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Neural networks determination 
of material elastic constants 
and structures in nematic complex 
fluids
Jaka Zaplotnik 1,2*, Jaka Pišljar 2, Miha Škarabot 2 & Miha Ravnik 1,2

Supervised machine learning and artificial neural network approaches can allow for the determination 
of selected material parameters or structures from a measurable signal without knowing the exact 
mathematical relationship between them. Here, we demonstrate that material nematic elastic 
constants and the initial structural material configuration can be found using sequential neural 
networks applied to the transmmited time-dependent light intensity through the nematic liquid 
crystal (NLC) sample under crossed polarizers. Specifically, we simulate multiple times the relaxation 
of the NLC from a random (qeunched) initial state to the equilibirum for random values of elastic 
constants and, simultaneously, the transmittance of the sample for monochromatic polarized light. 
The obtained time-dependent light transmittances and the corresponding elastic constants form a 
training data set on which the neural network is trained, which allows for the determination of the 
elastic constants, as well as the initial state of the director. Finally, we demonstrate that the neural 
network trained on numerically generated examples can also be used to determine elastic constants 
from experimentally measured data, finding good agreement between experiments and neural 
network predictions.

Machine learning (ML) methods are increasingly used in different contexts of materials physics, such as for the 
discovery of new materials with desired  properties1,2, for the identification of phases, phase  transitions3,4 and 
order parameters for several  Hamiltonians5. In suspensions of active Brownian particles, the belonging of single 
particles to possible phases can be predicted from their individual features using artificial neural  networks6. ML 
is utilized in modeling of structures of self-assembled  lipids7, characterizing 3-dimensional colloidal  systems8, 
analysis of complex local structure of liquid crystal  polymers9, acceleration of simulations of  fluids10 and other 
soft matter, for example active  matter11 including active  nematics12–14. Deep learning algorithms are also becom-
ing useful analytical tools for microscopic image  analysis15,16 and micro-praticle  tracking17. Neural networks can 
be employed to estimate Reynolds number for flows around  cylinders18 and also for drag prediction of arbitrary 
2D shapes in laminar flow at low Reynolds  number19. ML algorithms can be exploited to determine the order 
parameter, the temperature of a  sample20,  phases21 and phase transition  temperatures22 of liquid crystals, and also 
pitch lengths of cholesteric liquid  crystals23 from polarized light microscopy images as well as to identify types 
of topological defects in NLCs from the known director  field24 or to predict the specific heat of newly designed 
 proteins25. ML algorithms, specifically linear support vector machines, have also been employed as classifiers to 
optimize automated liquid crystal-based chemical  sensors26. Furthermore, by combining observation of liquid 
crystal droplets and machine learning, it is possible to identify and quantify endotoxins from different bacterial 
 species27.

Soft matter equilibrium is at the mesoscopic level determined by the minimum of the total free energy, and 
for nematic complex fluids, the leading—elastic—free energy is determined by three elastic constants K11 , K22 , 
and K33 that are attributed to the three fundamental elastic modes: splay, twist, and bend, correspondingly. The 
common and established techniques for measuring the elastic constants are based on Fréedericksz  transition28, 
where the abrupt change of the molecular ordering director field can be detected by optical or calorimetric 
measurements. Typically, a specific cell is needed to measure a distinct elastic constant; however, methods that 
include hybrid cells allow measurements of all three elastic constants  simultaneously29. The measurement can also 
be done all-optically using polarized laser beams that induce optical Fréedericksz  transition30 or by comparing 
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structural transitions in experimental samples and numerically simulated cholesteric LC droplets under electric 
 field31. More challenging than the measurement of material parameters, such as elastic constants, can be the 
recognition of the liquid crystal director structure. Full three-dimensional spatial liquid crystal orientational 
profiles can be determined from angular dependence of fluorescence in nematics using fluorescent confocal 
polarising microscopy (FCPM)32,33 or alternatively, the dielectric tensor and the corresponding director field 
can be reconstructed by tomographic  approaches34.

In this study, we develop a neural networks-based method for the determination of elastic constants and 
simple nematic structures from standard light transmittance measurement of a confined nematic sample between 
crossed polarizers during the dynamical relaxation of the nematic to the minimum free energy state from an 
arbitrary initial state, such as induced by random electric field. Specifically, the elastic constants are determined 
by an artificial neural network (ANN) that is trained beforehand on thousands of pairs of numerically simu-
lated transmittances for various initial states and random elastic constants. The method is validated against full 
experiments measurement data, finding very good agreement between predicted and actual elastic constants. 
Complementary, also the method can yield the initial configuration of the director field from the time-dependent 
transmittance after or if the elastic constants are known.

