with n samples, the category attribute C contains k values (C1, C2, …, Ck), freq(Cj, T) is the 
probability of occurrence of category Cj, and T is divided according to the attribute X. The conditional entropy 
of attribute X after segmentation is defined as follows:

where |Ti| is the number of examples in the data set T whose value is ci, and the information gain and information 
gain rate of the corresponding attribute X are:

The calculation formula of split info(X) in the formula is shown in Eq. (9):

SVM model.  The support vector machine proposed by Vapnik is a supervised ML algorithm that constructs 
an n-dimensional hyperplane as a classification plane to classify the input data. Compared with other algo-
rithms, SVM has the characteristics of using a smaller number of samples to obtain better classification results41. 
Assuming a non-linearly separable vector xi (i = 1, 2, … , n), containing two types of yi =  ± 1, the n-dimensional 
hyperplane is defined by Eq. (10):

where ‖w‖ is the 2-norm of w, w is a vector perpendicular to the hyperplane, xi is a point on the hyperplane, and 
b is a constant so that the hyperplane does not pass through the origin of the coordinate axes.

The training sample set is transformed into the n-dimensional space through the kernel function K(xi, xj), 
which is essentially a mapping function. The four commonly used kinds of kernel functions that satisfy the 
Mercer condition include linear, polynomial, radial basis, and sigmoid kernel functions. Chong studied the 
application of three sets of samples with different sizes combined with four types of kernel functions in LSM in 
earthquake areas and compared their prediction performance. Experiments demonstrated that the performance 
of the support vector machine model using the Radial Basis Function (RBF) kernel was better than other kernel 
SVM models42. Thus, we employ the SVM model based on the RBF kernel for LSM in this work.

LR model.  The LR model is a multivariate analysis model that effectively fits the relationship between 
dependent and independent variables. In this study, the dependent variable is the representation of whether 
there is a landslide (1 for landslide, 0 for non-landslide), and its expression is as follows43:

where z is the dependent variable, {β0,β1, . . . ,βn} is the regression variable, and {X1,X2 . . . ,Xn} is the explana-
tory variable, then the calculation formula of the probability of occurrence p is as follows:
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where p is a sigmoid function, and its value range is from 0 to 1. In this study, this value describes the probability 
of landslide occurrence.

Model inputs and outputs.  This study focuses on the influence of sampling methods on the results of 
LSM, so the inputs and outputs of the four models are inconsistent. The LSM factors and evaluation indicators 
are input to the model, the model is trained to obtain the relationship between the factors and the evaluation 
indicators, and then the validation sample is input, and the output is the landslide susceptibility index for each 
LSM calculation unit in the validation sample.

Taking the SVM model as an example, the input and output of the model are shown in Fig. 4.
Assuming that t1, t2, t3, and t4 are the four factors from the training sample set, the trained model SVM* is 

obtained by inputting them into the SVM model, after which v1, v2, v3, and v4 from the validation sample set 
are input into the SVM* model and the outputs are the probability distributions of 0 (non-landslide occurs) and 
1 (landslide occurs), which are 0.68 and 0.32 respectively.

Evaluation methods.  ROC curve and AUC value analysis.  The receiver operating characteristic curve is 
a common indicator used to verify the performance of the model, which can intuitively show the accuracy and 
reliability of the model prediction results. The ROC curve takes the true positive rate TPR as the Y-axis and the 
positive rate FPR as the X-axis, as defined in Eqs. (13) – (14):

where TP, FP, TN, and FN are defined by the confusion matrix. The verification of classification model per-
formance plays a very important role in evaluating the generalization ability of LSM44. In the field of ML, the 
four types of comparison results between the predicted value and the actual value can be used as four types of 
indicators, as shown in Table 2.

The four situations shown in the table are as follows: When the result is a landslide and the prediction is also 
landslide, it is a True Positive (TP); When the result is a non-landslide and the prediction is also non-landslide, it 
is a True Negative (TN); When the result is a non-landslide and the prediction is a landslide, it is a False Positive 
(FP); When the result is landslide and the prediction is non-landslide, it is a False Negative (FN).

For example, each point on the previous curve corresponds to a set threshold, and each different threshold 
corresponds to a different pair of TPR and FPR values. The closer the ROC curve is to the upper left corner, the 
better the classification effect of the classifier. In order to evaluate the performance of different LSM models under 
different conditions, the area under the curve is generally used as the evaluation standard15,45.

