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A game theoretic approach 
to balance privacy risks and familial 
benefits
Jia Guo 1*, Ellen Wright Clayton 2,3,4, Murat Kantarcioglu 5, Yevgeniy Vorobeychik 6, 
Myrna Wooders 7, Zhiyu Wan 1,8, Zhijun Yin 1,8 & Bradley A. Malin 1,8,9

As recreational genomics continues to grow in its popularity, many people are afforded the 
opportunity to share their genomes in exchange for various services, including third-party 
interpretation (TPI) tools, to understand their predisposition to health problems and, based 
on genome similarity, to find extended family members. At the same time, these services have 
increasingly been reused by law enforcement to track down potential criminals through family 
members who disclose their genomic information. While it has been observed that many potential 
users shy away from such data sharing when they learn that their privacy cannot be assured, it 
remains unclear how potential users’ valuations of the service will affect a population’s behavior. 
In this paper, we present a game theoretic framework to model interdependent privacy challenges 
in genomic data sharing online. Through simulations, we find that in addition to the boundary 
cases when (1) no player and (2) every player joins, there exist pure-strategy Nash equilibria when 
a relatively small portion of players choose to join the genomic database. The result is consistent 
under different parametric settings. We further examine the stability of Nash equilibria and illustrate 
that the only equilibrium that is resistant to a random dropping of players is when all players join the 
genomic database. Finally, we show that when players consider the impact that their data sharing 
may have on their relatives, the only pure strategy Nash equilibria are when either no player or every 
player shares their genomic data.

Over the past decade, direct-to-consumer genetic testing (DTC-GT) has dramatically grown in its popularity. 
As the amount of personal genomic data has grown, numerous companies have emerged to provide third-
party interpretation (TPI) services. This is driven by the number of potential DTC-GT consumers—as of 2022, 
23andme and Ancestry DNA, the two largest personal genomics companies had over 12 million and 18 million 
consumers,  respectively1, 2. Of these, approximately 62% of DTC-GT consumers have sought interpretations of 
raw genomic data using TPI  services3. These services support a wide variety of applications, including, but not 
limited to, trait analysis, personalized nutrition and diet recommendations, genealogy and ethnicity analysis, 
and finding relatives. Though these services are exciting, they also pose risks to consumers that can limit their 
uptake and adoption of such services.

For example, in 2018, the FBI arrested a suspected serial murderer known as the Golden State  Killer4 by 
exploiting GEDMatch, a TPI website that, at that time, maintained a publicly available genomic database with 
approximately 1.5 million individuals’ DNA  profiles5. In this case, law enforcement officers uploaded crime-scene 
DNA to GEDMatch and found the suspect’s third cousin, suggested by similarity in their DNA. Law enforcement 
officers were then able to reconstruct a family tree, trace down the suspect, and confirm the suspect’s identity 
by another genomic test. While this case highlighted the forensic uses of personal genomic databases, it also 
raised the public’s concerns over privacy with respect to this long-range familial search  technique6. In addition, 
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Hazel et al. pointed out that forensic investigations leveraging publicly available genomic database are unfair, 
underregulated, and  haphazard7.

There has been a growing body of research responding to the case of the Golden State Killer. Edge and Coop, 
for instance, calculated the expected number of genetically detectable cousins one can find in the genomic 
 database8. Erlich et al. further analyzed the potential for identifying an individual through their genomic data 
using a technique similar to that adopted by law enforcement. They showed that at the time of their investiga-
tion in 2018, approximately 60% of individuals of European descent were at risk of being identified even if they 
were not in the genomic  database9, which exhibits the negative externalities incurred through online genomic 
data sharing. The model we introduce in this paper relies on their methods to estimate the probability of finding 
relatives and being re-identified.

Meanwhile, various studies have considered the extent to which current law and regulatory frameworks can 
address genomic privacy risks. Clayton et al. examined regulations that are applicable for genomic privacy and 
concluded that few, if any, are sufficient to protect genomic privacy  comprehensively10. More specifically, the 
regulation of TPI services remains uncertain. For example, Guerrini et al. analyzed the potential oversight for 
TPI services by four US agencies and showed that the main governance of TPI services are contracts between 
users and TPI service  providers11. However, when Hazel and Slobogin surveyed the privacy policies of DTC-
GT companies, they discovered that most fail to comply with the Fair Information Practice Principles and the 
Privacy Framework proposed by the U.S. Federal Trade  Commission12. In addition, Wan et al. appraised threats 
to genomic data privacy and existing sociotechnical safeguards and concluded that there is no simple solution to 
provide appropriate levels of genomic  privacy13. These studies highlight the lack of protection over the genomic 
privacy of DTC-GT and TPI consumers.

In recognition of such challenges, numerous surveys and vignette studies have been conducted to learn more 
about consumers’ behaviors, motivations, and concerns with regards to the adoption of TPI services. Nelson 
et al. found that approximately 84% of DTC consumers used at least one TPI  tool14. Wang et al. reported that 
users are highly motivated to use TPI services for ethnicity analysis and personal health  implications3. While 
the majority of respondents were satisfied with the interpretation they received, 35% of the respondents were 
confused by the interpretation  instead14. Besides, there are many ethical concerns on the TPI services, including 
inadequate informed consent, questionable clinical validity and utility, and lack of medical  supervision15. Many 
concerns on DTC-GT services also apply to TPI services, including privacy, emotional toll, and general misuse 
of their genomic data by the  company16. More specifically, Guerrini et al. probed public opinion on law enforce-
ment’s access to genetic genealogy databases and found that the majority of respondents supported the  access17. 
By contrast, Slobogin and Hazel also surveyed the public’s attitude, but observed that participants thought this 
kind of access  intrusive18. Given the variability in users’ attitudes towards the service, as well as the existence of 
the privacy paradox, which describes the dichotomies between privacy attitudes and actual  behavior19, 20, it is 
challenging to predict users’ behavior simply through surveys.

