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Optimized wake‑superposition 
approach for multiturbine wind 
farms
Deshun Li 1,2,3, Jixiang Chang 1, Gaosheng Ma 1,2,3*, Chunyu Huo 1 & Rennian Li 1,2

Optimizing the wind farm layout requires accurately quantifying the wind‑turbine wake distribution to 
minimize interference between wakes. Thus, the accuracy of wind turbine wake superposition models 
is critical. The sum of squares (SS) model is currently touted as the most accurate, but its application 
in engineering is hampered by its overestimation of the velocity deficit of the mixed wake. Therefore, 
previous work relied on approximate power calculations for performing optimization. The physical 
meaning of the SS model is unclear, which makes optimization difficult. In this study, a univariate 
linear correction idea is proposed based on the linear increase phenomenon of the SS method error. 
The unknown coefficients are obtained by fitting experimental data. The results demonstrate that the 
proposed method can accurately quantify the full‑wake two‑dimensional distribution of the mixed 
wake.

Many countries are actively developing wind energy, which, as a renewable energy source, is expected to solve 
the energy crisis. Wind turbines convert wind energy into electrical energy through the interaction between the 
wind and blades. Incoming flow passing through the wind turbine creates a wake area with reduced wind velocity, 
which exchanges energy with the surrounding air and gradually returns to calm conditions as the wake develops. 
When the downstream wind turbine is in the wake region of the upstream wind turbine, its production capacity 
will be reduced, which can reduce annual power generation by as much as 10–20%1. Therefore, studying wake 
interference between wind turbines is of great significance in site selection, arranging wind turbines, and predict-
ing power from wind farms. The CFD method of solving the N-S equation can accurately simulate the wake effect. 
However, it requires numerous costly computations and is difficult to apply in complex environments. Therefore, 
convenient and concise analytical wake models are popular in the wind industry. Therefore, this study proposes 
an optimized superposition model for wind Turbines, which can better meet the urgent needs of the industry.

In 1986,  Jensen2 derived the Park one-dimensional (1D) model based on the conservation of momentum. 
Building upon it,  Tian3 and  Zhang4 both used a cosine-shape function to redistribute the wake deficit in the lateral 
direction and an extended two-dimensional (2D) model.  Yang5,6 then proposed the wake model of Gaussian 
distribution and quadratic polynomial distribution (Park–Gauss model and Park–polynomial model), which 
can accurately simulate the far wake. The above models utilize the Park model to solve the 1D wake and then 
apply a specified equation to redistribute the wake.  Ge7 argued that this violated the local mass conservation and 
proposed a 2D wake model that directly extends the Jensen model. Due to the complete obstruction of free flow 
in the center of the rotor, the near wake has a “W”  shape8. To solve this problem,  Keane9,10 proposed a full wake 
model based on the double Gaussian assumption of the wake distribution, but it had the worst agreement with 
the LES data compared to other  models11. Later, some  scholars12–14 proposed a wake model for the yaw condition.

The above research involves the wake model of a single wind turbine. In practical engineering, the wake 
interference between multiple wind turbines needs to be considered, and the superposition of wake models often 
simulates the actual wake situation. The commonly used wake superposition  methods15 are the geometric sum 
(GS), linear superposition (LS), energy balance (EB), and the sum of squares of velocity deficits (SS). LS, proposed 
by  Lissaman16, assumes that the velocity deficit of a mixed wake is equal to the sum of the velocity deficits of each 
upstream unit.  Crespo17 found that the LS method overestimated the velocity deficit of the mixed wake and even 
had a negative velocity value. ES is an energy conservation model based on a simplified energy equation, which 
assumes that the sum of the kinetic energy losses of the incoming flow after passing through each upstream unit 
is equal to the kinetic energy loss in the mixed-wake region. In contrast, SS, which is currently the most widely 
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used superposition model, considers the velocity deficit in the mixed-wake area to be equal to the square root of 
the sum of the velocity deficits in the wake area of each upstream unit.  Kuo18 identified SS as the most accurate 
among the methods. However,  Chamorro19 found that the wake recovery speed of two wind turbines with an 
in-line setup is sometimes higher than that of a single wind turbine. Meanwhile, the SS method leads to a deficit 
in the mixed-wake velocity, which must be higher than that of the single unit. Accordingly, the overestimation 
of the wake-velocity deficit is unrealistic.

