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Evolutionary success 
of the thrifty genotype depends 
on both behavioral adaptations 
and temporal variability in the food 
environment
Erasmo Batta 1,2,4 & Christopher R. Stephens 2,3,4*

Obesity is a result of a long-term energy imbalance due to decisions associated with energy intake 
and expenditure. Those decisions fit the definition of heuristics: cognitive processes with a rapid 
and effortless implementation which can be very effective in dealing with scenarios that threaten an 
organism’s viability. We study the implementation and evaluation of heuristics, and their associated 
actions, using agent-based simulations in environments where the distribution and degree of 
richness of energetic resources is varied in space and time. Artificial agents utilize foraging strategies, 
combining movement, active perception, and consumption, while also actively modifying their 
capacity to store energy—a “thrifty gene” effect—based on three different heuristics. We show that 
the selective advantage associated with higher energy storage capacity depends on both the agent’s 
foraging strategy and heuristic, as well as being sensitive to the distribution of resources, with the 
existence and duration of periods of food abundance and scarcity being crucial. We conclude that 
a ”thrifty genotype” is only beneficial in the presence of behavioral adaptations that encourage 
overconsumption and sedentariness, as well as seasonality and uncertainty in the food distribution.

The current obesity epidemic represents one of the world’s most challenging public health problems. Accord-
ing to the World Health Organization1, in 2016 more than 1.9 billion adults were considered overweight and, 
of these, more than 650 million were classified as obese. Obesity is associated with an increase in both general 
and specific-disease related mortality2,3. Fat accumulation associated with obesity is due to a long-term positive 
energy imbalance, where energy intake is greater than energy expenditure, and is attributed to the interaction 
between an individual and an obesogenic environment. Modeling this phenomenon is exceedingly difficult due 
to the myriad factors involved. Moreover, each factor relates to others at multiple levels, thereby creating complex 
feedback loops. Although reductionist approaches have been the dominant framework for studying obesity, more 
systems-based, or complexity-based, papers on obesity have appeared4–7.

A recurring question in obesity research is: what has led to an explosion in obesity incidence in the last 
few decades? Have certain environmental factors changed radically? If so, which? Have our decision making 
processes changed? Both? One interesting line of research has been that associated with the notion that we are 
genetically maladapted to the current obesogenic environment relative to the environment in which our spe-
cies originated. In particular, the “thrifty” genotype hypothesis8,9 is based on the idea that our evolution, in an 
environment where food resources were scarce, favoured those genes that allowed for better fat storage. How-
ever, within this “genomic” approach, although there is ample evidence that certain genetic polymorphisms can 
lead to an altered physiology that favours fat storage, these alterations are relatively rare and cannot be used to 
explain a phenomenon as universal as the current obesity epidemic. At heart, obesity, seen as a consequence of 
energy imbalance, is a result of human behavior—principally overeating and sedentariness—that are associated 
with individual decisions—eat/don’t eat, forage/don’t forage etc. Furthermore, these decisions are affected by 
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a multitude of factors beyond those that might be associated with a microscopic “ome”, such as the genome, 
proteome or transcriptome. Indeed, it has been argued that what is required is a “Conductome”10, thought of as 
the universe of factors that influence a particular behaviour, such as overeating.

Decision-making theories based on utility function maximization are frequently inconsistent with human 
behaviour. The term “cognitive bias” was used in11 to refer to these discrepancies. A common characteristic of all 
these situations is attribute substitution, i.e., the exchange of a computationally complex problem for a simpler 
one. One of the main criticisms of this description is that it just considers cognitive bias to be an inferior, second-
ary alternative due to a lack of sufficient computing resources12–14. A number of studies have found, however, 
that in particular contexts this kind of decision-making process generates better results than purely utility-based 
decision making12,15,16. This concept, which we shall refer to as heuristic, provides an explanation of efficient and 
immediate responses to risk scenarios.

Heuristics are particularly important in situations where survival is at risk and there is insufficient time to 
perform a detailed deliberation, or in states of cognitive depletion. These scenarios are not exclusive to human 
decision-making but are common to many living organisms. Many animal behaviours that fulfil simple deci-
sion rules can be viewed as heuristics17. Eating tends to involve more heuristic judgment than most behaviours, 
due to its intimate relationship with survival18–21. It is the adaptive match between cognitive and ecological 
structures that constitutes the basis of heuristic formation13. Heuristics are a natural consequence of certain, 
key environmental properties: Uncertainty, redundancy, finite sample size and variability in the relevance of 
environmental features. Final decisions are related to the environmental availability of energetic resources and 
the constraints on the execution of a specific physical activity. The environment provides a distribution of food 
resources with a particular energy density in space and time and an energy cost associated with their localization 
and consumption. The sensorial perception of the characteristics of a food resource depends on the complexity 
of the consuming organism22–25.

An organism’s learned experience in a given food environment allows it to label it as abundant or scarce in 
food resources for example. So, a food rich environment may provide enough resources such that consump-
tion is only linked to physiological indicators of internal low energy states, whereas food scarcity may induce 
consumption beyond satiety so as to accumulate reserves. Uncertainty in this sense is a powerful motive for the 
development of heuristics and other cognitive capabilities, as, for example, in the case of metacognitive judg-
ments that have been observed in humans and animals26–29.

Accepting that obesity arises from obesogenic behaviors in a potentially obesogenic environment, and given 
the tremendous multi-factoriality of the problem, with heterogeneous, dynamic and adaptive risk factors, that 
range from the genetic to the social, an agent-based modeling approach offers several advantages relative to 
purely empirical approaches, or more standard mathematical modelling, not least of which is the possibility to 
compare and contrast behaviours in different environments. In this paper an agent-based model (ABM) is pre-
sented in order to simulate decision making in different food environments and show under what circumstances 
heuristic-environment interactions can lead to persistent energy imbalances.