It should further be recognized that the aforementioned studies focus only on an individual’s perspective. 
However, there are circumstances under which an individual’s privacy depends not only on their own decision but 
also the decisions made by others. The interdependence of privacy has been studied by different research commu-
nities under different terminologies. Humbert et al. systematically summarized these research and categorized the 
interdependent privacy risks based on the data  types21. According to Humbert et al., the interdependent privacy 
risks are either caused by the direct sharing of information involves others or the sharing of information that is 
correlated between individuals. The two typical sources of correlation are (1) homophily for friends on either 
real-life social networks or online social networks and (2) genetic inheritance. To formalize the interdependence 
of privacy on online social network, researchers have considered game theoretic frameworks. Biczók and Chia 
first proposed an Interdependent Privacy Game (IPG) model to study the adoption of third-party tools in online 
social  networks22. The third-party tools often collect information that involves its users’ friends, which demon-
strates the first kind of cause for the interdependent privacy risks. Subsequently, Pu and Grossklags investigated 
the adoption of third-party applications and generated a scale-free network to approximate the structure of real 
social  networks23. Besides, Olteanu et al. investigated a more specific kind of interdependent privacy risks—the 
sharing of co-location information on online social network and took the time dimension into  account24.

Humbert and colleagues first studied the interdependence of privacy in genomic data  sharing25–28. Under the 
observation that genomic data is highly correlated among family members, an individual’s genomic data can be 
inferred through their family members. Humbert et al. quantified the genomic privacy  risks25, 27, and developed 
a tool for laymen to evaluate kin genomic privacy and required no real genomic  data28. Besides, Humbert et al. 
modeled the data sharing and management behaviors within a family via a game theoretic  framework26.

It is worth noticing that the aforementioned research focus on the risks that stem from value inference 
attacks on genome data. As the relationship between family members becomes distant, little information about 
the target’s SNP values will be revealed even the SNP values of his relatives have been observed. Thus, the value 
inference risks significantly decrease as the degree of relatedness decreases. However, with the development of 
long-range familial searches, an individual can be identified by distant family members that they do not neces-
sarily know. For example, the police have traced the Golden State Killer through 10 to 20 third-to-fourth cousins 
of him, most of whom he had probably never  met8. As the number of users of TPI services increases, people start 
to worry about the re-identification attack enabled by the sharing decisions made by distant relatives. Besides, 
in reality, most TPI websites, if not all, do not provide direct access to users’ genomic data but provide genetic 
matching results instead. Thus, the probability of the inference attacks goes low and the re-identification attacks 
become the primary concern for TPI websites. Hence, in this paper, we specifically focus on the re-identification 
risk, which is a main difference from Humbert et al.’s  model26.

In this paper, we introduce a game theoretic approach to characterize how potential users of TPI services 
may act as they weigh the tradeoff between benefits received from TPI with the privacy risks incurred in sharing 
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one’s data. In our model, both the benefits and privacy risks of each player in this game—that is, a potential user 
of TPI—depend on the population of other TPI users. Different from Hembert et al.’s  model26, we consider the 
data sharing behavior in the society instead of a single family. On one hand, we assume that the benefit of TPI 
comes from using this service to find relatives. While players in this game do not know the number of relatives 
they will find, they can consider the expected number based on genealogical information taken together with 
the population of other TPI users. Consequently, their benefit is an increasing function of the number of play-
ers who have chosen to use this service, which exhibits the first notable feature in our model, a network effect. 
On the other hand, privacy risks arise due to the possibility of the collection and use of the information in TPI 
by law enforcement or other third parties. Another notable feature of our model is the negative externality of 
participation decisions create for the privacy risks of others. In particular, the re-identification risks depend a 
great deal on a single player’s decision to join and whether one’s relatives used TPI services, as an individual can 
be identified by law enforcement by first identifying their relatives in TPI, as was indeed the case for the Golden 
State Killer and other recently solved cold cases. Nevertheless, a player can compute their privacy risks based on 
the number of other participants in the service as well. To the best of our knowledge, this is the first approach 
that captures these particular features of the decisions about whether or not to join TPI.

Through extensive simulations, we provide insights into user behavior in online genomic data sharing settings. 
We find that there exist three types of pure-strategy Nash equilibria in our model, which reflects what may hap-
pen in the real world: (1) no user shares genomic data with TPI (2) a small fraction of all potential users share, 
and (3) all users share. A Nash equilibrium is notable because it defines a solution to a game, such that no player 
has any incentives to change their strategy. The Nash equilibria provide us with intuitions into how the network 
effects and negative externalities shape players’ aggregated behaviors. We further show that our simulation results 
are consistent as we vary the settings of user parameters. Specifically, in our simulations, we vary users’ privacy 
preferences to be consistent with Westin’s distributions of privacy pragmatists, unconcerned, and fundamental-
ists in different  years29 and we find no significant differences in the simulation results. We observe that the only 
equilibrium that is resistant to a random dropping of players is when all players share their data. Finally, we 
observe that social welfare (the sum of player utilities) is negative in every pure strategy Nash equilibrium except 
when no one shares the data (which results in zero utility). This conclusion follows from our observation that, 
in our model, the amount of privacy risk (that is, the probability that an individual can be re-identified) rises 
quickly and approaches the maximum when only a small proportion of all players share their data. This is due 
predominantly to the negative externality arises from long-range familial genomic inference and, consequently, 
is nearly independent of an individual user’s decision.

Methods
In this section, we first introduce a game theoretic model of online genomic data sharing in a TPI service and 
then describe our approach to analyzing this model using simulation. Table 1 summarizes the notation used 
in this paper and, where relevant, the values of parameters used in our simulations. Among them, matching 
parameters are used when computing the probability of finding a relative, whereas model parameters are used 
when describing the game-theoretic model.

Table 1.  Matching parameters and model parameters used in this paper.