This study aims to address the problem of the SS method overestimating the velocity deficit of the far wake. 
As such, the SS method is linearly optimized, considering the thrust coefficient of the downstream wind turbine 
and the area ratio of the overlap with the wake region. Coefficient fitting is performed according to the wind-
tunnel experimental data, and wind-turbine full-wake optimization is conceptualized.

Experimental setup and results
Wind tunnel experiments were conducted for different turbine layouts to acquire support data for the present 
study. The wind tunnel was 15 m long, 2 m wide, and 2 m high; the design wind velocity was 1–20 m/s; and the 
wind velocity reduction per meter along the flow direction was uloss = 0.009u∞ . In the experiments (Fig. 1a), two 
wind turbine models with rotor diameters D of 0.44 m and hub height of 0.65 m were arranged in the wind tunnel, 
and the mean incoming wind speed was 6 m/s. The wind turbine blades are connected to a small generator by a 
rotating shaft, and the speed is controlled by t adjusting the load connected to the generator. The error of single 
wind turbine speed can be maintained within 10%, and both wind turbine blade tip speed ratios are controlled 
at 5.5. The axial wake velocity was acquired using a pitot tube mounted on a three-dimensional coordinate 
frame. The Pitot tube was arranged on a plane with a horizontal height equal to those of the wind turbine hub: a 
sampling frequency of 10 Hz and average of 45 s for each measurement point were utilized. Figure 1b shows the 
relative positions of the two wind turbines. Regarding their arrangement, three tandem cases (Case1–3) with a 
radial spacing of 0 and axial spacing Δx/D of 4, 6, and 8, and three staggered cases (Case 4–6) with Δx/D = 4 and 
radial spacing Δy/D of 0.3, 0.5, and 0.7, respectively, were considered.

Figure 2 shows the vertical profile of the normalized velocity and turbulence of the wind tunnel measured by 
the hot wire collection with a frequency of 1000 Hz. At 6 m/s incoming flow, there will be a velocity gradient of 
about 0.3 times the hub height of the wind turbine in the wind tunnel, but the velocity and turbulence fluctua-
tions near the hub height are very small, and the incoming turbulence intensity is stable at 0.2%, so the incoming 
flow conditions meet the experimental requirements.

Normalized measurements were obtained for a single wind turbine and Case 1–6 through wind tunnel experi-
ments (Fig. 3). The dashed line is the wake profile fitted with the wake velocity recovered to 99%(u∞ − x · uloss) . 
Noticeably, the wake development behind the wind turbine is approximately a linear expansion (wake growth 
rate k = 0.025). The arrangement of the wind turbines does not affect the wake expansion, which is consistent 
with the linear-expansion assumption of the wake model. Comparing the single wind turbine with Case 1 reveals 
that the downstream placement of the wind turbine will lead to faster wake recovery due to the disturbance 
of the downstream wind turbines increasing the energy exchange between the mixed wake and surrounding 
atmosphere. Similarly, comparing Cases 4–6 reveals that the radial spacing increases as the wake is perturbed 
less, and the wake recovers slower.

Wake modeling
Single wake model. The Park model developed by  Jensen2 is the pioneering turbine-wake model derived 
from the conservation of mass by applying the Betz theory to relate the velocity deficit in the wake to the induc-
tion factor a. It has been extensively used in commercial software (e.g., WAsP, WindPRO, WindSim, Wind-
Farmer, and OpenWind). The velocity deficit, which changes with the streamwise distance from the turbine 
rotor, is kept constant within the wake radius, so it is also called the “top-hat” model due to its shape, as shown 
in Fig. 4.