Results
The developed neural networks-based method for determining elastic constants is based on the combined mod-
eling of (i) liquid crystal effective dynamics, (ii) light transmission, and (iii) supervised machine learning, as 
then applicable both to experimental or modeling data. The method starts by calculating a large number of time-
dependent light beam transmittance functions I(t) during the relaxation of the NLC sample that correspond 
to different elastic constants, which we then use to train the neural network that recognizes elastic constants 
from a simulated measurement. Later, the well-trained neural network is used to predict elastic constants also 
from signals measured from real samples in the laboratory. A general overview of the method, which could, in 
principle, be used for any other experimentally relevant setup and determining other material parameters, is 
shown in Fig. 1. Simulation of LC profiles is explained in Methods.

Neural networks based method for determining elastic constants. The orientational dynamics of 
a nematic liquid crystal depends on the initial state, rotational viscosity γ1 , cell thickness D and also on Frank 
elastic constants. Therefore, if the director field is initially deformed by short pulses of the electric or magnetic 
field, it will reconfigure back to the equilibrium state after the fields are turned off. Consequently, the intensity 
of the transmitted light through the liquid crystal cell between the crossed polarizers also varies during the 
relaxation and its time-dependence therefore indirectly carries information about the elastic constants. So the 
idea of this method is to use a neural network to identify elastic constants from the time-dependent intensities 
of transmitted light, regardless of the initial state of the director. However, to perform this task, the neural net-
work must be trained on data, i.e. on many examples of time-dependent intensities I(t) and associated elastic 
constants. In the setup for the determination of the nematic elastic constants, we assume a specific cell geom-
etry where the liquid crystal is confined in a thin cell of thickness D ∼ 10 µm with strong anchoring which is 
uniform in x and y directions on both boundaries, so that the director, varies only along the z axis and in time 
t, n = n(z, t) = (nx(z, t), ny(z, t), nz(z, t)) = (cosφ(z, t) cos θ(z, t), sin φ(z, t) cos θ(z, t), sin θ(z, t)) , where 
θ ∈ [−π/2,π/2] and φ ∈ [−π ,π ] are spherical angles. For determining only splay and bend constants, K11 and 
K33 , even more simple 2D director geometry (i.e. director profile variability), n(z, t) = (cos θ(z, t), 0, sin θ(z, t)) , 
proves sufficient.

Figure 1.  Graphical overview of the method for the identification of unknown parameters of dynamical 
systems based on numerical simulations and artificial neural networks. In this study, such an approach was used 
to determine Frank nematic elastic constants from measured time-dependent intensities of transmitted light 
through liquid crystals.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6028  | https://doi.org/10.1038/s41598-023-33134-x

www.nature.com/scientificreports/

Determining K11 and K33. The scheme of the method for determining K11 and K33 is shown in Fig. 2. To create 
a training set, we start with generating a pair of random elastic constants K11 and K33 from the uniform distribu-
tion in the interval of possible expected values. For example, to predict the elastic constants of 5CB liquid crystal 
at approx 23 °C, we choose elastic constants from the uniform distribution U(2 pN, 18 pN) as we expect the 
actual constants somewhere within this  interval29,35,36. Next, the initial non-equilibrium state of the director 
n(z, t = 0) = (cos θ(z, t = 0), 0, sin θ(z, t = 0)) is set by generating a random, not necessarily physically mean-
ingful smooth 1D function θ(z, t = 0) for z ∈ [0,D] by quadratic interpolation between a random number of 
points at different random positions within the interval [0, D]. Having the initial state n(z, t = 0) , a pair of elas-
tic constants and the rotational viscosity γ1 (e.g. 0.098 Pa s for 5CB at the room  temperature37,38), the dynamics 
n(z, t) is numericallly simulated (see “Methods”). The boundary conditions n(z = 0, t) and n(z = D, t) are 
determined by the selected anchoring type on each boundary. Different combinations of planar ( θ = 0 ) and 
homeotropic ( θ = π/2 ) anchoring are tested. From the configuration of the director at each time step, the trans-
mission of light through crossed polarizers and the sample of reconfiguring liquid crystal between them are 
calculated using the Jones matrix  formalism39,40. We comment that more advanced light propagation methods 
could also be used, such as finite difference time domain (FDTD)41, but give no qualitative difference for the 
considered nematic geometries. The values of the ordinary and extraordinary refractive indices, the thickness of 
the cell and the spectrum of the light source are required to be known precisely for particular liquid crystal mate-
rial and experimental setting. In this way, the time dependence of the transmittance I(t) is calculated and discre-
tized at, for example, 500 time steps for each pair of corresponding random elastic constants and the initial state 