Type Notations Definition Value

Matching parameters

N0 Number of couples from current generation 90,000,000

r Average number of children per couple 2.5

L Genome length (in Morgans) 35

m Minimum length of identity-by-descent (IBD) segments in order to be detected 0.06

ns Number of IBD segments required to declare a match 2

nu Minimum number of detected matches required to declare success of identification 2

gmaxi Relationships that can help to identify a target 5

gmaxc Relationships to consider when finding relatives of a target 3

Model parameters

P The set of players

si Player i’s strategy

s−i Strategies of all players except i

bi Player i’s valuation for finding a relative in the database

vi Player i’s net valuation for other services provided by TPI services

ci Player i’s valuation for the risk of being identified

K Number of players who use the TPI services

K−i Number of players other than i use TPI services

T A collection of types of players

t A player type, t ∈ T

nt Number of types in our simulation
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A game-theoretic model of sharing genomic data with a TPI service. The TPI genomic data shar-
ing game has a set P of p players. We assume the players are potential users of TPI services. We denote the deci-
sion by player i on whether to participate in the TPI service by a binary strategy si ∈ {0, 1} , with si = 1 indicating 
the decision to share genomic data with TPI website, and si = 0 indicating the decision to not share. We use s 
to denote a profile of strategies, or strategy profile, of all players, while s−i is the collection of strategies of players 
other than i.

There are three components in a player’s utility function. The first component is a player i’s net valuation vi 
for the TPI service, which is independent of others’ decisions. vi may be positive or negative, as potential users 
may find a service burdensome, or there may be a cost for using the  service30.

The second component is the utility gained from finding relatives in the database. Let bi denote the value 
of finding a relative in the database. If we use P(relative) to denote the probability that a randomly selected 
individual in the database is a relative of the player i, then the expected number of relatives in the database is 
K−i · P(relative) , where K−i =

∑

j∈P\{i} sj denotes the number of players other than i who choose to join the 
database. Consequently, this component of the utility function can be formally represented as bisiK−i · P(relative). 
We will discuss how to approximate P(relative) shortly.

The third component of the utility function captures the costs incurred due to privacy risk that arises when 
either player i or i’s relatives are in the database. We associate this privacy risk with a cost ci to player i and 
P(identified|si ,K−i) , the probability that i is identified (e.g., by law enforcement) when K−i others have joined 
the database. Now, if si = 1 , which means that player i shares genomic data, they can be identified with prob-
ability 1, and the associated cost is then ci . Crucially, however, there is a probability that i can be identified even if 
they choose not to join the database ( si = 0 ), but entirely as a result of the presence of their relatives in it. We use 
P(identified|nu,K−i) to denote the probability that i is identified if they do not join but K−i others do, where nu 
represents the number of relatives required for a successful identification. The calculation of P(identified|nu,K−i) 
will also be discussed later.

Putting everything together, the utility function of player i is

Since this utility function only depends on the number of players other than i who join TPI, K−i , we also denote 
it by Ui(si ,K−i).

Discounting benefits. We also consider the situation under which the benefits from finding relatives are dis-
counting as the relatives become more distant. A discounting parameter γ is added to each player’s valuation of 
the benefits. As demonstrated in Fig. 1, the benefits for a player i to find their (g − 1)th cousins or ( (g − 2)th ) 
cousins once removed are γ g−1bi . For example, the benefit from finding a sibling is bi , and the benefit from find-
ing a first cousin, aunt, or uncle is γ bi . To sum up, if we consider a player will benefit from finding up to their 
second cousins, then the second component in the utility function becomes

 

Types of players. In our model, we consider millions of players, which yields games that are extremely large. 
To make the resulting games feasible to analyze, we introduce an additional structure. Specifically, we assume 
that utility functions of players can be grouped into a small collection of types T and associate each player i with 
a type t, which is characterized by a set of parameters (vt , bt , ct) . Consequently, the utility function of a player i 
with type t becomes

(1)Ui(si , s−i) = visi + bisiK−i · P(relative)− ci((1− si) · P(identified|nu,K−i)+ si).

(2)
siK−i · (biP(siblings)+ γ biP(1st cousin)+ γ biP(aunt/uncle)

+ γ 2
biP(2nd cousin)+ γ 2

biP(1st cousin once removed))

(3)Uit(si ,K−i) = vt si + btsiK−i · P(relative)− ct((1− si) · P(identified|nu,K−i)+ si).

Figure 1.  An illustration of discounting benefits for different degrees of relatedness between players. 1C: first 
cousin; 1C1R: first cousin once removed, and so forth. Relationships shaded in blue are considered relevant 
when searching for relatives.
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Altruistic players. In addition to modeling players as being purely self-interested, we consider a variation with 
players who are altruistic. To do so, we extend the utility model to include a fourth altruistic component, such 
that a player considers the impact that their joining the TPI service has on their relatives.

We represent the set of family members for player i who are in and out of the database as Piin and Piout , 
respectively. When si = 1 , the utility for each player j ∈ Piin (i.e., each family member of i who is in the database) 
increases by bj because they can find one more relative. The utility for each player j ∈ Piout , however, decreases, 
as this individual’s probability of being identified increases. Before player i joins, it requires nu relatives in the 
database for them to be identified. After player i joins, only nu − 1 other relatives are required to identify them. 
Thus, the utility function for an altruistic player is:

where β ∈ (0, 1) is relative weight of the altruistic portion of this utility function.

Social welfare. To evaluate the efficiency of Nash equilibria, we calculate the social welfare associated with each 
Nash equilibrium. In our model, we define social welfare in equilibrium s as W(s) =

∑

i Ui(s) , or the sum of 
utilities of all players.

Computing the probability of finding a relative. Our calculation of P(relative) follows the method 
proposed by Erlich et al.9. The assumptions we rely upon during the calculation are summarized as follows: 

 1. We do not consider the influence of half-siblings or half-cousins.
 2. We assume generations are discrete and non-overlapping. For individuals in the current generation, their 

parents are chosen via random sampling with replacement from the previous generation.
 3. There are N0 couples in the current generation.
 4. Each couple has r children ( r > 2 in order to capture the increase in population size). At g generations ago, 

the number of couples Ng = N0 · (r/2)
−g.

 5. Current population contains only two generations. As shown in Fig. 2, the possible relationships between 
players are either cousins or once-removed cousins.

 6. We do not consider the probability of finding direct ancestors, such as parents and grandparents, since 
in reality, most people know their direct ancestors, and usually can be identified with certainty through 
direct ancestors.

 7. Players will not benefit from finding relatives in the database who share ancestral couples with them more 
than gmaxc generations ago (relatives who are more distant than (gmaxc − 1)th cousins) since they are dis-
tantly related.