The flexibility and heterogeneity of ABMs makes them a suitable testing ground for studies of cognition 
and decision making. Their bottom up approach makes it possible to see how particular microscopic properties 
can lead to emergent macroscopic regularities30,31. Various approaches have been proposed to model decision-
making processes in ABMs using purely reactive agents with if-then rules that are inspired by psychological and 
neurological architectures32. Jansen and Jager proposed a decision architecture for agents that explicitly addresses 
heuristics: the CONSUMAT model33, which attempts to unify psychological theories of learning and satisfac-
tion. The CONSUMAT heuristics are characterized by both the amount of cognitive effort required (as in dual 
approaches) as well as the degree of uncertainty associated with information gathered from the environment.

In summary: The aim of the present work is to use an ABM to analyse under what circumstances a thrifty 
genotype, as a potentially important causative factor in the present obesity epidemic, might be selected for. In 
particular, the goal is to understand whether and how its utility depends on the following factors: (1) behavioral 
adaptations, such as overconsumption and sedentariness; (2) the distribution in space and time of food resources; 
and (3) the application of different heuristics in decison making.

Methods
Agent model.  The present ABM aims to test how different degrees of uncertainty in the environmental 
availability of energy sources, as well as different foraging strategies and associated heuristics, can promote a 
preference for higher energy storage capacity.

Agent metabolism.  In this model, an agent, α , monitors its energy, Eα(t) , which is taken as a proxy for the agent’s 
body mass and is degraded according to two factors: intentional activities and basal metabolism. Base Metabolic 
Rate (BMR) is modeled as a constant rate, Mb , which represents energy used per unit mass per unit time for basic 
metabolic functions multiplied by the agent’s energy when it is above a threshold, ET , in analogy with body-mass 
dependence in well known formulas for BMR, such as the Mifflin-St. Jeor equation34. As similar metabolic rates 
have been reported for human populations with radically different lifestyles35, we selected Mb to be the same for 
every agent to make BMR proportional to only the “size” of the agent. However, below ET , we consider the total 
energy expenditure per unit time as constant, to avoid the existence of agents that live indefinitely through a 
smaller and smaller base metabolism. Thus, the basal expenditure is Eα(t)Mb when Eα(t) > ET and ETMb oth-
erwise. ETMb represents the minimum amount of energy needed to keep an organism alive. Hence, ET should 
not be considered as the dividing line between healthy and unhealthy levels of energy reserves. Above ET , the 
linear metabolic expenditure creates an upper bound on the energy that agents may accumulate for a given value 
of Mb , given a certain energy consumption, Es , in a given time period. When the agent’s metabolic expenditure 
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is equal to the amount of energy that can be consumed, the change in internal energy, �Eα(t) , of the agent due 
to consumption is zero. Hence, �Eα(t) = Es −MbE

(max)
α = 0 and then E(max)

α = Es
Mb

.
In order to make contact with thrifty gene-type arguments, we also explore the role of different energy stor-

age levels. Specifically, we consider agents with modifiable energy accumulation levels, Lα(t) , associated with 
the “maximum” amount of energy they may store, viewed as a proxy for fat accumulation, given that the latter 
may be realized by multiple physiological mechanisms and at different scales, from the tissue and organ level to 
the cellular and sub-cellular level. From a thrifty gene perspective we consider this as a key parameter associ-
ated with an agent’s overall survival strategy and which may change in time according to the heuristic used by 
the agent. Note that we do not take Lα(t) to be a physiologically imposed upper limit on fat accumulation but, 
rather, use it to compare the relative advantage of agents associated with one level versus another. For instance, 
an interesting level is that associated with what is considered to be normal. For humans this is 5–20% for males 
and 20–30% for females36, while for our primate relatives, such as bonobos or baboons 1–2%37 are considered 
normal. For marine mammals in higher latitudes it can be as high as 50% or more. A question of interest is then: 
under what circumstances is a level of 2% versus 20% advantageous? We will argue that this normal level is a 
balance between the advantages of being able to survive food scarcity periods and the disadvantages of excess 
adiposity, such as reduced foraging capacity or being subject to higher predation rates.

Agent actions.  We model an agent in a given food environment by means of a limited set of available inten-
tional actions: (1) they can decide to eat or not eat all the food at a given position at any specific moment; (2) 
they may decide to expand their perception of the existence of food at their current location to also include any 
adjacent cells and/or; (3) they can decide to move or not to one of the eight closest contiguous spatial positions. 
Perception is taken to have an associated energy cost, Cp , which we take to be constant per unit time. Similarly, 
the cost of movement is modelled as the agent’s energy multiplied by a factor, Cm , to reflect the fact that mov-
ing more mass requires more energy. Additionally, we model the fact that a mass excess or deficit may inhibit 
movement by introducing an energy dependence to the probability for movement, p, as seen in Equation (1). 
The intuition behind this is two-fold: (1) bigger reservoirs of energy are more difficult to move, independently of 
whether or not the associated energy is considered healthy or not; and (2) organisms with very low energy expe-
rience some malfunctioning of their motor capacities. We choose the corresponding energy range of uninhibited 
movement to be between Es , where Es is the “portion size” of energy potentially available in a given cell, and ET . 
Hence, once an agent decides to move, the probability of doing so is the following:

Agents with an internal energy Eα(t) , between Es and ET , will move every time they decide to do so, while those 
that have an energy bigger than ET , or smaller than Es , will, on average, move less.

A combination of the actions of eat-perceive-move we may think of as representing the foraging strategy of the 
organism. Although there are eight possible combinations of the vector of decisions (decision to eat, to perceive 
and to move) only a subset lead to interesting interactions with the environment and which are defined in Table 
(1): Static (S), which corresponds to an agent that passively waits for food in a given spatial position; Random 
Foraging (RF), which corresponds to a “Brownian” agent that forages randomly every time step; and Directed 
Foraging (DF), where an agent looks for food (perception) in adjacent cells and moves randomly to any cell 
that has food. If no food is perceived the agent moves to a neighboring cell chosen at random anyway. We also 
introduce a strategy, Feedback Foraging (FF), where after perception, if no food is located the agent can decide 
to stay put and not move. Thus, DF and FF are chosen to potentially differentiate between two distinct behaviors 
when confronted with a lack of food in the immediate vicinity—a sedentary behavior—stay put—with an active 
behavior—move in the hope that eventually food will be found.