Figure 2.  Scheme of neural network-based method for determining the elastic constants of splay ( K11 ) and 
bend ( K33 ) deformations. First, the elastic constants are randomly set (1), then the random initial state of the 
director, n(z, t = 0) , is generated (2), and accordingly, the dynamics of the director n(z, t) is calculated (3) that 
allows us to simulate the time dependence of the intensity of transmitted light through the sample between 
crossed polarizers (4). This is repeated 200,000 times to generate training and a validation data set. Once the 
neural network is well-trained, the experimentally measured intensity I(t) can be used to determine the elastic 
constants of a real liquid crystal sample. For example, for the determination of elastic constants of 5CB, the cell 
thickness was D = 10 µ m and the time interval was T = 1.28 s.
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of the director. Repeating this 200,000 times, a set of 200,000 pairs of input vectors 
Xi = [Ii(t = 0), Ii(t = �t), ..., Ii(t = T = 499�t)] and expected (true) output vectors Ti =

[
K̃ i
11, K̃

i
33

]
 , packed 

as {(X1,T1), ..., (X200000,T200000)} , is obtained, which is later split into a training and a validation data set of 
lengths 185,000 and 15,000, respectively. The time of the interval T depends on the geometry and rotational 
viscosity γ1 , and we set it to such a value that the intensity I(t) saturates and effectively becomes constant. For 
training, the data is – as usual for neural network  training42 – linearly scaled onto the [0, 1] interval. While the 
relative intensities I(t) are already limited to this interval by themselves, we transform elastic constants by the 
“MinMaxScaler” as K̃ i
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))
 and analogously for K̃33 . The 

training data set is used to train the weights and biases of a dense sequential neural network so that the difference 
between the predicted output Y and the expected output T iteratively becomes as small as possible. To quantify 
the difference, the mean absolute error was used as a loss function. The validation set is used to test the neural 
network’s performance for data that was not used for training. Training via Adam optimization  algorithm43 was 
performed using Tensorflow Keras  software44,45 with batch size 25 and learning rate η = 0.0003 . A neural net-
work with an input layer of 500 neurons and four hidden layers of 500, 400, 250, and 100 neurons and rectified 
linear unit (ReLU) activation functions and an output layer of two neurons with sigmoid activation functions 
was used. It turns out that the network’s architecture can be substantially varied as long as the total number of 
parameters (connections between neurons) is large enough (for our study, larger than order-of-magnitude 
∼ 105 ). As observed, adding more layers or increasing the number of neurons in layers in the described model 
does not significantly improve its accuracy.

A neural network can be trained to recognize both elastic constants K11 and K33 from time-dependent trans-
mittances I(t) through samples with n(z, t) = (cos θ(z, t), 0, sin θ(z, t)) director geometry only if the planar 
( θ(z = 0) = 0 ) and the homeotropic ( θ(z = D) = π/2 ) anchoring are used at the opposite cell surfaces. Planar-
planar anchoring geometry allows us to determine K11 only, while in cells with homeotropic anchoring on both 
surfaces, only K33 can be determined. This is shown in Fig. 3, where 2D histograms show the number count of 
points in particular sections of the 2D space of true versus predicted constants for examples from the validation 
set. For a single type of anchoring on both plates, the equilibrium orientation of molecules is always constant 

Figure 3.  Comparison of predicted and actual elastic constants K11 and K33 from the validation data set with 
n(z, t) = (cos θ(z, t), 0, sin θ(z, t)) director geometry and three different combinations of anchoring. Planar-
planar geometry (a) allows for precisely predicting K11 but not K33 , using homeotropic-homeotropic geometry 
(b), K33 can be determined, whereas in planar-homeotropic geometry (c), one can train a neural network to 
determine both elastic constants K11 and K33 at once. The planar-homeotropic configuration is later also used in 
experiments.
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along z-axis, either θ(z, t → ∞) = 0 or θ(z, t → ∞) = π/2 , regardless of the elastic constants. Consequently, the 
transmittance after relaxation, I(t → ∞) , does not depend on them and therefore the information about elastic 
constants is efffectively embedded in the effective dynamics of the time-dependent I(t). In the planar-planar 
geometry, the dynamics in the last part of the relaxation, when the deformations are small, and the director is 
only slightly different from its equilibrium configuration n(z, t → ∞) = (1, 0, 0) , is mainly governed by K11 . 
This follows from the fact that in a small-deformations regime, (∂nz/∂z)2 ≫ (∂nx/∂z)