(13)TPR =
TP

(TP + FN)

(14)FPR =
FP

(FP + TN)

Figure 4.   Schematic of the inputs and outputs of the model.
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Five statistical methods.  Overall accuracy (OA), precision, recall, F-measure, and Matthews correlation coeffi-
cient (MCC) are common indicators used to measure the ability of LSM classification models and are calculated 
from the confusion matrix10,44. The formulas of these five methods are denoted as Eqs. (15)–(19):

where TP, FP, TN, and FN are defined in the "Confusion Matrix" section.

Specific category precision analysis (SCPA).  In addition to the above-mentioned accuracy evaluation methods, 
this study also employs an improved method to evaluate the accuracy of various types of landslide susceptibil-
ity, which is called SCPA30. The traditional quantitative analysis method is based on the Landslide Susceptibility 
Zoning (LSZ), using landslide distribution data to calculate the proportion of landslide area in different types of 
LSZ, the analysis result is based on the proportion of the landslide area in very high susceptibility to the total area 
of the landslides. However, there is a problem with many areas in the LSZ belonging to the very high susceptibil-
ity LSZ, the model evaluation results are naturally good. Obviously, this cannot verify the effect of LSM. SCPA 
overcomes the above problem.

In this study, the SCPA method takes into account the number of calculation units in the classification area 
This method is defined as Eq. (20):

where i = 1,2,…,n, n is the classification number of landslide-prone zonings, Ai is the number of slope units 
occupied by landslides in i-th LSZ classification, and Bi is the number of the slope units in i-th LSZ classification.

Experimental process.  The flowchart of this study is shown in Fig. 5.
The experimental process consists of three main steps. In the first step, 12 factors were selected and their 

correlations and relative importance were analyzed. The second step randomly selects training (70% of the total) 
and validation (30%) sets out of grid cells corresponding to landslide and non-landslide locations in the study 
area. Before establishing the LSM model, the undersampling method is used to process the training sample set. 
Five training sample sets were designed (the ratio of landslide samples to non-landslide samples were 1:1, 1:2, 
1:4, 1:8, and 1:16). The final step constructs the LSM models to obtain different landslide susceptibility index 
(LSI) maps and LSZ maps. The ROC curve, five statistical evaluation methods, and SCPA are used for quantita-
tive evaluations.

In addition, the quantization process of the 12 LSM factors is as follows:

–	 Calculate aspect, slope, TRI46, and SPI9 using spatial analysis tools in ArcGIS 10.8 software based on the 
digital elevation model;

–	 According to the topographic map and geological map, the lithology of the study area is divided into: hard 
rock, soft and hard alternation rock, and soft rock36;

–	 The distance to fault47, the distance to drainage network48, and the distance to road49 were obtained using the 
Euclidean distance method in the Spatial Distance Analysis Tool;

–	 The inverse distance weighting method was used to spatially interpolate the annual average rainfall data of 
each meteorological station to obtain the average annual rainfall in the study area22;

(15)OA =
TP + TN

TP + FP + TN + FN

(16)Precision =
TP

TP + FP

(17)Recall =
TP

TP + FN

(18)F −Measure =
2× Precesion× Recall

Precision+ Recall

(19)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(20)pi =
Ai

Bi
× 100%

Table 2.   Confusion matrix.

Confusion matrix

Predict

Positive Negative

True
Positive True Positive, TP False Negative, FN

Negative False Negative, FP True Negative, TN
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–	 Surface cover factors have a great influence on slope stability50. NDVI was calculated by using the red band 
and near-infrared band of a 30 m resolution image of LandSAT-840. Meanwhile, remote sensing image was 
supervised and classified, and land use in the study area was divided into five categories: water, forest land, 
artificial impervious surface, grassland, and agricultural land.

Figure 5.   Flowchart of this study (drawn with ArcGIS 10.8 software, and the URL is: https://​www.​esri.​com/​en-​
us/​arcgis/​about-​arcgis/​overv​iew).

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
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Result
The selection of appropriate LSM factors has a significant impact on the accuracy of LSM. Based on previous 
studies on the LSM in the TGRA from Zigui to Badong30, 12 LSM factors were selected and divided into topo-
graphic and geomorphological factors. These included elevation, slope, aspect, and terrain relief index (TRI)), 
geological factors (lithology, distance to faults), hydrological factors (average annual precipitation, distance to 
water system, stream intensity index (SPI)), and surface cover factors (normalized difference vegetation index 
(NDVI), distance to road, and land use type). The LSM factors are shown in Table 3 and Fig. 6.