We assume that the first decision an agent makes is about the consumption of food, followed by perception 
and then movement. Each strategy has an associated energy cost, depending on whether perception and/or 
movement are included. In conjunction with the base metabolism of the agent, this leads to a net total energy 
expenditure at a given time step. If an agent consumes food and its energy expenditure is less than Es , then there 
is a positive energy imbalance in that time step. In the case that the agent does not consume, or that Es is less than 
the total energy expenditure, then there is a negative energy imbalance. We may characterise an environment 
that is scarce in food resources as being such that there is a persistent negative energy imbalance, which could, 
eventually, compromise the agent’s survival. On the contrary, we may characterise an environment as being 
abundant in food resources if there is a persistent positive energy imbalance.

Environmental conditions.  The environment in which the agents’ strategies are enacted is modelled as a square 
lattice of spatial cells with periodic boundary conditions, wherein agents occupy only a single cell at a time, but 
where a cell can accommodate more than one agent. As mentioned above, units of energy (food resources), Es , 
equivalent to “portion size”, are situated at each cell of the lattice, where each unit can be consumed in its entirety 
by only one agent at a time. An agent may attempt to eat, but without success, due either to competition or a lack 
of food in its cell.

Consumed resources are regenerated in a given cell with probability pg per unit time, which can be set as 
a constant parameter for every cell, or can be time varying, so as to mimic, for example, the effect of seasonal 
variation in food availability. This kind of uncertainty, which is a feature of the experiences of many “traditional” 
human societies38,39, has been used to provide a logic for the evolutionary utility of “thrifty” genotypes40,41. We 
will consider the periods of such “feast and famine” episodes to be chosen from a normal distribution with a 

(1)p =

{

exp (Eα(t)− Es) ifEα(t) < Es
exp (ET − Eα(t)) ifEα(t) > ET
1 otherwise.
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particular mean ( tab and tfam ) and standard deviation (STD). We choose this particular set of features to model 
some degree of uncertainty in the availability of food resources and the regulation of energy which can generate 
an ecological pressure that favours certain foraging and energy accumulation strategies, or can cause organisms 
to restructure their behavior, so as to try different or new heuristics in their decision making. The magnitude 
and lengths of the periods of abundance and scarcity play a critical role in imposing selection pressure on the 
strategies and heuristics and, in particular, on the energy accumulation levels.

We can develop a quantitative idea of the potential impact of a period of abundance or scarcity of a 
given duration by considering how much energy an agent may accumulate/lose during a period of abun-
dance/scarcity. For example, consider an agent with the least costly metabolic settings (which implies an S 
strategy) that consumes food every time step in the period of abundance, having started from zero energy. 
As there are two distinct energy accumulation regimes, Eα < ET and Eα > ET , in the former, the agent has 
an energy gain Es −MbET per time step, while, in the latter, the energy gain per time step is Es −MbEα(t) . 
Considering an initial energy state where Eα = ET , as the agent consumes food at every time step, the 
change in energy is such that Eα(t) = Eα(t − 1)+ Es −MbEα(t − 1) . As �1−Mb� < 1 we have that 
Eα(t) =

Es
Mb

(

1− (1−Mb)
t
)

+ (1−Mb)
tET . In order to compare different energy storage capacities in a simple 

way we take the energy accumulation level Lα(t) as a maximum energy the agent can reach if it is less than the 
energy maximum limit, E(max)

α  , where metabolic energy expenditure exceeds consumption. Again, we emphasize, 
that Lα(t) does not necessarily represent a physiological bound. With either of these limits we may determine 
how long a period of abundance would have to last in order to reach a given energy Eα(t),

   If we take as initial condition Eα = 0 , then we just need to add in the time to get from energy 0 to energy ET , 
which is t(0→ET ) = ET/(Es −MbET ) yielding a total time t(0→Eα) = t(0→ET ) + t(ET→Eα).

On the other hand, we can also calculate how long a famine with no food availability should last in order to 
produce the metabolic death of an agent. For an agent that has the least costly metabolic settings, the time for the 
agent to exhaust their energy during a period without food regeneration is given by t(Eα→0) = t(Eα→ET ) + t(ET→0),

   The above logic will be useful for understanding under what conditions an agent with a given energy accu-
mulation level may be expected to have a competitive advantage relative to one with a lower level, both in the 
capacity to accumulate energy as well as to survive a famine. For example, if the period of abundance of energy 
is not sufficiently long for an agent with a higher accumulation level to accumulate more energy than an agent 
with a lower level then the higher level is clearly of no use. This analysis is used to approximate the values tab and 
tfam in the second set of simulations.

Heuristics and decision dynamics.  Besides a foraging strategy and an energy accumulation level, we consider 
that each agent may also use a heuristic/decision rule, loosely aligned with the CONSUMAT schema, with 
the corresponding algorithms described in Table  1. Note that although in the CONSUMAT model different 
heuristics correspond to different types of decision problems, here we consider only one overall decision prob-
lem—how best to find food in an uncertain environment. We restrict the heuristics to be applied to the energy 
accumulation levels only, returning to their application to the different foraging strategies in a future paper. 
The three heuristics we consider are: Repetition, imitation and inquiring42. Repetition is the decision process 

(2)t(ET→Eα) =
log( Es

Mb
− Eα)− log( Es

Mb
− ET )

log(1−Mb)

(3)t(Eα→0) =
log(ET )− log(Eα)

log(1−Mb)
+

1

Mb

Table 1.   Relevant action strategies and heuristic pseudo-codes for agents. When strategy is 1 or 0 means that 
the corresponding action is executed or not, respectively. Pseudo-code represents heuristics used to select 
an energy accumulation level ( Lα ) at time t according to the heuristics of the CONSUMAT model. Agent α 
considers other agents within its community if they are in those cells that agent α can perceive.