2 and therefore the Frank-
Oseen elastic free energy density (“Methods”: Eq. 1) simplifies to fFO ≈ K11/2(∂nz/∂z)

2 . This is the reason why 
only K11 can be determined in such geometry. In homeotropic-homeotropic geometry, it is just the opposite. The 
dynamics is governed by K33 and therefore only K33 can be determined. However, the equilibrium configuration 
of the director in a cell with planar-homeotropic anchoring geometry is described by θ(z, t → ∞) = πz/2D if 
K11 = K33 and by a convex or a concave function θ(z, t → ∞) when K11 > K33 or K11 < K33 , respectively. This 
results also in the dependence of I(t → ∞) on both elastic constants and for this reason, I(t) carries more infor-
mation in such geometry and it is possible to determine both elastic constants at the same time. Consequently, 
such geometry has been chosen to be studied in more detail. As depicted by the red curve in Fig. 6, the mean 
absolute error of the predicted elastic constants can decrease down to σKii ≈ 0.5 pN after 60 epochs of training 
and batch size 25 using the training set corresponding to the parameters, described in the caption of Fig. 4.

Of course, the prediction depends on the accuracy of other parameters (refractive indices, no , ne , thickness of 
the cell, D, rotational viscosity, γ1 ) that should therefore be known as precisely as possible. For example, the cell 
thickness and the refractive indices explicitly determine the phase difference between ordinary and extraordinary 
polarization and thereby the magnitude of the light intensity, whereas the rotational viscosity directly scales with 
the elastic constants and in turn with the I(t) curves in time. In Fig. 4, we show the distributions of the elastic 
constants determined by the neural network that was trained on the data set corresponding to D = 15.0 µm , 
no = 1.523 , ne = 1.744 , γ1 = 0.20 Pa s and tested for time-dependent transmittances that were simulated in sys-
tems with elastic constants K11 = 11.0 pN , K33 = 17.0 pN , but slightly modified parameters D, no , ne , γ1 . Training 
a neural network with data corresponding to the inaccurate thickness of the cell D or refracitve indices no , ne 
causes the predicted elastic constants to be in the wrong ratio, while the inaccuracy of the rotational viscosity γ1 
causes that both predicted constants are shifted by the same factor.

Once the neural network is well-trained from numerically generated data pairs ( X,T ) calculated with the 
same thickness of the cell D, refractive indices no , ne and the rotational viscosity γ1 as used in the experimental 

Figure 4.  Sensitivity of the method for determining K11 and K33 to the inaccuracy of parameters used to 
generate the training data. The neural network that predicts K11 and K33 from I(t) is trained on data from 
simulations with D = 15 µm , γ1 = 0.200 Pa s, no = 1.523 , and ne = 1.744 . If the neural network is used to 
predict elastic constants of a sample with actual constants K11 = 11 pN , K33 = 17 pN and exactly the same 
parameters ( D, γ1, no, ne ), good quality of prediction is shown.
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setup, the trained network can be utilized to predict elastic constants of a real sample from an experimentally 
measured I(t) as well.

Method validation: prediction of K11 and K33 from experimental data. Experimentally, the nematic liquid crys-
tal samples of 5CB and E7 were used in D = 10.0 µm and D = 15.0 µm thick cells, respectively, with strong 
uniform planar anchoring at the bottom ( z = 0 ) and homeotropic anchoring at the top surface ( z = D ) in both 
cases. The sample of the NLC between crossed polarizers was illuminated by a lamp with a known spectrum 
and the transmitted light was measured. First, using transparent electrodes positioned at the boundaries of the 
cell, the director was randomly deformed within the x-z plane by the pulses of the electric field at times t < 0 
and after the voltage was turned off at t = 0 , the director freely relaxed from its randomly deformed initial state 
to the minimum free energy state. 30 experimental measurements I(t) were done for each material and then 
normalized to the interval [0, 1] and interpolated to 500 time steps within the same time domain as numerically 
simulated intensities that were used for training, [0,T = 499�t] . Since the performance of our method does not 
depend on the initial state of the director – due to the variety of the director initial states used for the training data 
set – the transmittance I(t) could be measured after the sample was already partially relaxed. This allows us that 
the measured intensities I(t) can be interpolated to many random intervals [�,�+ T] , where max(�) = T/10 , 
to increase the number of inputs X and consequently get more results Y = [K11 , K33] to achieve better statistics 
of the predicted values.