A 30 m × 30 m grid unit was used as the LSM unit, and the training sample and validation sample sets of the 
evaluation model were set. The grid cells of 202 landslides in the study area were screened out and marked as 
“1” and the grid cells in the non-landslide area were marked as “0”, with 25,606 grid cells and 398,977 grid cells, 
respectively. Considering each landslide as a whole, 70% of the landslides were randomly selected in the study 
area, providing 142 landslides (19,224 grid cells) as training samples, and the remaining 30%, or 60 landslides 
(6382 grid cells) as a verification sample. The division results are shown in Fig. 7. The landslides were selected as 
training samples, and all non-landslides formed the initial sample set, with a total of 418,201 grid cells.

Table 3.   LSM factor selected in this study.

Category Factor Unit Range Type Describe

Geomorphological factor

Elevation m 80–2000 Continuous
Elevation represents the spatial variation 
of elevation, which can affect the degree of 
weathering of rocks and is an important 
factor in LSM46

Aspect –
(1) Flat, (2) North, (3) Northeast, (4) East, 
(5) Southeast, (6) South, (7) Southwest, (8) 
West, (9) Northwest

Discrete
The aspect is affected by solar radiation, 
weathering degree, and water evaporation, 
which affects the groundwater concentration 
and the stability of the slope51,52

Slope ° 0–78.419 Continuous
The slope controls the balance between the 
retaining force and the unstable force acting 
on the slope. The steeper the slope, the more 
prone to landslides22

TRI – 0–192.657 Continuous

TRI defines the roughness of the topography 
of the study area, which affects topographic 
and hydrological processes that are critical 
to landslide development. It affects the 
incidence of landslides46

Geological factor

Lithology – (1) Hard rock, (2) Soft-hard alternation rock, 
(3) Soft rock Discrete

Lithology is closely related to the spatial dis-
tribution of landslides. The softer the lithol-
ogy, the higher the degree of weathering, and 
the easier it is to cause landslides36

Distance to fault m 0–8753.58 Continuous

The distance to the fault is an important 
LSM factor53, which has a negative impact 
on slope stability. Generally speaking, the 
farther the distance is, the less the number 
of landslides will occur. The distance to 
the fault plays a very important role in the 
formation of the landslide

Hydrological factor

Rainfall mm/year 964.778–1132.2 Continuous

Rainfall is the most common triggering 
factor affecting landslides. Rainfall can 
penetrate along the cracks of the landslide 
body and seriously affect the shear strength 
of the slope. Generally, the heavier the rain, 
the more prone to landslides54

Distance to drainage network m 0–6078.24 Continuous

The distance to the drainage network is a key 
factor in the occurrence of landslides., it is 
composed of rivers and streams, which has 
a negative impact on the slope base and the 
underwater part of the slope48

SPI – 0–1,146,530 Continuous
SPI is a common hydrological factor in LSM 
studies, it describes the motion of strong 
grains of sediment by gravity and is an 
important topographic feature55

Surface cover factor

NDVI – 0.048907–0.403068 Continuous
NDVI represents the growth of green 
vegetation in the study area, and vegetation 
coverage will have an important impact on 
the stability of the slope56

Distance to road m 0–4488.79 Continuous

Similar to the effect of distance to the 
drainage network, due to human activities, 
additional loads on the slope excavation 
cause slope changes, thereby affecting the 
slope stress state and balance57

Land use –
(1) Water, (2) Forest land, (3) Artificial 
impervious surface, (4) Grassland, (5) 
Agricultural land

Discrete
Land use factors have a great influence on 
slope stability50, which can also affect infiltra-
tion and runoff
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Figure 8 shows the PCC calculation results of the 12 LSM factors, in this figure, the depth of color has differ-
ent meanings, with darker red indicating a stronger positive correlation and darker blue indicating a stronger 
negative correlation.

Figure 8 shows that the correlation coefficients between the factors are all below. The result of slope and TRI 
is the highest, at 0.638, followed by elevation and distance to road, which is 0.602. Thus, all evaluation factors 
pass the PCC test.

The 12 LSM factors selected above were further analyzed using the variance expansion factor index, and the 
results are shown in Table 4.

The largest TRI index in Table 4 has a VIF value of 8.567, all factors satisfy the condition of VIF < 10, and the 
12 factors selected in this study pass the multicollinearity test58.

The calculation results using the Relief-F algorithm are shown in Fig. 9.
As illustrated, the Relief-F value of the average annual rainfall is the smallest (0.113), and the coefficient of 

this factor satisfies the condition of being greater than 040. This result indicates that all the selected factors make 
important contributions in predicting landslides, so none are deleted.