Strategy Symbol Eat Perceive Move

Static S 1 0 0

Random foraging RF 1 0 1

Directed foraging DF 1 1 1

Feedback foraging FF 1 1 1 if food is found,

0 otherwise

Heuristic Pseudo-code

Repetition Lα(t + 1) = Lα(t)

Imitation Select a random agent, β , from current α ’s com-
munity then Lα(t + 1) = Lβ (t)

Inquiring
Select that agent, β , from current α ’s com-
munity with the biggest internal energy then 
Lα(t + 1) = Lβ (t)
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that is the simplest to implement, as it only requires that an agent keep doing the same thing. The imitation or 
inquiring heuristics require a “social” component, where at each time step an agent α creates a pool of possible 
alternatives (other possible energy accumulation levels) by observing those agents that they can “perceive” in 
their community, α′ . In the case that the agent has no explicit perception element in their strategy, then the set α′ 
is restricted to those strategies or accumulation levels present in agents located at the same position as the agent 
α . On the contrary, when perception is an element in the agent’s strategy, then the set α′ is extended to those 
strategies or accumulation levels that are also located in adjacent cells. For imitation, the probability to choose a 
particular energy accumulation level depends on the number of agents with that trait within the community (i.e., 
those agents in the cell where the agent is situated, and including the eight adjacent cells if extended perception 
is decided), as the selection of an agent to copy is done randomly, while, for inquiring, they select randomly an 
accumulation level from among those agents with maximum internal energy in the group they perceive.

Uncertainty in the decision-making process, as described in our model, arises from several sources. Obviously, 
uncertainty in the distribution of food resources is an important source. There is also uncertainty as to whether 
an agent will be able to move at all. In terms of the social component, there is uncertainty in calculating the util-
ity of the strategies associated with the community of a given agent relative to the set of all strategies. In other 
words, an agent does not a priori know if the best strategy in their community is the best possible strategy overall. 
It is important to emphasize that, given that this is a competitive system, even if an agent chooses the optimal 
strategy, there is uncertainty as to the outcome, as a competitor may already have consumed the desired resource.

Simulations.  Agent systems were simulated with NetLogo 6.0.143. The environment consisted of a square 
grid of 41× 41 cells with periodic boundary conditions. The initial agent population was 1680 agents chosen to 
be close to a density of one agent per cell. Each agent begins with an initial energy of 2 units. The energy limit 
that determines the probability of movement was set to ET = 20 and Mb , Cm and Cp , were fixed at values 0.05, 
0.02 and 0.01 respectively. These chosen values were products of a limited exploration of the range of parameters, 
where we search for evident effects from changes in accumulation levels and in the probability of regeneration. 
Thirty simulations were performed for each combination of parameters.

As with any ABM, there is a potentially large parameter space to be analysed. In the present study, as well as 
four foraging strategies and three heuristics, there are several parameters that can be varied, as discussed above. 
Additionally, the spatio-temporal distribution of pg also offers a rich source of variability for determining the 
relative advantages of one set of agent characteristics versus another. Below, we discuss only a subset of experi-
ments and their results that represent what we believe to be the most important conclusions for understanding 
the possible origins of the obesity epidemic and its relation to the thrifty genotype.

The first sets of experiments were designed to better understand under what environmental circumstances 
the capacity to accumulate energy (fat) was advantageous, this being related to the “thrifty gene” logic. As the 
capacity to accumulate energy can be argued to be present in other organisms than humans, we first used only 
the heuristic “repetition”. In the first set of experiments, we compared different accumulation levels between 5 
and 105 units in the context of the different foraging strategies and followed their evolution for 500 time steps. 
The environmental parameter Es was set to Es = 2 . In every simulation, agents were randomly initialized with 
one of two accumulation levels, corresponding to 840 agents of each level in the initial population. One of them 
was chosen to be 5 and the second was chosen to be one of 6, 15, 55 and 105 leading to differences in the energy 
accumulation levels between the two agent groups of 1, 10, 50 and 100 respectively. Note that by considering 
different accumulation levels we are effectively testing just how “thrifty” the thrifty genotype has to be in order 
to confer an advantage. Indeed, this poses the question of what a non-thrifty genotype looks like? We claim this 
would be an accumulation level adjusted to give net energy imbalance zero on average. Here, we take accumula-
tion level 5 as the least thrifty, basal genotype with the others being progressively more thrifty. The environmental 
parameter pg was taken to be constant in time and varied from 0.1 (scarcity) to 1.0 (abundance) in intervals 
of 0.1, and then from 0.01 (extreme scarcity) to 0.15 in intervals of 0.01. In all these cases the environmental 
parameter pg was constant.

In a second set of simulations, pg was allowed to change in order to mimic the effects of seasonal changes in 
food availability, and modeled by periods of relative abundance (when pg = 1 ) and periods of relative scarcity 
(when pg = 0 ). The periods of abundance and scarcity were chosen from normal distributions N(tab, STD) and 
N(tfam, STD) , where tab = 60 time steps for the abundance and tfam = 40 for the period of scarcity. In this con-
text, a “cycle” is the occurrence of a period of relative abundance, followed by a period of relative scarcity. These 
values were chosen using our analysis in Eqs. (2) and (3) where t(0→Eα) = 50.54 < 60 and t(Eα→0) = 39.72 < 40 
when Es = 3.0 in (3). By varying STD we could introduce different degrees of uncertainty into the seasonal 
availability of food resources. We considered STD = 0 (constant periods), 1 and 5. System development was 
followed for 1000 time steps, with data collected by population for each action, decision rule and accumulation 
level. In these particular simulations, agents could have one of two accumulation levels: 55 and 105. Meanwhile, 
the amount of food in every cell was increased from Es = 2.0 to 3.0, so as to make the maximum level of energy, 
E(max)
α = 60 , take a value between 55 and 105. In these experiments we also considered heuristics other than 

repetition, the consequence being that an agent could potentially change its energy accumulation strategy over 
time by imitating the strategy of another agent, or by deducing the existence of a better strategy from concur-
rent agents (inquiring).