The measured time-dependent intensities and distributions of predicted elastic constants for the 5CB and 
the E7 liquid crystal samples at room temperature (approx. 23 °C) are shown in Fig. 5. In each histogram, there 
are five different distributions of predictions for K11 and K33 made by five differently trained neural networks. 
The weights and biases of the networks are always initially set to random  values42 and since the number of them 
is very large, their final values are different after each training, but the predictions are generally still similar. The 
transposed matrices of the values of weights (of size 100× 2 ) between the last hidden layer (of size 100) and the 
output layer (of size 2) from the networks predicting elastic constants of the E7 sample are shown in the panel 
(g) of Fig. 5. The elastic constants determined by neural networks are compared to the values published in the 
literature in Table 1. As illustrated in Fig. 4, the accuracy of the predicted elastic constants depends on the accu-
racy of different material and geometrical parameters, such as D, no , ne , and γ1 . In the used (experimental) setup, 
the thickness of the cell was measured to ±0.1µ m accuracy, the refractive indices to ±0.001 accuracy, in agree-
ment with typical values reported in the  literature46–48. Rotational viscosity γ1 was taken from the  literature37,38,49.

By increasing the number of training epochs, the mean absolute error of predicted constants for numeri-
cal examples from the validation set decreases, as shown by the red curve in Fig. 6, but the predictions from 
experimental measurements of the transmittance I(t) become increasingly inaccurate, compared to the expected 
 values51, K11 ≈ 11.1 pN , K33 ≈ 17.1 pN , as shown by blue and green histograms in Fig. 6. Besides that, multiple 
peaks can emerge in the distributions of elastic constants determined by neural networks. We speculate that 
the reason is the following. Differences between the measured and the simulated time-dependent intensities are 
inevitable: There are always inaccuracies in the parameters (D, no , ne , γ1 ) that are used to generate the training 
data, the backflow and the light scattering are neglected in simulations, there is also some noise in the experi-
mental measurements. Therefore, we can only approximately simulate the transmittances I(t). Besides that, it is 
known that neural networks can become  overfitted42,53 and therefore less general and more sensitive to details 
and noise during training with the increasing number of training epochs. We observe that as long as the model 
is general enough (after less than ∼ 10 epochs), the distributions of the predicted constants are broader but 
centered near the actual constants, while after many ( � 20 ) epochs, the distributions of the predictions get nar-
rower but less accurate. For this reason, to achieve optimal predictions, one should not over-train the network 
when the aim is to predict material parameters from experimentally measured signals that are, in details, always 
slightly different from the simulated ones. Therefore, to avoid overfitting, we stopped training after 10 or even 
fewer epochs of training. In Fig. 5 and in Table 1, the predicted elastic constants were determined by models 
that were trained in 5 epochs.

Determining K11 , K22 and K33. To extract all three elastic constants K11 , K22 and K33 from I(t), it 
proves that more complex deformations of the director that include twist are needed to emerge in 
the measuring cell or geometry. To keep the cell geometry, therefore, the director parametrization 
n(z, t) = (nx(z, t), ny(z, t), nz(z, t)) = (cosφ(z, t) cos θ(z, t), sin φ(z, t) cos θ(z, t), sin θ(z, t)) with infinitely 
strong anchoring that gives fixed boundary conditions φ(z = 0, t) , θ(z = 0, t) , φ(z = D, t) , θ(z = D, t) is 
assumed. The initial state of the director in numerical simulations is then determined by two random functions 
θ(z, t = 0) and φ(z, t = 0) . The transmittance is again simulated similarly using the Jones formalism, and the 
training of neural networks is almost the same as for the determination of two constants except for the output 
vector that is, in this case, 3-dimensional (for the three elastic constants), Ti = [Ki

11,K
i
22,K

i
33].