Figure 6.   LSM factors in the study area (a) Elevation factor, (b) Aspect factor, (c) Slope factor, (d) TRI factor, 
(e) Lithology factor, (f) Distance to fault factor, (g) Rainfall factor, (h) Distance to drainage network factor, (i) 
SPI factor, (j) NDVI factor, (k) Distance to road factor, (l) Land use factor (drawn with ArcGIS 10.8 software, 
and the URL is: https://​www.​esri.​com/​en-​us/​arcgis/​about-​arcgis/​overv​iew).

https://www.esri.com/en-us/arcgis/about-arcgis/overview
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Figure 7.   The division results of the training sample set and the validation sample set in this study (drawn with 
ArcGIS 10.8 software, and the URL is: https://​www.​esri.​com/​en-​us/​arcgis/​about-​arcgis/​overv​iew).

Figure 8.   PCC matrix of 12 LSM factors.

Table 4.   Multicollinearity of 12 LSM factors.

Factors TOL VIF

Elevation 0.397 2.518

Aspect 0.972 1.029

Slope 0.117 8.564

TRI 0.117 8.567

Lithology 0.729 1.267

Distance to fault 0.826 1.210

Rainfall 0.728 1.374

Distance to drainage network 0.642 1.557

SPI 0.959 1.043

NDVI 0.786 1.273

Distance to road 0.543 1.840

Land use 0.875 1.143

https://www.esri.com/en-us/arcgis/about-arcgis/overview
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Sample set generation.  Before establishing the LSM model, the undersampling method is used to process 
the non-landslide sample set. Thus, some data are deleted from the non-landslide sample set by a random non-
manual intervention method, and the data volume of the non-landslide sample is reduced. In this study, the 
ratio of landslides selected as training samples to all non-landslides was 1:20.75. Five training sample sets were 
designed, which were a balanced sample set (the ratio of landslide samples to non-landslide samples was 1:1), 
and four unbalanced sample sets (the ratio of landslide samples to non-landslide samples were 1:1, 1:2, 1:4, 1:8, 
and 1:16). To conveniently represent the sample sets corresponding to different sample ratios, the former value 
in the sample set mentioned in this article represents a landslide, and the latter value represents a non-landslide. 
The proportion and number of these sample sets are shown in Table 5.

Experimental results of LSI.  The parameter settings of the CNN-1D model used in this study were opti-
mized by trial and error, in this CNN structure, m = 12, a = 3 n = 2. The optimized CNN-1D model parameters 
are shown in Table 6.

The five groups of sample sets constructed above were respectively input into four types of models, and an 
LSM model was established to obtain the LSI in the study area. The LSI is a continuous value from 0 to 1. The 
experimental results are shown in Fig. 10.

Evaluation of LSM results.  ROC curve and AUC value.  The ROC curves of LSM results based on five 
sample sets with different proportions and four types of models are shown in Fig. 11.

The prediction performance of the model in different sample sets is illustrated in Fig. 11. For the CNN model 
(shown in Fig. 11 (a), (b)), 1:2, 1:4, and 1:16 are closer to the upper left corner than the results of other sample 
sets; For the C5.0 model (Fig. 11 (c), (d)), the ROC curve in Fig. 11 (c) has a certain range of change. However, 
in Fig. 11 (d), the ROC curves corresponding to the 1:1 and 1:16 sample sets are closer to the upper left corner 
than those of the 1:2, 1:4, and 1:8 sample sets, and they are denser and less variable. Compared with other sample 
sets, the ROC curve of the 1:8 sample set is far from the upper left corner, and the ROC curve of 1:16 is further 
away from the upper left corner. For the LR model (Fig. 11 (g), (h)), the ROC curves of the two sample sets 

Figure 9.   Relief-F coefficients of 12 LSM factors.

Table 5.   Undersampling ratio and raster cell count statistics.

Sample ratio 1:1 1:2 1:4 1:8 1:16

Landslides 19,224 19,224 19,224 19,224 19,224

Non-landslides 19,224 38,448 76,896 153,792 307,584

Table 6.   Parameter setting of CNN model.

CNN parameters Parameter setting

Kernel size 1 × 3

Max pooling layer kernel size 1 × 2

Activation function ReLU

Optimizer Adam

Learning rate 0.01

Batch size 2000
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Figure 10.   LSI based on (a) 1:1 sample set by CNN model, (b) 1:2 sample set by CNN model, (c) 1:4 sample set 
by CNN model, (d) 1:8 sample set by CNN model, (e) 1:16 sample set by CNN model, (f) 1:1 sample set by C5.0 
model, (g) 1:2 sample set by C5.0 model, (h) 1:4 sample set by C5.0 model, (i) 1:8 sample set by C5.0 model, 
(j) 1:16 sample set by C5.0 model, (k) 1:1 sample set by SVM model, (l) 1:2 sample set by SVM model, (m) 1:4 
sample set by SVM model, (n)1:8 sample set by SVM model, (o) 1:16 sample set by SVM model, (p) 1:1 sample 
set by LR model, (q) 1:2 sample set by LR model, (r) 1:4 sample set by LR model, (s) 1:8 sample set by LR model, 
(t) 1:16 sample set by LR model (drawn with ArcGIS 10.8 software, and the URL is: https://​www.​esri.​com/​en-​us/​
arcgis/​about-​arcgis/​overv​iew).