 8. We find relatives of a target by comparing the latter’s genome with all individuals in the database and 
identify identity-by-descent (IBD) segments, which are segments of DNA shared by people with common 
ancestors. We assume s IBD segments are needed to declare that we have found a relative of a target. We 
assume an IBD segment needs to be of length ≥ m (in Morgan, abbreviated M) to be detected.

 9. To have sufficient information to identify the target, we need to find at least nu relatives who share an 
ancestral couple with the target 1 ≤ g ≤ gmaxi generations ago.

(4)

Ualtruistic
it (si ,K−i) = Uit(si ,K−i)+ β · si





�

j∈Piin

bj −
�

l∈Piout

cl · (P(identified|nu − 1,K−i)− P(identified|nu,K−i))



,

Figure 2.  The familial relationships considered in the interdependent privacy model. We aim to uncover 
relatives of a targeted individual (shaded in green). 1C: first cousin; 1C1R: first cousin once removed, and so 
forth. Relationships shaded in blue are considered relevant when searching for relatives, while relationships 
shaded in red are considered when attempting to identify the target.
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 10. Individuals are diploid (having two sets of chromosomes, one from each parent), and only autosomal 
genomes are considered (i.e., no sex chromosome is considered).

As explained in Assumption 7, P(relative) depends on gmaxc . We set gmaxc = 3 in our model. As shown in 
Fig. 2, the relationships shaded in blue are considered when computing a player’s utility of finding a relative. 
Since we assume there are two generations, P(relative) = P(a player is from the current generation) ·

∑gmaxc

g=1 P(

the player is a (g − 1)th  cousin of the target)+ P( a player is from the previous generation)· 
∑gmaxc−1

g=1 P(the player 
is a (g − 1)th cousin once removed of the target). As mentioned in Assumption 4, if the previous generation 
has a population size of N1 , then size of current generation, N0 = N1 · r/2 . Thus, P(a player is from the current 
generation) = r/2·N1

r/2·N1+N1
 , and P(a player is from the previous generation) = N1

r/2·N1+N1
.

According to Erlich et al.’s  model9, P
(

(g − 1)th cousin
)

 and P((g − 1)th  cousin once removed) can be cal-
culated given N0 and several additional matching parameters, as shown in Eqs. (5) and (6). In Eq. (5), the mul-
tiplicand calculates the probability that a player i and any other player from the same generation in the database 
first shares an ancestral couple g generations ago. It equals the probability that the two players do not share any 
ancestral couple from one generation ago to g − 1 generations ago times the probability that the two players 
share an ancestral couple g generations ago. As mentioned in Assumption 4, the number of couples at g genera-
tions ago is Ng = N0 · (r/2)

−g . And the two players each has 2g−1 ancestral couples g generations ago. Assuming 
2g ≪ Ng , the probability that two players from the same generation share an ancestral couple g generations ago 
is approximately 2

g−12g−1

Ng
=

22g−2

Ng
 . For every 1 ≤ g ′ ≤ g − 1 , the probability that the two players do not share any 

ancestral couple g ′ generations ago is 1− 22g
′
−2

Ng ′
 . Thus, the probability that a player i and any other player do not 

share any ancestral couple from g − 1 generations ago to 1 generation is 
∏g−1

g
′

=1

(

1− 22g
′

−2

Ng ′ )

)

.

The multiplier in Eq. (5) calculates the probability that player i and any other player share at least ns IBD 
segments if they first share an ancestral couple g generations ago. We assume they must share at least ns IBD 
segments in order to be successfully detected as relatives. Thus, we need to calculate the probabilities that they 
share j IBD segments, where 0 ≤ j ≤ ns − 1 , and sum them up. If two players first share an ancestral couple g 
generations ago, they have approximately 2Lg + 22 genomic blocks to inherit independently, and the probability 
that each genomic block contains an IBD segment is e

−2mg

22g−2  (please refer to Erlich et al.’s paper for a more detailed 
discussion on that). We can assume the number of IBD segments follows Binomial distribution. Thus, the prob-
ability that player i and any other player share j IBD segments is Bin

(

j; 2Lg+ 22, e
−2mg

22g−2

)

 , where Bin() represents 
the probability mass function of a binomial distribution.

In Eq. (6), the multiplicand and multiplier are similar to Eq. (5). But as player i and the other player are cousins 
once removed and we assume player i is always from the later generation, we assume their shared ancestral couple 
is g + 1 generations from player i and g generations from the other player. g + 1 generations ago, the population 
size is Ng+1 . The other player, who is from the previous generation, has 2g−1 ancestral couples g generations ago, 
and player i has 2g ancestral couples g + 1 generations ago. Thus, the probability that they share an ancestral 
couple g + 1 generations from the current generation ago is 2

2g−1

Ng+1
.

Given the values of matching parameters and g, P
(

(g − 1)th cousin
)

 and P((g − 1)th cousin once removed) 
can be considered as constants in the following computations.

Computing the probability of being identified. P(identified|nu,K−i) denotes the probability that a 
player i can be identified through other players that use TPI services, where K−i is the number of other play-
ers using TPI services, and nu is the number of relatives of player i required to be in the database in order 
to successfully identify player i. Our calculation of P(identified|nu,K−i) also follows the method introduced 
by Erlich et al.9. When nu matches are required for a successful identification, the probability of being identi-
fied for player i equals one minus the probability that less than nu − 1 relatives are found from the current 
and the previous generation. Thus, we need to calculate the probability that k relatives of player i are found 
in the database, where 0 ≤ k ≤ nu − 1 . Among the k relatives found, we need to calculate the probability that 
k0 of them are (g − 1)th cousins of the target, while k − k0 of them are (g − 1)th cousins once removed of the 
target, where 0 ≤ k0 ≤ k . As we assume the target player is always from the current generation, his cousins 
are all from the current generation and his cousins once removed are all from the previous generation. We 
denote the number of players in the database from the current generation by K0 and we denote the number 
of players in the database from the previous generation by K1 , then we have K−i = K0 + K1 . As we assume 
each couple has r children and people from the two generations have a equal probability to use TPI services, 

(5)P
�

(g − 1)th cousin
�

=





g−1
�

g
′

=1

�

1−
22g

′

−2

N(g
′

)