As it is shown in Fig. 7, we have found out that in hybrid aligned nematic (HAN) cells (panel (a)) and 
in twisted nematic (TN) cells (panel (b)), determination of K11 , K22 and K33 at once is not possible, while 
in a tilted twist nematic (TTN) cell with planar ( θ(z = 0) = 0 , φ(z = 0) = 0 ) and tilted ( θ(z = D) = π/3 , 
φ(z = D) = π/2 ) anchoring (panel (c)), the I(t) apparently carries information about all three constants, that 
can therefore be determined by a properly trained neural network. The experimental realization of such cells is 
beyond the scope of this work, but is clearly  realizable54.

Determination of initial director configurations. As an alternative use of our method, if all material 
parameters — including elastic constants — are known, our neural networks methodology can also be used to 



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6028  | https://doi.org/10.1038/s41598-023-33134-x

www.nature.com/scientificreports/

predict the initial director field n(z, t = 0) , from the time-dependent transmittance I(t). Below, we show results 
for effective 2D director geometry with n(z, t) = (nx(z, t), 0, nz(z, t)) = (cos θ(z, t), 0, sin θ(z, t)).

U s i n g  a  d a t a  s e t  o f  3 9 0 , 0 0 0  p a i r s 
(X,T) = ([I(t)], [θ(z, t = 0)]) = ([I(t = 0), I(t = �t), ..., I(t = 499�t)], [θ(z = 0, t =

0), θ(z = h, t = 0), ..., θ(z = 199h, t = 0)])
 , that is created 

in a similar way as in “Neural networks based method for determining elastic constants” section but with fixed 
elastic constants, we train the neural network with an input layer of size 500 and four fully-connected hidden 
layers built of 800, 600, 400, 200 neurons with rectified linear unit (ReLU) activation functions and an output 
layer of size 200 with linear activation function. To train the network, the mean absolute error of the predicted 
θ(z, t = 0) is minimized.

In Fig. 8, we compare neural network predictions of initial states of the director, described by θ(z, t = 0) , with 
actual ones for differently complex initial states, where the complexity is quantified by the number of inflection 
points in profiles. It is shown in panel (b) that this method works well when the actual θTrue(z, t = 0) has zero 
inflection points, while the increasing number of inflection points results in an increasing prediction mean 
absolute error, but as shown in examples in panel (a) in Fig. 8, the approximate shape can still be determined. 
Like the method for determining the elastic constants, this one is also sensitive to the inaccuracy of the input 
parameters using which we generate the training set. This is illustrated in panel (c), which shows mean absolute 
errors of predictions for examples that were generated with slightly different elastic constant K33 comparing to 
K33 = 17 pN used for the generation of training data. Similar discrepancy is expected when other parameters 

Figure 5.  Results from experimentally measured data. Panels (a) and (d) show the measurements of the time-
dependent intensities I(t) in 5CB and E7 at room temperature. Different curves correspond to different initial 
states of the director θ(z, t = 0) caused by random electric pulses. Panels (b), (c), (e), (f) show the distributions 
of elastic constants of 5CB and E7 determined by five independently trained neural networks for each material. 
The following parameters were used to build the training data sets in accordance with the experimental setup: 
(i) 5CB setup has D = 10 µm , γ1 = 0.098 Pa s37,38, no = 1.5450 , ne = 1.740046–48, � = 505 nm , σ� = 20 nm , 
K11 and K33 range in the training data set U(2 pN, 18 pN) , and (ii) E7 setup has D = 15 µm , γ1 = 0.200 Pa s49, 
no = 1.5225 , ne = 1.743548, � = 595 nm , σ� = 8 nm , K11 and K33 range in the training data set U(5 pN, 25 pN) . 
Panel (g) shows the values of transposed matrices of weights between the last hidden layer and the output layer 
of five independently trained neural networks that were used to predict elastic constants of the E7 sample. All 
five neural networks had the same architecture and identical training hyperparameters (learning rate, batch size, 
number of epochs, etc.), and the same training data were used. This illustrates that there exist, due to a large 
number of model parameters (weights and biases) and random initialization of them, many neural networks 
with completely different combinations of weights that still result in very similar outputs of the network.
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(cell thickness, rotational viscosity, refractive indices) used for the creation of training data are different from the 
actual ones. However, knowing all material parameters, one could use neural networks to determine the initial 
structure of a nematic liquid crystal from the time-dependent transmittance I(t) measured during the recon-
figuration of the NLC to the equilibrium. In experiments, this could allow for the fast automatic determination 
of the director field that is a result of imposed external fields, including electric, magnetic, or light.