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
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almost overlap and are all close to the upper left corner. Overall, the sample ratio has a greater impact on the 
prediction performance of CNN, C5.0, and SVM models, while LR is less affected by changes in the sample ratio.

Table 7 shows the results of the area under the ROC curve for each model trained with an imbalanced sample 
set to enhance the quantitative analysis.

The results in the table show that the four types of models achieve qualified prediction performance in any 
sample set, and the results based on the unbalanced sample set are mostly better than the results on the bal-
anced sample set. The highest AUC values of the CNN, C5.0, SVM, and LR models are 0.868(1:16), 0.842(1:16); 
0.925(1:16), 0723(1:1); 0.924(1:2), 0.857(1:2); 0.899(1:2–1:4), 0.869(1:2–1:4), respectively.

Five statistical methods.  The calculation results of the five statistical methods of overall precision, precision, 
recall, F-measure, and MCC are shown in Table 8.

The results from the 1:1 sample set to the 1:16 sample set in Table 8 clearly show that the overall precision 
and accuracy of the four types of models increase, and they all achieve the best results in the 1:16 sample set. 
The calculation results are as follows: overall accuracy: 0.940, 0.983, 0.945, 0.940; accuracy: 0.303, 0.949, 0.945, 
0.475. All models also obtain maximum recall in the 1:1 sample set, where the CNN model obtains 0.777, the 
C5.0 model obtains 0.845, the SVM model obtains 0.857, and the LR model obtains 0.857. In terms of the chang-
ing trend of the recall rate, the calculation results of the four types of models gradually decrease. Only the C5.0 
model shows a small decline, and the 1:1 to 1:16 sample set only decreases by 0.088. While the CNN model is in 
1.088, the recall in the 1:8 sample set is reduced to only 0.016.

Unlike the above three indicators, except that the F-measure and the MCC of the C5.0 model increase, the 
calculation results of these two indices of the CNN, SVM, and LR models first increase and then decrease. The 
CNN model has the best calculation results in the 1:2 sample set, with results of 0.300 and 0.347, respectively; the 
C5.0 model has the best calculation results in the 1:16 sample set, with 0.842 and 0.840, respectively. The SVM 

Figure 11.   ROC curve analysis for (a) Overall sample set by CNN model, (b) Validation sample set by CNN 
model, (c) Overall sample set by C5.0 model, (d) Validation sample set C5.0 model, (e) Overall sample set by 
SVM model, (f) Validation sample set SVM model, (g) Overall sample set by LR model, (h) Validation sample 
set LR model.

Table 7.   The AUC for the four types of models. Significant values are in Italic.

Classifiers Sample set 1:1 1:2 1:4 1:8 1:16

CNN model
Overall 0.793 0.849 0.851 0.794 0.868

Validation 0.732 0.815 0.805 0.726 0.842

C5.0 model
Overall 0.914 0.905 0.910 0.913 0.925

Validation 0.723 0.662 0.663 0.662 0.704

SVM model
Overall 0.920 0.924 0.923 0.917 0.889

Validation 0.851 0.857 0.851 0.830 0.749

LR model
Overall 0.897 0.899 0.899 0.898 0.898

Validation 0.867 0.869 0.869 0.868 0.869
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model has the best calculation results in the 1:4 sample set, and the two values are 0.490 and 0.497, respectively. 
The F-measure of the LR model appears in the 1:4 sample set, which is 0.392, and the MCC is the largest in 
the 1:2 sample set, which is 0.426. In general, among these five indicators, especially the F-measure and MCC, 
which can be applied to comprehensively evaluate the classification performance of the model in the presence 
of an imbalanced sample set59, the results of the model on the LSM of the balanced sample set are not the best.

Specific category precision analysis.  To increase the readability of the LSI map, all LSIs are divided into 
five susceptibility categories using the equal interval method according to the calculation results: very low sus-
ceptibility (0–0.2), low susceptibility (0.2–0.4), medium susceptibility (0.4–0.6), higher susceptibility (0.6–0.8), 
and very high susceptibility (0.8–1.0). The SCPA results of LSM based on unbalanced sample sets and different 
models are shown in Table 9 and Fig. 12.