�

22g−2

N(g)



 ·



1−

ns−1
�

j=0

Bin

�

j; 2Lg+ 22,
e−2mg

22g−2

�





(6)

P
�

(g − 1)th cousin once removed
�

=





g−1
�

g
′

=1

�

1−
22g

′

−1

N(g
′

+ 1)

�

22g−1

N(g + 1)



 ·



1−

ns−1
�

j=0

Bin

�

j; 2Lg+ 22,
e−2mg

22g−2

�
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we have K0 = K1 · r/2 . Thus, we have K0 =
r/2

1+r/2 · K−i and K1 =
1

1+r/2 · K−i . We assume players can not be 
identified through relatives who are more distant than (gmaxi − 1)th cousins. In our model, we set gmaxi = 5 . 
As shown in Fig. 2, the relationships shaded in red are considered when computing a player’s probability of 
being identified. Thus, the probability that any other player from the current generation is a cousin of the tar-
get player i is 

∑gmaxi

g=1 P((g − 1)th cousin)) , and the probability that any player from the previous generation is 
a cousin once removed of the target player i is 

∑gmaxi−1
g=1 P((g − 1)th cousin once removed) . When the num-

ber of players is sufficiently large, we can assume the number of relatives of a target player i in the database 
follows Binomial distribution. Thus, the probability that the target player i has k0 cousins in the database is 
Bin(k0;K0,

∑gmaxi

g=1 P((g − 1)th cousin)) . Similarly, the probability that the target player i has k − k0 cousins once 
removed in the database is Bin(k − k0;K1,

∑gmaxi−1
g=1 P((g − 1)th cousin once removed)) . To sum everything up, 

we have

Computing all pure-strategy Nash equilibria. Our analysis of the game defined above hinges on the 
ability to compute Nash equilibria in this game. We focus on pure-strategy Nash equilibria (PSNE). Formally, a 
strategy profile s is a pure-strategy Nash equilibrium if for all i ∈ P , Ui(s) ≥ Ui(1− si , s−i) (note that in this defi-
nition we take advantage of the fact that si ∈ {0, 1} ). Additionally, we take advantage of the added type structure 
of our game. We say that a strategy profile s is a type-symmetric Nash equilibrium if it is a Nash equilibrium and 
for all types t ∈ T and all players i and j with type t, si = sj . In other words, a type-symmetric equilibrium is a 
Nash equilibrium in which all players with the same type play the same strategy.

To calculate PSNE in our simulations, we follow the method proposed by Daskalakis and  Papadimitriou31 and 
tailor it for the binary strategy space. In this method, since the number of pure strategy profiles can be extremely 
large, their algorithm exhaustively searches over the partitions of strategies and examines if the partition will lead 
to a Nash equilibrium. A partition represents the number of players who choose each strategy. When the strategy 
space is binary, we can simply search among the possible number of players who choose to use TPI services.

Specifically, in our model, p is on the order of hundreds of millions and it is extremely time consuming to 
search every possible K between 0 and p. However, below (in Lemma 2) we show that it will suffice to restrict 
attention to TSPNE. This reduces the search space dramatically. When there are nt types of players and each type 
contains the same number of players, the search space reduces from p+ 1 to nt + 1 . The modified algorithm is 
shown in Algorithm 1. The correctness of Algorithm 1 is proved below.

(7)

P(identified|nu,K−i) = 1−

nu−1
∑

k=0

k
∑

k0=0

Bin(k0;K0,

gmaxi
∑

g=1

P((g − 1)th cousin))

· Bin(k − k0;K1,

gmaxi−1
∑

g=1

P((g − 1)th cousin once removed))
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Lemma 1 Suppose that for a player i, si = 1 is a best response to K−i = k , where k is a non-negative integer. Then 
si = 1 is a strict best response if K−i = k′ for any k′ > k.

Proof Define �U(k) = Ui(1, k)− Ui(0, k) . Then, �U(k) = vi + bi · k · P(relative)+ ci · P(identified|k)− ci . 
P(identified|k) is increasing in k, and bi · k · P(relative) is linear in k and, thus, strictly increasing in k. Conse-
quently, �U(k) is strictly increasing in k.

Now, suppose that for some k, si = 1 is a best response, which means �U(k) ≥ 0 . Then, since �U(k) is strictly 
increasing in k, for any k′ > k , �U(k′) > 0 and, consequently, si = 1 is a strict best response.   �

Lemma 2 Every pure-strategy Nash equilibrium s must be type-symmetric.

Proof We prove by contradiction. Let k be the number of players joining TPI in a PSNE s, and con-
sider two players i and j who share the same type t (and, consequently, the same utility function). Let 
�Uit(k) = Uit(1, k)− Uit(0, k) ≡ �Ut(k) , since this is independent of i. Suppose that si = 1 and sj = 0 . Since 
s is a PSNE, si = 1 means that �Ut(k − 1) ≥ 0 . By Lemma 1, this means that �Ut(k) > 0 , which means that j’s 
best response is sj = 1 , a contradiction.   �

Lemma 3 For any k, there is at most one pure-strategy Nash equilibrium s with 
∑

i si = k.

Proof We prove by contradiction. Consider two type-symmetric PSNE s and s′ with 
∑

i si =
∑

i s
′

i = k and s  = s′ . 
This means that there exist types t and t ′ where sit = 1 and sjt′ = 0 , while s′it = 0 and s′jt′ = 1 . Since sit = 1 when 
k − 1 other players join, and k players other than i join in s′ , by Lemma 1, it must be that in equilibrium, s′it = 1 , 
a contradiction.   �

Theorem 1 Algorithm 1 returns all pure-strategy Nash equilibria.

Proof Algorithm 1 considers all possible values of k that are viable for type-symmetric pure-strategy Nash 
equilibria. Since by Lemma 3, each k is associated with at most one PSNE, it suffices to show two things for an 
arbitrary k: 
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1. If k is added to the set of Nash equilibria by the algorithm (when N = k ), it is indeed a Nash equilibrium, 
and

2. If the algorithm does not add k to the set of Nash equilibria, there does not exist a Nash equilibrium s with 
∑

i si = k.