Conclusions
In conclusion, we have presented a method based on machine learning that can be used to determine selected 
material parameters, specifically the nematic elastic constants. Possible limitations of the method were analyzed, 
especially, the sensitivity on the values of other – to be known – material parameters. The presented approach of 
combining numerical simulations and experimental measurements by supervised machine learning and neural 
networks could also be generalized to determine other parameters of liquid crystals in nematic or other phases, 
such as Leslie viscosities, birefringence, dielectric anisotropy, anchoring strength, probably using more complex 
nematic director geometries. There are also no principal limitations for using a conceptually similar approach 
for determining selected dynamic or static parameters – such as tumbling parameter or degree of order coupling 
terms – for which established experimental methods are very scarce or do not even exist, including in passive, 
active, or biological soft matter.

Methods
Nematic and light transmission modeling. The established approach to characterization of nematic 
orientational order at the mesoscopic scales is by the construction of the total free energy  functional55. At tem-
peratures below the temperature of the nematic–isotropic phase transition and in the absence of external forces 
due to external fields or surface anchoring, the leading mechanism that affects the nematic ordering is nematic 
elasticity with any deformation of the orientational order from the unifrom state increasing the elastic free 

Figure 6.  Possible overfitting in the extraction of elastic constants from experimental data. Note how the 
accuracy of the method improves with the number of epochs for numerical validation data (in red, right axis), 
but can lose accuracy for a high number of epochs on experimental data (for epochs � 10 , in green and blue 
histograms, left axis). Dotted horizontal lines show the anticipated values of the elastic constants from the 
literature for E7. σKii  is mean absolute error of predicted elastic constants corresponding to the numerical 
examples from the validation set; the solid line represents the average that generally decreases from epoch to 
epoch. The probability density functions of predictions dp/dK11 and dp/dK33 after 1, 4, 9, 15, 22, 40, 64 epochs 
are shown. Bin width is 0.5 pN.

Table 1.  Comparison of our results from experimentally measured data to the values published in the 
literature.

 K11  K33

5CB 

Our results  6.2 pN ± 0.6 pN  10.5 pN ± 1.1 pN 

Literature 
50 6.5 pN  9.8 pN 
36  6.6 pN  9.0 pN 

E7 

Our results  11.5 pN ± 1.2 pN  17.4 pN ± 0.9 pN 

Literature  
51 11.1 pN  17.1 pN 
52  12 pN  17 pN 
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energy of the system. In the Frank-Oseen formulation, that is based on the director field n , which has n → −n 
symmetry, the elastic free energy can be written as FFO =

∫
fFOdV  , where fFO is the Frank-Oseen elastic free 

energy density

and K11 , K22 and K33 are the nematic elastic constants. The K11 , K22 , and K33 terms describe the increase of the 
free energy due to the splay, twist and bend deformations, respectively. The equilibrium configuration of the 
director n(r) with minimum full elastic free energy FFO in the absence of external electric or magnetic fields can 
be found by solving Euler-Lagrange (EL) equations hi = ∂

∂xj

fFO

∂

(
∂ni
∂xj

) −
∂fFO
∂ni

= 0, where h = (hx , hy , hz) is the 

molecular field which vanishes in the equilibrium. In principle, free energy (Eq. 1) could also include saddle-
splay f24 = −K24(∇ · (n(∇ · n)+ n× (∇ × n))) and splay-bend f13 = K13(∇ · (n(∇ · n))) free energy contribu-
tions. However, these free energy contributions are relevant only through the boundary  conditions35,56, and thus 
in simple geometries can usually be  ignorred57. Furthermore, especially in nematic geometries, which include 
topological defects, the tensorial Landau-de Gennes formulation of the free energy is more appropriate to  use40,58, 
and actually, the developed method could also be extended to such tensorial modeling of the nematic. We model 
the relaxation of the nematic from an arbitrary initial configuration to the equilibrium by the simplified relaxa-
tional dynamics equations:

where γ1 is the rotational viscosity, which notably ignores material flow and the corresponding backflow 
 coupling59–62. Such simplified dynamics is an approximation, but when compared to experiments, it often proves 
sufficient in confined systems and simpler geometries, where weak material flow or flow with a simple spatial 
profile can develop.