According to the results in Table 9, in the CNN model, 4.06% of the results based on the 1:2 sample set with 
very high susceptibility are higher than 3.39% of the 1:1 sample set, and the results in the 1:4 sample set and later 
sample sets are all 0. The result of the overall sample set is also 0 in this sample set. The results of the C5.0 model 
have an obvious increasing trend with the decrease of the sample set, and the best result is in the 1:16 sample set 
(95.60% of the overall sample set and 51.87% of the validation sample set). The SVM model in the overall sample 
set also achieves the maximum value of 71.16% in the 1:16 sample set. However, in the validation sample set, the 
10.54% result of the 1:2 sample set is the best. In the LR model, the results for the validation sample set range 
from 7.60% for the balanced sample set to 7.09% for the 1:2 sample set, which is a slight drop in percentage. For 
the four different models, from SCPA of the very high susceptibility, the results of the imbalanced sample set are 
better than the results of the traditional training model based on the balanced sample set.

Discussions
From the ROC curve analysis of the validation sample set and the results of its AUC value, the AUC values of the 
CNN model, SVM, and LR model increase compared with the results of the 1:1 sample set to the 1:2 sample set, 
indicating that the three types of models have improved prediction performance in this unbalanced interval. It 
is worth noting that the AUC results of the C5.0 model in the validation sample set are generally lower, which 
means that the prediction performance of the C5.0 model in the unbalanced sample set is worse than that of 
the balanced sample set.

For the calculation results evaluated by the five statistical methods, the OA and the precision of the CNN, the 
C5.0, the SVM, and the LR models have the best results in the 1:16 sample set. Because all models are affected by 
the reduction of the sample ratio, the model’s ability to distinguish non-landslide samples becomes stronger, and 
the number of false-positive events is correspondingly reduced, resulting in an increase in the OA and precision 
of all models. The recall rate reflects the quantitative relationship between TP and FN. The LSM results of the 
four types of models also have the largest recall rate in the 1:1 sample set. As the landslide and non-landslide 
sample sets decrease, an increasing amount of landslides are predicted by the model as non-landslides, and the 
increase in FN events results in a decrease in the recall of all model predictions. F-measure and MCC, as impor-
tant equilibrium indicators in the evaluation of statistical methods, can effectively measure the performance of 

Table 8.   The results of five statistical methods. Significant values are in Italic.

Classifiers Statistical methods 1:1 1:2 1:4 1:8 1:16

CNN model

OA 0.681 0.848 0.912 0.939 0.940

Precision 0.133 0.208 0.254 0.319 0.303

Recall 0.777 0.540 0.238 0.016 0

F-Measure 0.227 0.300 0.246 0.031 0.001

MCC 0.297 0.347 0.269 0.079 0.012

C5.0 model

OA 0.932 0.953 0.970 0.979 0.983

Precision 0.465 0.581 0.728 0.855 0.949

Recall 0.845 0.808 0.790 0.780 0.757

F-Measure 0.600 0.676 0.758 0.816 0.842

MCC 0.611 0.674 0.750 0.809 0.840

SVM model

OA 0.845 0.892 0.924 0.942 0.945

Precision 0.260 0.329 0.410 0.521 0.632

Recall 0.857 0.765 0.608 0.411 0.198

F-Measure 0.399 0.460 0.490 0.459 0.302

MCC 0.455 0.488 0.497 0.464 0.354

LR model

OA 0.799 0.859 0.904 0.931 0.940

Precision 0.212 0.261 0.318 0.393 0.475

Recall 0.857 0.730 0.513 0.271 0.097

F-Measure 0.340 0.385 0.392 0.321 0.161

MCC 0.394 0.426 0.410 0.338 0.221
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the model59,60. The results from these two metrics show that the four-class model has better performance than 
the balanced samples on imbalanced sample sets.

The results of each model in Figs. 10 and 12 show that the four types of models can predict more landslide 
surfaces using the balanced sample set for LSM compared to the unbalanced sample set. At the same time, 
because more non-landslide units are predicted as landslide units, the FP number in the prediction results is 
greater than the number of true positives, and the OA and precision of the four types of models are ultimately 
lower than the results of other unbalanced sample sets. In addition, judging from the results of the SCPA of the 
verification sample set, the CNN, the C5.0, and the SVM models that predicted very high susceptibility results 
in the 1:1 sample set are not the highest. It can be noted that the maximum value of the CNN and SVM models 
appears in the 1:2 sample set, and it appears in the 1:16 sample set for the C5.0 model. It is worth noting that, 
in the SCPA, the result of very high LSZ of the CNN model drops from 4.06% in the 1:2 sample set to 0 in the 
1:4 sample set. This is because the CNN model quickly calculates the gradient of all parameters by determining 
the loss function between the real value and the predicted value. This algorithm is used to update the weights, 
and the gradient generated by the non-landslide samples in the 1:4 sample set is dominant, which increases the 
shared weights in the fully connected layer that are biased towards predicting non-landslide events, meaning 

Table 9.   Result of SCPA. Significant values are in Italic.