The first condition is that the algorithm is sound, while the second condition is that it is complete.
We start with soundness (condition 1). Suppose that N = k . Since N is only increased if each player i of a 

particular type t prefers si = 1 (perhaps weakly) to si = 0 when k − 1 others join, the only concern is the pos-
sibility that some types prefer si = 0 if k − 1 others joint, but si = 1 when k others join. However, this is ruled out 
by the condition that Uit(0, kj) < Uit(1, kj) and Uit(1, kj − 1) < Uit(0, kj − 1) (“if ” statement in line 8), which 
explicitly concludes that in such a case k cannot be an equilibrium.

Next, we consider completeness (condition 2). Suppose that for a given k, there is a PSNE s with 
∑

i si = k . We 
now show that the algorithm will necessarily add it to the set of Nash equilibria. First, note that if there is such a 
s, by Lemma 2 it must be type-symmetric and by Lemma 3 it must be unique. Thus, for each player i in each type 
t, it must be the case that if sit = 1 , then Uit(1, k − 1) ≥ Uit(0, k − 1) , and if sit = 0 , then Uit(0, k) ≥ Uit(1, k) . 
Algorithm 1 in constructing a profile s′ effectively assigns s′it = 1 for any i, t with Uit(1, k − 1) ≥ Uit(0, k − 1) , 
and assigns s′it = 0 whenever Uit(1, k − 1) < Uit(0, k − 1) and Uit(0, k) ≥ Uit(1, k) (since the alternative is ruled 
out by the “if ” statement on line 8). Consequently, the only potential issue is that Algorithm 1 yields N > k , 
assigning s′it = 1 to types t for which sit = 0 in the actual unique PSNE s. Let T ′ be the set of such types. Since s is 
a PSNE, it must be the case that for each t ∈ T ′ and any individual with type t, both Uit(1, k − 1) ≥ Uit(0, k − 1) 
and Uit(0, k) ≥ Uit(1, k) hold, that is si = 1 is a best response when k − 1 others join, and si = 0 is a best response 
when k others join. However, this is ruled out by Lemma 1.   �

Evaluating stability of Nash equilibria. In addition to the existence and distribution of Nash equilibria, 
we are interested in determining which Nash equilibrium is more stable. The notion of stability we adopt here is 
robustness to small perturbations of player strategies. Precisely, let s be a TSPNE, and suppose we flip the strate-
gies of players of r · nt randomly chosen types, resulting in a new strategy profile s′ . Next, consider best response 
dynamics (BRD) that begins at s′ , defined as follows. In iteration l = 0 , let sl = s′ . Then in each iteration l > 0 , 
for each type t and player i with this type, set si,t,l to be the best response to sl−1 . After a finite number of itera-
tions, this process either reaches a fixed point s∞ , or a cycle C (returning to a previously visited profile sl for some 
iteration l). Let BRD(s) returns either s∞ or C. We can now define stability fully formally.

Definition 1 A strategy profile s is r-stable if s =BRD(s′ ), where s′ flips the player strategies in s of r · nt randomly 
selected types. It is unstable otherwise.

Typically, we will simply refer to profiles as stable or unstable, with r specified in context.

Results
Simulation setup. We performed three sets of simulations. In the first set of simulations, we aim to approx-
imate the real-world scenario and learn about whether there exists a Nash equilibrium. Furthermore, in the 
event that there are Nash equilibria, we aim to determine how they are distributed. In these simulations, we set 
p equal to 32.4 million, as in reality, only a small portion of people have gotten their genomic data tested and 
ready to share. We set the number of players in the game to be 10% of the population, which approaches the 
current number of DTC-GT customers. According to the most recent statistics, there are more than 26 million 
people who have taken at-home genomic tests by the start of  201932. In addition, we set nt = 18,000 . The value 
of nt in these simulations is determined by the pilot experiments we conducted under each parametric setting. 
We examined how many Nash equilibria are captured under different values of nt . If nt is too small, it can not 
approximate the real-world scenario well, which may miss possible Nash equilibria. However, the computing of 
Nash equilibria becomes more time-consuming as nt increases. When evaluating the stability of a Nash equilib-
rium, we set r = 0.05 in our simulations.

Regarding the user parameters, we set vi = 0 for all types of players and bi to be uniformly distributed between 
0 and 1, while the distribution of ci follows Westin’s privacy  segmentation33. Specifically, Westin categorized con-
sumers as “privacy fundamentalists”, “privacy pragmatists”, and “privacy unconcerned” based on their privacy pref-
erences. The fundamentalists value privacy most while the unconcerned care little about privacy protection. The 
pragmatists make their decisions based on the privacy risk and the value of their information in different scenar-
ios. Though there are a number of critiques of Westin’s segmentation, it is widely adopted when evaluating users’ 
privacy  attitudes34, 35. Since surveys from different years yield different distributions of Westin’s  categories33,36,  

Table 2.  Distribution of Westin’s categories for various years.

Year Fundamentalist (%) Pragmatist Unconcerned

2014 41 52 7

2003 26 64 10

2001 34 58 8



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6932  | https://doi.org/10.1038/s41598-023-33177-0

www.nature.com/scientificreports/

we aim to learn if the change in privacy preferences over time affects the distribution of Nash equilibrium out-
comes. We use the statistics on Westin’s categories summarized by Woodruff et al.29 and conduct 50 simulations 
for distribution of Westin’s categories in 2001, 2003 and 2014, respectively, as summarized in Table 2. As there 
were three surveys conducted in 2014, we calculate the average distribution of Westin’s categories for that year. 
We uniformly distributed ci between 0 and 20 for unconcerned, 20 and 80 for pragmatists, and 80 and 100 for 
fundamentalists. For example, according to statistics in 2014, 41% of players are privacy fundamentalists, then we 
set 0.41 · nt types of players to be privacy fundamentalists, and their ci values are uniformly distributed between 
80 and 100. This distribution was selected based on the expectation that fundamentalists and unconcerned tend 
to have strong preferences and, thus, have more extreme ci values. Moreover, the ci values of privacy pragmatists 
should have a wider range as their preference can change among different scenarios.