In the final set of experiments we analysed how varying the initial population affected the results of the second 
set of experiments in the case of STD = 0. Initial populations of 1680, 1260, 840 and 420 were considered and 
randomly spread onto the grid thus representing approximately uniform initial densities of agents per cell of 
1.0, 0.75, 0.5 and 0.25, respectively. A summary of the parameters used in simulations can be found in Table 2.
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Results
The results of the first set of experiments can be seen in Fig. 1. There, the vertical axis represents the difference 
in the number of agents present in the population after 500 time steps with differing accumulation levels versus 
agents with a level of 5. Thus, in the top left figure we see a slight advantage for higher accumulation levels in the 
case of strategy S (where agents eat, do not perceive and do not move) for p ∼ [0.01− 0.04] , with there being 
approximately 20–30 agents more with accumulation levels > 5 than with accumulation level 5. This relative 
advantage of a “thrifty gene”-type strategy is present only for that strategy—S—that do not actively forage, or 
that forage in a random fashion—RF.

The two highest accumulation levels, 55 and 105, appear to have identical behaviours when using a fixed strat-
egy within an environment with a fixed probability of regeneration. This effect is a consequence of the parameter 
Es : For an environment where Es = 2.0 , and Mb = 0.05 , agents cannot exceed Eα(t) = 40 , thereby explaining why 
agents with levels 55 and 105 have identical behavior (Fig. 1). In order for an accumulation level > 55 to be useful 
it is necessary to overeat sufficiently to go beyond this energy level. To make this possible, we increased Es to 3.0.

The results of the second set of experiments can be seen in Figs. 2 and 3. In Fig. 2 we see the relative advantage 
of the more thrifty 105 accumulation level versus the 55 level for agents that use the same foraging and consump-
tion strategy. In this case only the sedentary, S, or potentially sedentary, FF, strategies survive. In Fig. 3, we restrict 
attention to the FF strategy. In the Top graph, we show box plots of populations of FF agents associated with the 
last time step after completing 10 abundance-scarcity cycles for different decision heuristics. We can observe 
that agents with energy level 55 end with an average population of around 43 for imitation, but close to zero for 
the repetition and inquiring heuristics. When the accumulation level is 105, however, the average population 
is greater than 100 for every considered heuristic. In other words, survival probability is significantly enhanced 
for the higher energy accumulation level agents.

In Fig. 3 we see the population average (middle graph) and the average energy per agent (bottom graph) 
throughout 10 abundance-scarcity cycles for different heuristics and different initial accumulation levels, where 
the averages are computed by considering the abundance phase of each cycle i.e., averaging values of every time 
step of a given period of abundance or scarcity. We see that, for each heuristic, the population average is greater 
for the higher accumulation level agents throughout the set of abundance-scarcity cycles, although there are 
significant differences between the heuristics. Note that level 55 agents exhibit steep, monotonic declines after the 
first cycle, with the decrease being particularly notable for the repetition and inquiring heuristics. The behaviour 
of the level 105 agents with the inquiring heuristic is quite noticeable, with a robust increase between the first and 
second cycles, followed by a very sharp decline between the second and fourth cycles. The imitation heuristic 
shows a sharp decline from the first to second cycles, followed by a more gradual decline from the second to the 
fourth. For both the inquiring and imitation heuristics the population average after the fourth cycle is constant. 
Finally, for the repetition heuristic, the population exhibits a subtle decrease after the third cycle, finishing with 
an average around 750 after 10 cycles.

Table 2.   Summary of parameter values and symbols employed in the ABM experiments.

Symbol Parameter EXP 1 EXP 2 EXP 3

Eα(t) Internal energy of agent α at time t

ET Energy threshold between metabolic

expenditure/movement regimes 20 20 20

Mb Base metabolic rate 0.05 0.05 0.05

Cp Energetic cost of active perception 0.01 0.01 0.01

Cm Energetic cost of movement 0.02 0.02 0.02

p Probability of movement

S, RF, SF, FF Foraging strategies

Lα(t) Energy accumulation level of α at time t 5, 6, 15, 55, 105 55, 105 55, 105

Es Amount of energy at each grid cell 2.0 3.0 3.0

pg Probability of regeneration of food resource [0.1, 1.0] 0.0, 1.0 0.0, 1.0

per cell per unit time

t(0→Eα ) Time required by S agents to pass from 50.54 50.54

zero to a given value of energy (57) with

abundance of food resources

tab Mean duration of abundance periods 60 60

t(Eα→0) Time required by S agents to pass from a 39.72 39.72

a given value of energy (55) to zero with no

food resources

tfam Mean duration of famine periods 40 40

Number of cycles 10 10

Initial population of agents 1680 1680 1680, 1260, 840, 420
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Figure 1.   Difference in population size of competing agents with different energy accumulation levels, where 
agents repeat the same strategy: (Top, left:) S, (Top, right:) RF, (Bottom, left:) DF and (Bottom, right:) FF, for 500 
time steps in an environment with a constant value of pg between 0.01 and 0.15. 50% of the agents start with 
an energy level of 5 and 50% start with an energy level of 6, 15, 55 or 105 respectively. Graphs show the average 
of 30 repetitions using the same parameters. The gray points in the background represent the result for every 
experiment.