Classifiers Sample set Category of susceptibility 1:1 (%) 1:2 (%) 1:4 (%) 1:8 (%) 1:16 (%)

CNN model

Overall

Very low 0.24 0.46 1.22 3.60 4.13

Low 2.56 6.47 12.53 14.61 25.14

Medium 8.10 16.54 21.77 21.99 31.26

High 13.48 22.21 25.62 0 0

Very high 19.42 16.55 0 0 0

Validation

Very low 0.08 0.17 0.51 1.25 1.23

Low 1.14 2.38 3.72 3.15 5.80

Medium 2.83 4.76 4.93 2.43 7.97

High 2.96 4.36 4.62 0 0

Very high 3.39 4.06 0 0 0

C5.0 model

Overall

Very low 1.03 1.24 1.35 1.37 1.51

Low 9.31 17.50 8.06 18.93 28.25

Medium 7.98 10.49 17.65 25.71 54.00

High 11.88 23.43 29.12 49.34 69.56

Very high 47.81 59.78 76.42 87.12 95.60

Validation

Very low 1.00 1.19 1.28 1.24 1.33

Low 7.05 14.11 0.95 7.18 7.66

Medium 1.70 3.33 6.67 0.00 0.00

High 2.59 9.22 4.54 8.40 22.60

Very high 9.66 10.39 15.72 31.23 51.87

SVM model

Overall

Very low 0.51 0.73 1.27 2.25 4.19

Low 4.23 7.58 13.14 26.19 47.35

Medium 7.91 13.31 24.02 31.98 47.00

High 14.80 24.99 34.43 47.33 49.81

Very high 37.30 46.22 54.49 64.37 71.16

Validation

Very low 0.40 0.49 0.72 1.04 1.40

Low 2.18 3.44 4.70 7.06 14.65

Medium 3.67 5.05 6.90 9.39 11.23

High 4.74 5.96 8.58 10.30 3.76

Very high 8.25 10.54 10.40 9.07 7.79

LR model

Overall

Very low 0.26 0.55 1.11 1.96 3.33

Low 3.24 6.34 11.88 20.08 27.59

Medium 7.79 14.62 22.33 30.01 41.46

High 16.89 24.53 32.24 44.40 61.34

Very high 30.74 37.49 48.28 60.92 59.65

Validation

Very low 0.12 0.20 0.42 0.68 1.05

Low 1.26 2.38 3.99 6.31 8.63

Medium 2.65 4.84 6.66 8.90 6.05

High 5.26 7.38 8.70 5.49 2.49

Very high 7.60 7.09 4.75 1.87 0.00
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Figure 12.   LSZs based on (a) 1:1 sample set by CNN model, (b) 1:2 sample set by CNN model, (c) 1:4 sample 
set by CNN model, (d) 1:8 sample set by CNN model, (e) 1:16 sample set by CNN model, (f) 1:1 sample set by 
C5.0 model, (g)1:2 sample set by C5.0 model, (h) 1:4 sample set by C5.0 model, (i) 1:8 sample set by C5.0 model, 
(j) 1:16 sample set by C5.0 model, (k) 1:1 sample set by SVM model, (l) 1:2 sample set by SVM model, (m) 1:4 
sample set by SVM model, (n) 1:8 sample set by SVM model, (o) 1:16 sample set by SVM model, (p) 1:1 sample 
set by LR model, (q) 1:2 sample set by LR model, (r) 1:4 sample set by LR model, (s) 1:8 sample set by LR model, 
(t) 1:16 sample set by LR model (drawn with ArcGIS 10.8 software, and the URL is: https://​www.​esri.​com/​en-​us/​
arcgis/​about-​arcgis/​overv​iew).

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
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the CNN model begins to bias the prediction of non-landslide events. Although the maximum value of the LR 
model’s very high susceptibility appears in the 1:1 sample set, the LR model’s redundant prediction of landslides 
is significantly reduced. This is illustrated in Fig. 10 (q), where the results of the 1:2 and 1:1 sample set are com-
pared, and the sample set is reduced by only 0.51%. The above phenomenon occurs because the number of non-
landslide samples increases within a certain range of unbalanced sample sets so that the number of landslides 
predicted by models trained on the unbalanced sample set decreases, and the model over-predicts the landslide 
surface. With a certain degree of correction, the very high susceptibility becomes increasingly concentrated, and 
the values of the very high susceptibility increase.