Figure 1.  (a) Photograph of the experiment site, and (b) schematic of relative position of upstream and 
downstream wind turbines.
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In this study, x denotes the streamwise distance from the turbine rotor of diameter D; u∞ is the mean incom-
ing flow speed; and ux and rx are the average wake velocity and the wake radius at a distance x from the turbine 
rotor, respectively. Linear growth of the wake radius with downwind distance is assumed for simplicity, which is 
verified by wind-tunnel  measurements20 and LES numerical  results21. The specific Park model formula is given by

where k is the wake growth rate, which is often taken as 0.1, as suggested by  Jensen2. Different values of k were 
suggested in later  studies22,23, such as 0.05 and 0.075 for offshore and onshore wind turbines, respectively. This 
study utilizes k = 0.025 based on the wind-tunnel experimental data. r0 is the initial wake radius behind the 
turbine rotor. Due to factors such as tip vortex, r0 > D/2 . According to actuator disc theory, the calculation 
formula is expressed as

(1)ux = u∞

[

1−
2a

(1+ k · x/r0)
2

]

,

Figure 2.  Normalized (a) velocity and (b) turbulence intensity vertical profiles.

Figure 3.  Normalized wind tunnel measurement results of single wind turbine and Cases 1–6 in the horizontal 
plane at the height of the hub center. The wake profile (dotted line) and the relative position of the wind turbines 
are marked on the figure.
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The top-hat distribution of the Park model tends to underestimate the velocity deficit in the wake center and 
overestimate it at the wake edges. To reasonably simulate the distribution of the velocity deficit in the wake using 
the Park model, a Gaussian function and a quadratic polynomial to describe the wake velocity (Park–Gauss 
model, Park–polynomial model) was introduced in the  literature5,6, with good agreement with actual measure-
ments being achieved. The wakes will be super positioned for multiple wind turbines based on these two 2D 
models.

The velocity deficit distribution in the near-wake cannot be simulated well because the wake model does not 
consider dominant factors, such as the hub and hub vortex. The experimental data in the near-wake exhibited 
a W-shaped  distribution8. As the hub vortex developed, the velocity deficit at the hub height decreased, and the 
distribution gradually changed from a W-shaped to a Gaussian-shaped distribution.

Wake superposition method. Wake interactions are not fully understood due to the complex turbulence 
phenomena within the mixed wake. Four semi-empirical formulas for determining the wake velocity of the 
downstream wind turbine are described in the  literature18. Taking SS as the sum of the squared wake velocity 
deficits,

where ui(x,r) is the wind velocity at position (x, r) within the wake of wind turbine I, ui(x,r),j is the wind speed at 
turbine i due to (the wake of) turbine j, and uj(0,0) is the wind speed at wind turbine j.

Experimental investigations of the wake  interaction24 have demonstrated that SS is the most accurate of 
the four formulations, although it has no practical physical meaning. The single wake model ignores the wake 
rotational effect and turbulence, whereas the overlapping wake inevitably causes an increase in turbulent kinetic 
energy. The complex turbulent structure in the wake will accelerate the energy exchange between the wake 
and atmosphere, increasing the wake recovery. Figure 5 shows the distribution of mean wake velocity as wake 
develops for Cases 1–3 compared to single wind turbines. In the far wake, the wake velocity is greater for the 
axially spaced 4D and 6D cases than for the single wind turbine. The  literature19 confirms that the presence of 
a wind turbine downstream will result in the mixed wake achieving a higher recovery velocity. The superposi-
tion principle of the SS method inevitably leads to an increase in the velocity deficit of the mixed wake, thereby 
overestimating the velocity deficit after superposition. However, realizing improvement from the experimental 
data is difficult because the physical basis of SS needs  clarification18.

Figure 6 shows the results after superimposing the two Park–Gauss models with Δx = 4D using the SS method. 
Because the region between 4 and 6D is affected by the downstream wind turbine central vortex, 7.5D, 9.5D, and 
12D are selected here for comparative analysis. The root mean square error (RMSE) is introduced in this study 
to measure the accuracy of the model compared to the experimental values:

where uexp2  and umea
i  are the model and measured velocity of measurement point i, respectively. n statistical 

measurement points are considered.