0

20

40

60

80

2.5 5.0 7.5 10.0
Number of abundance/famine cycles

A
ve

ra
ge

 p
op

ul
at

io
n

ACC LEVEL

105

55

S

DF

FF

RF

S

Figure 2.   The average population during a particular cycle for S, RF, DF and FF agents using repetition as 
heuristic with accumulation levels of 55 and 105. In these simulations, agents experience a period when food is 
regenerated immediately after being eaten, followed by a period where food is not regenerated. These periods 
are fixed to 60 and 40 time steps respectively. The average per cycle considers both periods and the 30 repetitions 
of every set of parameters and error bars on the y axis represent the standard deviation of the ensemble. Graphs 
are slightly displaced on the x-axis for visualization.
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Turning now to the average energy, for the level 55 agents, for the inquiring heuristic, the average energy goes 
to zero after the first cycle, while for the repetition heuristic it decreases gradually from 35 to 16 over the full set 
of cycles. Interestingly, for the imitation heuristic it increases slightly after the second cycle, actually exceeding 
that of the level 105 agents for a couple of cycles. For the latter agents, the average energy is relatively constant 
throughout the set of cycles, ∼ 35− 40 . However, the ordering of the average energy as a function of heuristic 
is opposite to the ordering of the population average: repetition, inquiring and imitation for the latter and imita-
tion, inquiring and repetition for the former.

The introduction of uncertainty in the duration of the abundance-scarcity periods produces different results 
according to the decision rule followed by the agents. We can clearly see that extra uncertainty has an important 

Figure 3.   Top: Box plots of the population of agents with accumulation levels 55 and 105, at time t = 1000 
when foraging strategy FF is used and the agent’s accumulation level is potentially subject to adaptive change 
according to one of three heuristics: repetition, imitation and inquiring. Comparison through a set of “energy 
availability cycles” of: Middle: the average population and Bottom: the average energy during a particular cycle 
for FF agents with accumulation levels of 55 and 105. In these simulations, agents experience a period when 
food is regenerated immediately after being eaten, followed by a period where food is not regenerated. These 
periods are fixed to 60 and 40 time steps respectively. The average per cycle considers both periods and the 
30 repetitions of every set of parameters and error bars on the y axis represent the standard deviation of the 
ensemble. Graphs are slightly displaced on the x-axis for visualization.
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detrimental effect, independently of the heuristic used, with average populations decreasing as the uncertainty 
(STD) increases (Fig. 4). However, this ordering of population sizes as a function of uncertainty is not uniformly 
present as a function of time but, rather, emerges. Indeed, there is an interesting transient behaviour, such that 
a higher uncertainty can lead to higher average populations in the initial cycles in the case of the imitation and 
inquiring heuristics.

Uncertainty in the resource environment leads to a great deal of variability in population size. For repetition, 
uncertainty in the availability of energy resources greatly decreases the population size of the superior level-105 
agents that can be maintained, with more than 50% of the agents dying across the cycle for STD 1 and almost total 
extinction for STD 5. This harks to the very delicate energy balance in place, where agents can just about make it 
through a famine that lasts 40 time steps but a famine that lasts longer can easily lead to death. If a famine lasts 
less than the mean however, the positive consequences—the accumulation of a bit more energy—are minimal 
compared to death. From an evolutionary perspective there is a strong truncation selection in play.

In the case of imitation, we see that the effect on the population average of the extra variability associated 
with the availability of energy resources is masked by the intrinsic variability inherent in the mistakes made by 
the level-105 agents that imitate the level-55 agents. If the abundance period lasts longer, this is of no significant 
benefit as the level-105 agents reach an energy accumulation level wherein their consumption and their meta-
bolic needs are equal. On the other hand, as emphasized, a longer famine period easily leads to death. This is a 
“gambler’s ruin” type effect.

For the inquiring heuristic, the average population with STD = 1 exhibits a less catastrophic collapse than 
the STD = 0 population, in that the uncertainty dilutes to some degree the competition between the agents. 
Additionally, the inquiring agents in the STD = 1 scenarios have the possibility of storing a bit of extra energy 
during those periods of abundance that last longer than 60 periods.

Finally, in Fig. 5 we see the effect of initial population size in the context of simulations with an FF strategy 
and different heuristics. Although the relative benefit of the higher accumulation level remains, its magnitude is 
seen to depend on both the initial population and the heuristic used, with the dependence on the former being 
non-linear for the imitation and inquiring heuristics. Additionally, we see that the prominent collapse of the 
population for the inquiring heuristic is reduced and eventually disappears as the initial population decreases.

Discussion
The results of the experiments seen in Figs. 1, 2 and 3 exhibit under what circumstances a particular energy 
storage strategy has an advantage over others. Figure 1 shows that there is a slight advantage associated with a 
higher capacity, or willingness, to store energy—a “thrifty gene” behaviour—in environments with scarce food 
resources, but only for strategies S and RF. However, this is an extreme case of a more general trait—that there 
is no point having a thrifty gene if there does not exist another fundamental and necessary characteristic: that 
agents can accumulate energy beyond their immediate metabolic needs. This, in turn, has two requirements: first, 
there must be enough energy resources present in the environment to make it possible to accumulate energy in 
the first place; and, second, the agents must behave so as to consume more than their immediate metabolic needs.

So, what is the origin of the small advantage for S and RF and why is there no advantage for DF and FF? In 
the case of S the relative advantage accrues from the fact that, by chance, some agents manage to consume a 
higher than average amount of food resources in a given cell, so that the storage of this extra energy allows them 
to survive in that cell when there is less food than expected. In other words, the uncertainty inherent in the 
distribution of food resources that can lead to agents dying, by “bad luck”, can be partially offset by an energy 
storage capacity that is utilized by those agents that, by “good luck”, manage to obtain more food resources 
than the average. Again, though, this requires sufficient energy resources and the tendency to eat beyond their 
immediate metabolic needs. For RF, which represents a Brownian walk44–46, the advantage is reduced relative 
to S because the agents have an extra expense due to movement. For DF this expense is even greater, due to 
perception, while in this food-scarce environment FF is effectively the same as DF, as the lack of food will cause 
the agents to always be on the move. The fact that for S there is an advantage for levels 105, 55 and 15 relative to 
6, while for RF they are all equally better than the level 5 baseline speaks to the fact that the agents on average 
are unable to accumulate energy > 15 units in the former case and > 6 in the latter. These results indicate how 
subtle the interplay between energy consumption and expense can be, even in this simple case.