To further analyze the impact of the unbalanced sample set on the LSM model and judge its fitting degree, 
the training accuracy and validation accuracy are added based on the reference OA22, as shown in Fig. 13.

According to Fig. 13, the validation accuracy of the CNN, SVM, and LR models is higher than the training 
accuracy from the 1:2 sample set, indicating that these three types of models have an ideal fitting effect in the 
1:2 sample set. The results of the C5.0 model are different from the other three types of models. Its training 
accuracy is always higher than the validation accuracy, and the values of both are higher, which indicates that the 
model is overfitting from the 1:1 sample set61. In this study, the fitting effect of the C5.0 model in the balanced 
and unbalanced sample sets is not ideal, so it is impossible to accurately analyze the impact of the unbalanced 
sample set on its accuracy.

The LSM results of the four types of models were evaluated by three methods: ROC curve and AUC value 
analysis, five statistical methods, and SCPA. For the C5.0 model, although the sample ratio is smaller, the results 
of the five statistical methods and the SCPA have better numerical results, and the C5.0 model is fitted in each 
sample set according to the previous article. The result of analysis shows that the C5.0 model is in a state of over-
fitting in this study. For the CNN model, SVM model and LR model, to objectively compare the results of the 
three LSM evaluation methods, a quantitative analysis method–the ranking system is used in Table 10, according 
to the research method used by Zorlu et al.62. This method selects the results of the ROC curve and AUC value 
analysis, five statistical methods, and SCPA are selected to rank in their categories. For example, in the results 
of an SVM model, if a sampling proportion has the largest AUC value, it receives a ranking score corresponding 
to the number of methods it sampled, i.e. 5, the second largest receives 4, and so on.

According to the results in Table 10, CNN model, SVM model and LR model all have the highest total rank 
in the 1:2 sample set with a score of 21. CNN model has the second highest total rank in the 1:1 sample set, 
while SVM model and LR model are in the 1:4 sample set. The optimal sample ratio interval can be selected 
by combining the highest and second highest in total rank, therefore, CNN model has the highest rank in the 
combination of 1:1 and 1:2 sample sets, and the SVM model and the LR model have the highest rank in the 
combination of 1:2 and 1:4 sample sets.

Figure 13.   Training accuracy and validation accuracy of (a) CNN model, (b) C5.0 model, (c) SVM model, (d) 
LR model.
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The above experimental results show that the results based on the unbalanced sample set are better than 
the results of the LSM based on the balanced sample set. The experimental results show that using unbalanced 
sample set for LSM modeling to obtain more accurate prediction results, the LSM results of the CNN model in 
the sample ratio of 1:1–1:2 and the SVM model and the LR model in the sample ratio of 1:2–1:4 is better than 
those of the balanced sample.

Conclusion
LSM using quantitative modeling is closely related to ML. This work analyzed the sample imbalance problem in 
ML to address unbalanced landslide samples in LSM in depth.

Previous research has demonstrated that models can learn from unbalanced landslide datasets. Zhang et al. 
found that a model trained with an unbalanced dataset obtained a predictive performance that was comparable to 
a classifier model trained with a sample-balanced dataset25. Researchers have traditionally employed a balanced 
sample set to train the model in LSM. Although this method could achieve high values in evaluation indicators, 
such as model precision, recall rate, and AUC value, fundamentally, there are many factors contributing to a good 
performance, such as using a more advanced model, adjusting and selecting the optimal parameters, or adding 
more LSM factors. In reality, because the unbalanced sample set in nature is widespread, more suitable for using 
unbalanced sample set for LSM modeling to obtain more accurate prediction results. The purpose of this study 
is to show that LSM based on balanced sample sets is one-sided and cannot improve the accuracy of the minority 
class (i.e., landslide data) by sacrificing the prediction accuracy of the majority class (i.e., non-landslide data). 
This is useful for LSM models to prevent overfitting and the general overestimation of hazards.

There are two main points worth considering in future research. Firstly, the combination of imbalance and 
sample size should be considered to explore its effect on LSM; secondly, the relationship between sample propor-
tion and LSM model fit should be studied to determine the sample proportion that can obtain the optimal fit.

Data availability
The public data and data processing platform can be downloaded directly through the link provided in Table 1. 
However, basic geographic data, basic geological data, and landslide distribution data are all confidential data 
in China. According to the requirements of relevant laws, these confidential data have been decrypted when we 
use them. Any researchers in related fields that need these decrypted data can contact the corresponding author 
to obtain them.
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