(2)r0 = 0.4d

√
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1− 2a
.

(3)
(

1−
ui(x,r)

u∞

)2

=

N
∑

j=1

(

1−
ui(x,r),j

uj(0,0)

)2

,

(4)
RMSE =

√

√

√

√

√

n
∑

i=1

(

ui − umea
i

)2

n
,

u∞ u∞

ux

xD

rx=kx+r0

Figure 4.  Schematic of the Park model.
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Figure 6 shows that the RMSE increases almost linearly with wake development. Therefore, the deviation of 
the downstream wind-turbine full wake from the actual value exhibits a linear pattern. As mentioned before, 
theoretically optimizing the SS is difficult. In this study, the above problem is reduced to a univariate linear 
optimization problem to obtain an accurate full wake model for the downstream wind turbine.

Optimization of wake superposition method. Based on the assumption of a linear RMSE progression, 
the wake velocity ui(x,r) at different locations of the downstream wind turbine is considered the independent 
variable, and the optimized wake velocity uopti(x,r) is considered the dependent variable. They satisfy the following 
relationship:

where α and β are unknown parameters, which can be obtained by fitting experimental data. However, con-
sidering that the last wind turbine with a different arrangement will lead to different unknown parameters, the 
relationship equation is not universal. To solve the above problem, the thrust coefficient  CT is introduced in this 
study:

where T is the thrust, ρ is the air density, and Ax is the cross-sectional area of the wake at a distance x from the 
rotor. A different position of the last wind turbine changes the value of the incoming flow velocity. Thus, the thrust 
coefficient of the downstream wind turbine can characterize the axial spacing variation. Moreover, as the radial 

(5)u
opt
i(x,r) ∼ α · (x/D) · ui(x,r) + β ,

(6)CT =
T

1
2ρAxu

2
i(0,0)

=

u2i(0,0) − u2i(x,r)

u2i(0,0)
,

Figure 5.  Distribution of the average wake velocity along the streamwise direction.

Figure 6.  Results of model speed compared to measured values for Case 1 (other cases have the same pattern 
and are not shown here).
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spacing of the wind turbine changes, it will partly appear in the wake. The smaller the overlap area between the 
wake and wind turbine, the smaller the disturbance by the upstream wake, and the more accurate the mixed wake 
calculated by the SS method. Therefore, the thrust coefficient and overlap area ratio are applied to the relation:

where Amix is the area of overlap between the downstream wind turbine and the upstream wake (shaded area in 
Fig. 1b), and r2 is the radius of the downstream wind turbine.

Figure 7 shows the flow chart of the use of the proposed model, the model coefficients were obtained for dif-
ferent arrangements (Table 1) from the experimental values, where the two single wake models (Park–Gauss and 
Park–polynomial models) were separately superimposed. Therefore, after taking the mean value, α = 0.15 and 
β = 1.2 for the Park–Gauss model, and α = 0.16, β = 1.3 for the Park–polynomial model. From the data results in 
Table 1, it can be seen that the correction coefficients backwardly introduced by using the experimental values 
as the optimization objectives are applicable to different arrangements. On this basis, the mixed wake flow of 
the i-1st wind turbine and the single wake flow model of the i-th wind turbine are superimposed and the wake 
flow is corrected based on the determined parameters.

Results and analysis
Tandem layout. The tandem distribution (Cases 1–3) is simulated using the proposed superposition 
method, which is based on two two-dimensional single wake models (Park–Gauss and Park–polynomial mod-
els). As shown in Fig. 8, the dashed and solid lines denote the results from the SS and optimized models, respec-
tively. The gray shading represents the relative positions of the downstream wind turbines. To quantify the error 
between the model and experiment, the RMSE corresponding to the two models is shown in Fig. 9. The specific 
analysis is as follows:

(7)u
opt
i(x,r) = α · CT ·

(

Amix/πr
2
2

)

· (x/D) · ui(x,r) + β ,

Figure 7.  Flow chart of the correction method and the use of the proposed model.

Table 1.  Model coefficients under different arrangements.