In the above simulations, we assume players’ valuations for finding a relative are always bi . We also considered 
the situation under which players’ valuations for finding a relative decrease as the relatives found become more 
distant. In the following experiment, we examine how the value of discounting factor γ influences the distribu-
tion of Nash Equilibria. We set vi = 0 for all types of players and bi to be uniformly distributed between 0 and 
1. We let the distribution of ci follow the distribution of Westin’s categories in 2014. We conduct 50 simulations 
respectively for γ = 0.9 , γ = 0.5 , and γ = 0.1 , with nt = 18,000.

In the second set of simulations, we examine the influence of user parameters on the distribution of Nash 
equilibria by varying the distribution of vi , bi , and ci respectively. For these simulations, we set p equal 324 mil-
lion to approximate the size of U.S. population. This is because with the existence of long-range familial search, 
everyone in the U.S. faces the risk of being identified through their relatives, including people who do not use 
TPI services and even people who do not get their genomic data tested. In other words, regardless of whether 
people realize the risk or not, they become players in the game. Therefore, we consider the players of this game 
to contain the entire population in the U.S. and set the number of players to be 324 million. It is worth mention-
ing that the change in number of players does not affect P(relative) because the calculation of P(relative) only 
depends on N0 and other preset matching parameters. In addition, we set nt = 6000 in these simulations.

To conduct the simulation, we first assume ci is uniformly distributed between 0 and max(ci) and vary the value 
of max(ci) while keeping bi = 1 and vi = 0 for all types of players. We choose max(ci) ∈ {1, 10, 50, 100, 500, 1000} . 
Next, we set ci = 50 and vi = 0 for all types of players, and assume bi is uniformly distributed between 0 
and max(bi) and vary max(bi) where max(bi) ∈ {0.1, 0.5, 1, 5, 10, 50} . Finally, we set bi = 0 and ci = 50 
for all players, and assume vi is uniformly distributed between min(vi) and min(vi)+ 100 . We choose 
min(vi) ∈ {−100,−50,−20,−10, 0} . We conduct 10 simulations for each value of max(ci) , max(bi) , and min(vi).

In the third set of simulations, we adopt an uninformative parameter setting and aim to learn the distribution 
of Nash equilibrium when there is no prior knowledge on user preferences. More details on simulation setup 
and simulation results will be introduced in Appendix.

Distribution of Nash equilibrium outcomes. Figure  3 depicts the Nash equilibria observed in the 
experiments. One noteworthy observation is that every simulation includes both the “no one joins” ( K = 0 ) 
and “all join” ( K = p ) extremes, as illustrated by the two green lines in Fig. 3a. Parametric variation appears 
to have no impact on the existence of the two extreme equilibria. K = 0 is an equilibrium because in this case 
players there are neither network benefits (since there is no chance of finding relatives in an empty TPI service), 
nor negative network externalities due to privacy risks from relatives. Since vi = 0 in our simulations, there is 
no benefit to joining the service in this case. When K = p , on the other hand, an individual’s decision to join 
the service has minimal marginal impact on their privacy risks, since it is essentially 1 for sufficiently large p; 
consequently, marginal cost of joining is negligible, whereas benefit is significant, since one can find relatives by 
joining TPI services.

(a) (b)

Figure 3.  Simulation results when the parametric setting follows Westin’s privacy segmentation. (a) The 
distribution of Nash equilibria when the distribution of ci follows Westin’s categories for different years; (b) 
Interior Nash equilibria found in 50 simulations under different parametric settings.
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In addition to the two extreme equilibria, we also identify a number of interior Nash equilibria, that is, 
equilibria in which the number of players joining TPI services is 0 < K < p . They are illustrated by the dots 
of different colors in Fig. 3a. The simulations that do not yield interior Nash Equilibria have been omitted. It is 
noteworthy that all interior Nash equilibria that we identify involve approximately 3 million players joining TPI, 
or approximately 10% of the total number of players. Figure 3b offers finer-grained observations of how interior 
equilibria are distributed for different parameters corresponding to the settings of Westin’s privacy segmenta-
tion for 2001, 2003, and 2014. We can see that there is not a great deal of variation in the number of players who 
choose to join the TPI services over time.

Social welfare. Next we consider the social welfare of the game for the different pure strategy equilibria. 
Since different set of simulations are based on different parametric settings, the values of social welfare are 
not comparable among different set of simulations. Figure 4 presents the values of social welfare for the Nash 
equilibria found in different simulations. Since social welfare when K = 0 is always 0, we do not include this 
point in the figure. Surprisingly, we can observe that social welfare at the interior Nash equilibria ( 0 < K < p ) is 
dominated by social welfare of the two extreme equilibria, with K = 0 having far higher welfare than all others. 
This is because the benefit term in each player’s utility functions is linear in K−i , while the cost term increases 
rapidly in K−i . The negative externality due to others joining approaching its maximum value with a relatively 
small number of joining players. Specifically, in our model, when K equals three million, the probability of being 
identified is 97.6% for a player who is not in the database. Thus, the privacy loss for this player, ci · P(identified) is 
high and close to the maximum privacy loss. On the other hand, after this point, the marginal benefits of joining 

(a) (b) (c)

Figure 4.  Social welfare associated with Nash equilibria found in different sets of simulations. We do not 
include the point when K = 0 in the figure, as the social welfare is always 0. K represents the number of players 
who use the TPI services. The social welfare for the extreme Nash equilibrium K = p is always greater than the 
social welfare for interior Nash equilibria. The equilibrium in which no one joins ( K = 0 ), however, always has 
the highest social welfare.

Figure 5.  The number of players who choose to join the database (N in Algorithm 1) as a function of kj . It can 
be seen that N fluctuates as kj increases. This occurs because players consider the utilities of their relatives.
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rise faster than marginal cost as K increases, so that the extreme equilibrium at K = p yields higher social utility 
than all interior equilibria.

Stability. Finally, our stability analysis reveals that both of the extreme equilibria are stable. In contrast, we 
observe that all interior equilibria are unstable. This is somewhat surprising, and indicates that the interior equi-
libria are unlikely to be persistent phenomena of the system.