It is interesting to note that in the case of very scarce resources—p <= 0.01—the advantage disappears. This is 
due to the fact that the probability of accumulating sufficient energy above the baseline level of 5 is negligible. In 
other words, energy storage is of no use if food is so scarce that it is highly improbable to obtain enough energy 
resources to take advantage of it. On the contrary, above a certain pg , energy storage is not even necessary, as 
there are always sufficient food resources available.

If greater energy storage capacity offers no significant advantage in resource environments that are constant 
in time, then under what circumstances might it be useful? The results seen in Figs. 3 and 4 clearly answer this 
question: Firstly, in those environments where periods of relative scarcity and relative abundance alternate; and, 
secondly, in those environments that have some degree of regularity in the duration of the feast-famine cycles, 
with the relative advantage depending on the foraging and consumption strategy used, as well as the precise 
energy storage capacity relative to the duration of the periods of abundance and famine. Agents that forage 
can potentially survive during the famine, in spite of their extra energy cost, by finding any unconsumed food 
resources that are left over from the abundance period when the famine began. Of course, such an agent must 
also survive the competition from its peers in the search for these unconsumed resources.

The results for systems with fixed periods of abundance and scarcity confirm the survival of S (as the system 
parameters have been chosen to make them do so). We can think of this as the “hibernating bear” scenario, 
wherein the advantage of energy accumulation accrues only if the agent maintains the lowest energy expenditure 
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possible. Apart from S, only the FF strategy is able to support large populations of agents that have the higher 
accumulation level. The other strategies all have to deal with extra energy costs, and, in a time of scarcity, this 
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Figure 4.   Comparison through a set of 10 “energy availability cycles” of uncertain duration of the average 
population at a particular cycle for FF agents with an accumulation level of 105 for systems where the employed 
heuristic is; Top: repetition, Middle: imitation; or Bottom: inquiring. In these simulations, agents experience 
a period when food is regenerated immediately after being eaten, followed by a period where food is not 
regenerated. The periods are chosen from a normal distribution with means 60 and 40 respectively, and with a 
standard deviation of 0, 1 or 5. The average per cycle considers both periods and the 30 repetitions of every set 
of parameters and error bars on the y axis represent the standard deviation of the ensemble. Graphs are slightly 
displaced on the x-axis for easier visualization.
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places a great deal of extra selection pressure. FF agents, however, can regulate their expenditure of energy 
based on their perception of the environment, remaining static (“sedentary”) during the abundance periods 
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Figure 5.   Comparison through a set of 10 “energy availability cycles” of uncertain duration of the average 
population at a particular cycle for FF agents with an accumulation level of 55 or 105, and for an initial 
population of 1680, 1260, 840 and 420 agents, for systems where the employed heuristic is; Top: repetition, 
Middle: imitation; or Bottom: inquiring. In these simulations, agents experience a period when food is 
regenerated immediately after being eaten, followed by a period where food is not regenerated. These periods 
are fixed to 60 and 40 time steps respectively. The average per cycle considers both periods and the 30 repetitions 
of every set of parameters and error bars on the y axis represent the standard deviation of the ensemble. Graphs 
are slightly displaced on the x-axis for easier visualization.
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as the resource regeneration guarantees the existence of food in the next time step. In the periods of scarcity, 
every amount of saved energy is vital. In this case, rather than a “thrifty” behaviour as being of relevance, we 
may speak of the possibility of a sedentary behaviour, that suppresses physical activity in circumstances where 
active foraging is not advantageous. Of course, this is not to say that active foraging is never useful. The capac-
ity to adapt foraging strategy to a predictable spatial distribution of food can result in a survival advantage44,47.

Thus, higher energy storage alone is not sufficient to survive. Rather, it is the intelligent balance between 
consumption in place versus movement that permits the higher accumulation level to exhibit an advantage. More 
generally, we see that the benefit of energy accumulation levels—the “thrifty genotype”—is dependent on the 
foraging strategy and heuristic used by the agent relative to the temporal availability of food and the competition 
from other agents. Of course, as emphasized, a necessary condition for taking advantage of exploiting a higher 
accumulation level is also the potential to keep consuming in order to reach that level above and beyond the 
short-term energy needs of the agent.

The existence of heuristics introduces an extra level of complexity by permitting agents to change their energy 
accumulation strategy in the case of imitation and inquiring, with the difference between them being that agents 
using the imitation heuristic simply copy at random an energy accumulation strategy in their community, 
whereas an agent using the inquiring strategy will always choose the best one in that community (in this case, 
the largest accumulation level). With repetition, there is no possibility for a level-55 agent to learn or copy the 
level-105 strategy, and therefore the mortality of the level-55 agents is almost total.

The heuristic does not determine the level of benefit of energy accumulation but affects the dynamics of com-
petition between agents (Fig. 4). The repetition heuristic for the level-105 agents is the most successful because 
it avoids both the mistakes associated with the imitation heuristic and the excessive level of initial success of the 
agents with the inquiring heuristic. For the imitation heuristic, level-105 agents may copy level-55 agents, as well 
as vice versa, and, in this case, those level-105 agents that have switched are more at risk. However, there is a bias, 
in that during the famine the level-55 agents will have a higher mortality rate and therefore there will be less of 
them to imitate, thus leading to a relative excess of level-105 agents. For the inquiring heuristic, many of the 840 
original level-55 agents have imitated the superior level-105 strategy. Those that don’t - die. The case that there 
is a collapse in the level-105 population after the second cycle is due to the fact that they are victims of their own 
success, with the resources available during the scarcity periods not sufficient to support such a large population. 
Agents with the 55-level adopt the 105-level as soon these agents can accumulate more than 55, and this trait 
spreads rapidly enough to dominate the population before the famine. With this strong presence of competing 
agents, frequently coinciding in the same positions, many agents die after the sudden peak of population. Fig. 4 
also shows the potentially devastating affect of unpredictable variation in the food distribution, where for STD=5 
the highest accumulation level cannot survive independently of the heuristic used. This is a consequence of a 
period of scarcity that just lasts too long for the maximum acquired energy. Finally, in Fig. 5 the differences due 
to initial population size show how the latter affects the degree of competition between agents and also the notion 
of just how scarce resources become in the scarcity periods. The lower the population density the more resources 
are left over at the end of the abundance periods and therefore the less the competitive advantage of the higher 
accumulation level agents. Similarly, the collapse in population in the case of the inquiring agents with level 105 
is reduced, as the degree of intra-specific competition is now less.