Case Δx/D Δy/D

Park–Gauss
Park–
polynomial

α β α β

Case 1 4 0 0.1485 1.342 0.1568 1.4126

Case 2 6 0 0.1471 1.2513 0.1659 1.3576

Case 3 8 0 0.1661 1.1724 0.1739 1.2278

Case 4 4 0.3 0.1647 1.1921 0.1871 1.2906

Case 5 4 0.5 0.1387 1.2673 0.146 1.3282

Case 6 4 0.7 0.2079 1.2792 0.2219 1.3437
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The velocity of the wake center recovered faster because it is affected by the hub vortex at the 0.5D position 
behind the downstream wind turbine, which results in the wake of this cross-section not fitting the Gaussian 
distribution. Therefore, the combination model cannot fit the experimental value at the center of the wake. The 
two models underestimated the velocity deficit of the wake in this cross-section, and the RMSE of the measured 
value was reduced after optimization.

In the case of Δx = 4D (Fig. 8a), the two models underestimated the wake deficit before 7.5D but overestimated 
the wake deficit in subsequent cross-sections. Therefore, the RMSE value first decreased and then increased 
with wake development. After optimization, the RMSE of the Park–Gauss and Park–polynomial models at the 
12D cross-section were reduced from 0.597 and 0.548 to 0.225 and 0.202, respectively, implying that the model 
accuracy was greatly improved.

After optimization, the RMSE of the Park–polynomial model was found to be generally lower than that of 
the Park–Gauss model. Hence, the Park–polynomial model fitted better in the tandem layout.

Staggered layout. The same model fitting and error analysis as those above were performed for the stag-
gered row arrangement (Cases 4–6). The specific analyses from Figs. 10 and 11 are as follows:

Figure 8.  Normalized wake velocity deficit in the lateral direction for cases 1–3, (a)�x = 4D , (b)�x = 6D , 
(c)�x = 8D.
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As the radial spacing Δy increased, the RMSE between the two models and the experimental values in the far-
wake (9D, 12D) gradually decreased. At the 12D cross-section, the corresponding deviations in the Park–Gauss 
model for Cases 4–6 were 0.525, 0.338, and 0.286, respectively, and they were all reduced to approximately 0.26 
after optimization.

Due to the hub vortex of the downstream wind turbine, the wake center velocity of the downstream wind 
turbine near-wake (at 0.5D and 1.5D cross-section from the downstream wind turbine) recovered quickly. Hence, 
the predictions from the wake model were not well-matched with the measurements, resulting in the RMSE 
of the optimized model increasing. The overall optimized RMSE decreased gradually as the wake developed.

The histogram (Fig. 9) shows that the corresponding RMSE of the Park–polynomial model was slightly lower 
than that of the Park–Gauss model, so the optimized Park–polynomial model was in better agreement with the 
measured wake.

Conclusions
In this study, a linear correction of the SS model is proposed based on the RMSE of the SS model increasing 
linearly with the wake development. Two correction factors are fitted based on wind tunnel experimental data: 
α = 0.15 and β = 1.2 for the Park–Gauss model and α = 0.16 and β = 1.3 for the Park–polynomial model. Compari-
sons of the modified model with the SS model reveal that the 2D distribution of the full wake of the downstream 
wind turbine can be well simulated despite the wake interaction not being fully understood.

This study presents a modification of the wake superposition method, which can be utilized with the predicted 
full-wake model of downstream wind turbines. However, intensive efforts are still needed. The two coefficients 
of the linear correction require predetermining the flow field data under a typical arrangement. The accuracy of 
the mixed flow field strongly depends on α and β, and although the range of their values is given, generalization 
will be the focus of future work.

Figure 9.  RMSE of the turbine-wake model from the experimental values in the tandem layout before and after 
optimization.
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Figure 10.  Normalized wake velocity deficit in the lateral direction for Cases 4–6, (a)�x = 4D , �y = 0.3D , 
(b)�x = 4D , �y = 0.5D , (c)�x = 4D , �y = 0.7D.
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Data availability
All data generated or analyzed during this study are included in this published article and its Supplementary 
Information files.
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