Altruistic players. In the variation of our model in which the players are altruistic, we find that all interior 
equilibria are eliminated entirely, and we only observe the two extreme equilibria. To gain intuition into this 
result, Fig. 5 illustrates the values of kj and N in Algorithm 1 from one simulation where the parametric set-
ting follows the distribution of Westin categories in 2001. It can be seen that N varies with changes in kj . This is 
because, in our simulation, we randomly select a player’s relatives. Thus, when a player considers their relatives’ 
utilities, their own utility fluctuates because their relatives have different values of bi and ci . As a result of these 
fluctuations, finding kj with N = kj becomes quite unlikely.

Additionally, we observe that N increases quickly and reaches p under a small kj (when kj = 6, 489, 000 in 
one simulation). Consequently, when players are altruistic, as long as there are around 6,489,000 players in the 
database, the best strategy for all players is to join the database.

Discounting benefits. We consider the situation in which a player’s valuation for the benefit of finding 
a relative discounts as the degree of relatedness decreases. While the value of γ does not affect the existence of 
two extreme Nash Equilibria, K = 0 and K = p , it affects the distribution of interior Nash Equilibria. Figure 6 
presents the distribution of Nash Equilibria under different values of γ . From it, we observe that as γ decreases, 
the value of K that leads to a Nash Equilibrium increases. This is because as γ decreases, with the same distribu-
tion of bi and ci , players’ valuations for the benefits from finding relatives decrease. Thus, a Nash Equilibrium 
requires more players to be in the database so that the network effect balances against the privacy risks. Besides, 
it is noteworthy that even with γ = 0.1 , the number of players who choose to use TPI services in an interior 
Nash Equilibrium is still small compared with the total number of players (around 15%). Thus, our main result 
is robust against the changes in the value of γ.

Figure 6.  Changes in the distribution of interior Nash Equilibria as the value of γ changes. As γ increases, the 
value of K that leads to a Nash Equilibrium decreases.

Figure 7.  Change in Nash equilibrium with respect to max(ci) . The increase in max(ci) pushes the value of K 
that leads to Nash equilibrium from 0 to 0.4 million to around 2 million.



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6932  | https://doi.org/10.1038/s41598-023-33177-0

www.nature.com/scientificreports/

Change in user parameters. Figure  7 shows the change in the distribution of inte-
rior PSNE as a function of max(ci) . It can be seen that, as max(ci) increases, interior Nash equi-
libria tend to occur at higher values of K. We know a player will choose to join the database when 
Ui(1, k)− Ui(0, k) = vi + bi · k · P(relative)+ ci · P(identified|k)− ci ≥ 0 . Thus, when ci values of players are 
relatively lower, they tend to join the database with a small value of K−i , and the interior Nash equilibrium is 
quickly reached. However, when ci values are higher, players tend to join the database with more other players in 
the database. Thus, the interior Nash equilibrium will happen with a higher K value.

For the simulations where we vary max(bi) and min(vi) , we find no interior Nash equilibria.

Discussion
This investigation yields three main findings. First, we provide insights into the existence of Nash equilibria in 
the model of genomic data sharing through simulations based on a game-theoretic framework. First, we find that 
both extreme situations where either everyone, or no one, joins TPI, constitute Nash equilibrium outcomes in 
every setting we considered. In addition, we observe that interior equilibria tend to occur when the number of 
users of TPI services is a small fraction of the US population—specifically, around 3 million. While many factors 
can affect the number of users of such services, in our model, this appears to be mainly caused by the negative 
externality incurred. Specifically, as the number of other players who use TPI services grows, the negative exter-
nality quickly increases to a point where players suffer from the same amount of risk they would incur if they 
fail to use such services. In such a situation, it is clear that the best strategy for potential users is to contribute 
their genomic data and join TPI. Second, we observe that the optimal Nash equilibrium is realized when no one 
uses TPI services. Notably, when everyone is in the system uses TPI services, the social welfare is still negative. 
This, too, is a consequence of the negative externality of players joining the service in leaking privacy of others 
who have not. Third, we observe that both extreme equilibrium outcomes (everyone and no one joins) are stable, 
whereas interior equilibrium outcomes ( 0 < K < p ) are always unstable.

Our study has a number of limitations. First, for ease of computation, we assign players to a limited number 
of types. While this assignment significantly narrows the space needed to search for the pure-strategy Nash 
equilibrium, it clearly limits the diversity of preferences in the population and may thereby neglect potential 
Nash equilibria. We choose 18000 types in our first set of simulations, and 6000 when we vary the parametric 
settings. By conducting pilot studies, we are able to choose the number of types that balances the ability to capture 
interior Nash equilibria and the time consumption for one simulation. Second, the parameters we set for players 
in the game are conceptual rather than measured based on empirical observations or surveys. This is because, 
without performing behavioral experiments with humans, it is challenging to learn about a user’s valuations of 
the benefits of using TPI services and their perceived costs of privacy risks. We believe, however, that this is a 
crucial area for future research in the behavioral economics of privacy. Moreover, the remarkable stability of our 
results as we vary parameters of the utility function suggests that our overall observations are relatively robust 
with respect to our modeling framework. Third, we model the online genomic data sharing as a one-shot game, 
which lacks the ability to capture the dynamics in user interactions. In reality, users can change their decisions as 
their valuations for the service change. Finally, we focus specifically on the re-identification risks in our model. 
There are other kinds of privacy risks can be induced by the genomic data sharing on TPI websites, such as 
attribute inference risks. The attribute inference attack can be carried out either by insiders who have authorized 
access to user-shared genomic data or outsiders who obtain access through a security breach. Attackers can infer 
a target’s genomic data or traits by analyzing the genomic data of their relatives. As the attribute inference risks 
also depend on the distance between relatives and can be measured without the disclosure of actual genomic 
data, it can be smoothly integrated in our model and this is definitely one direction for our future work.

Data availibility
Simulation results mentioned in the paper are available at https:// osf. io/ yjxs6/? view_ only= 2237f 5ad4e cb411 
59726 25a38 2fac9 1c.

Code availibility
The code for simulations and the algorithm that solves for pure-strategy Nash equilibrium can be accessed 
through https:// osf. io/ yjxs6/? view_ only= 2237f 5ad4e cb411 59726 25a38 2fac9 1c.
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