Two important characteristics of the obesity epidemic are its ubiquity and its resilience. With respect to ubiq-
uity: What differs between one country and another is not whether there is a problem with overweightedness 
and obesity, and its concomitant health problems, but, rather, just how severe the problem is. Effectively, up to 
now only some sub-Saharan countries have avoided the problem. With respect to resilience, it exists at both the 
individual level and the group level, where, at the individual level, reversion of the obese state to normal weight 
is very difficult48, while, at the group level, it has been exceedingly difficult to design public health policies that 
have both a significant impact and are widely adopted by the population.

Two potential, complementary explanations for the ubiquity of the obesity epidemic are genetics, such as 
the thrifty genotype hypothesis, and the recent development of an obesogenic environment. Thrifty genotype 
explanations blame our genetic heritage, but in a causally indirect way, in that the purported genes are associated 
with physiological adaptations that make it easier to get fat. On the other hand, blaming the environment seems 
to neglect the fact that we ourselves are the creators of that environment. It is undeniable that widespread obesity 
was not a problem for our prehistoric ancestors, but that it is now. But how do you test hypotheses about such 
changes? ABM are one promising avenue for creating and testing such hypotheses. If we take our energy storage 
parameter as a proxy for a “physiological” thrifty gene, we have shown that it can offer a selective advantage in 
the context of resource environments that exhibit seasonal variability, as is common in many traditional socie-
ties and was probably true for our early ancestors, with the abundance period being essential in order to store 
up energy in the first place. However, we have also shown that there must be present two important behaviour 
types - conducts - in order for extra energy storage to be a useful adaptation: consumption over expenditure and 
sedentariness. By sedentariness, we mean that energy expenditure by unnecessary activity is selected against. 
This is manifest in the success of the FF strategy, where movement is initiated only if there is no food resource 
in the agent’s cell but there is in an adjacent cell.

As our results indicate that there is a selective advantage in higher accumulation and sedentariness in energy 
environments that have periods of abundance and scarcity and, more generally, uncertainty, we must ask how 
might this selective advantage have manifested itself? Such a strong selective effect must surely have induced, 
depending on the modeled timescale, a genetic or cultural response, and therefore, subsequently, left a strong 
genetic or cultural imprint. We believe that the legacy of an imprinted tendency to overconsume and be seden-
tary, when combined with a “thrifty gene” physiological response that gives the opportunity to store the excess 
energy, led to the current obesity epidemic. Indeed, our simulation of an energy rich environment after a period 
of selection through abundance-scarcity cycles clearly shows that agents reach their maximum energy storage 



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7975  | https://doi.org/10.1038/s41598-023-33139-6

www.nature.com/scientificreports/

through the twin effects of overconsumption and sedentariness. It is here again that the question of what the 
energy accumulation level represents enters. We argue that taken as a “normal” level, in evolutionary terms it 
represents the tuned balance between the benefit of energy accumulation in situations of food scarcity with the, 
here implicit, costs of excess adiposity. The more constant the food environment the less the need for energy stor-
age. However, given that, presumably, our normal levels of fat of  10-25% are an adaptation to past food environ-
ments and, as we have shown, that overconsumption and sedentariness were necessary behavioral corollaries in 
order to maintain normal fat levels, our on-demand and constant food environment, coupled with the previously 
adaptive overconsumption and sedentariness behaviors, has led to fat accumulation beyond this normal level.

Although there is much future work to be done, we can see the subtle complexity that enters when adding 
in heuristics which, here, represent variation, and can be thought of as analogs of mutation or learning. Heuris-
tics change the competition between agents, including those of the same type. These changes can temporarily 
exacerbate the advantage of accumulating behaviors. This is evident, for example, when on a short time scale it 
is much better for a population of these agents to use an inquiring heuristic, while, in contrast, in the long term 
it is better to use a repetition heuristic.

Finally, it is important to indicate the limitations of this study. Obesity is a consequence of long term imbal-
ance between energy expenditure and energy consumption, both of which are immensely complex. We have 
made enormous simplifications while, we hope, capturing important elements, such as basal metabolism and the 
costs of foraging on the energy expense side, and overconsumption on the other side. Our foraging strategies are 
simple relative to the complexity of those that exist in humans or, indeed, most animals. Similarly, we have also 
considered only a particular set of food environments that are controlled by one parameter, pg and concentrated 
on changes in the temporal as opposed to spatial variability. There is a great deal of literature, both theoretical 
and observational (see for example45 ), that considers the subtle interplay between which foraging strategies, 
e.g., Brownian motion versus Levy walks, are associated with which food environments, e.g., random and dense 
versus patchy. Thus, as well as exploring more fully the parameter space of the current ABM, there is huge scope 
for including new parameters. The simplicity of our agents implies that they do not capture the complexity of 
the evolution of human behavior. However, the simplicity is such that we believe that our results are applicable 
to any “creatures” that have to survive in environments with strong seasonal variation in food availability.

Data availibility
The datasets generated during and/or analysed during the current study are available in the ABM Heuristic 
Decision-Making Energy repository, https://​figsh​are.​com/​proje​cts/​ABM_​Heuri​stic_​Decis​ion-​Making_​Energy/​
121542.
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