Due to their anisotropic structure, liquid crystals are optically birefringent, and consequently light which 
is traveling through them can change its phase, polarization, and direction of propagation. The latter can be 

(1)fFO =
K11

2
(∇ · n)2 +

K22

2
(n · ∇ × n)2 +

K33

2
(n×∇ × n)2,

(2)γ1
∂ni

∂t
= hi , i = x, y, z,

Figure 7.  Prediction of all three elastic constants from I(t) measured through samples with 3D director with 
1D dependence, n(z, t) = (nx(z, t), ny(z, t), nz(z, t)) . Comparison of predicted and actual elastic constants K11 , 
K22 , K33 from the numerical validation data sets with different anchoring combinations, marked by two-headed 
arrows in the first column. While in the hybrid-aligned nematic (HAN) cell (a), it is possible to determine 
K11 and K33 , in the twisted nematic (TN) cell (b), only K11 can be roughly predicted, but using a tilted twist 
nematic (TTN) cell with planar ( θ(z = 0) = 0 , φ(z = 0) = 0 ) and tilted ( θ(z = D) = π/3 , φ(z = D) = π/2 ) 
anchoring (c), it is achievable to extract all three constants from the time-dependent transmittance I(t) at once.
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neglected if the liquid crystal sample is thin and if the transmitted light intensity is measured close to the sample. 
In this case, the change in polarization of light when passing through a liquid crystal can be described by the basic 
Jones matrix formalism, where the liquid crystal acts as a phase retarder. If it is placed between crossed polar-
izers, its director field configuration can affect the phase change and thus the intensity of the transmitted light.

Experimental measurement. In the experiments, we have used cells with hybrid alignment nematic 
configuration where the bottom glass was covered with rubbed polyimide (SE-5291, Nissan) to achieve planar 
alignment and the second glass was covered with DMOAP silane (ABCR GmbH), which ensures perpendicular 
orientation at the top glass. The thickness of the cells was controlled with Mylar spacers and measured by the 
standard interferometric method using a spectrophotometer. ITO coated glasses were used that external elec-
tric field perpendicular to substrates was applied. The cells were filled with nematic liquid crystals 5CB or E7 
using a capillary effect. In the experiment, we have measured the intensity of transmitted light through the LC 
sample placed between the crossed polarizers using the optical microscope with 20x objective. The easy axis 
of the planar anchoring at the bottom surface was set at the angle 45° relative to polarizers. The sample was 
illuminated with two different LEDs with 505 and 590 nm (Thorlabs M505L3 and M590L4). Different starting 
position of the director profile was achieved by applying 100 ms electric pulse with a random shape using a 
programmable waveform generator (DG1022Z, Rigol). The transmitted intensity was measured with a photo-
diode (SM05PD1A, Thorlabs) and amplifier (PDA200C, Thorlabs) in combination with a digital oscilloscope 
(MS09404A, Agilent) and digital delay generator (DG645, Stanford research systems). The temperature of the 
samples was kept constant using a home-made heating stage.

Data availability
Sample data supporting this study’s findings which are used for training and testing neural networks in the cited 
Jupyter Notebook tutorial is archived in  Zenodo65. Complete data sets are available upon reasonable request 
from the first author J.Z.

Code availability
The method with relevant code is publicly available in an interactive Jupyt er Noteb ook tutorial on Google  Colab63 
and archived in  Zenodo64.

Figure 8.  Determination of initial non-equilibrium state of the director 
n(z, t = 0) = (cos θ(z, t = 0), 0, sin θ(z, t = 0)) from the time-dependent transmittance I(t) for a NLC with 
elastic constants K11 = 11 pN , K33 = 17 pN . Column (i) in panel (a) shows examples with 0 inflection points 
on actual θTrue(z, t = 0) profiles, in column (ii) there is 1 inflection point on each θTrue(z, t = 0) , etc. Panel (b) 
shows the mean absolute error of predicted θPred.(z, t = 0) that is lowest for “simple” curves without inflection 
points and increases with their number. The mean error is defined as 
|θTrue − θPred.|i = 1/Ni

∑Ni
n=1

(
1/Nr

∑Nr
j=1

∣∣∣θTruej − θPred.j

∣∣∣
)
 , where Ni is the number of validation pairs with i 

inflection points, and Nr = 200 is the number of discretization points. If the trained neural network is used for a 
nematic sample with slightly different elastic constants, the recognition of profiles θPred.(z, t = 0) becomes less 
accurate, as shown in panel (c).

https://colab.research.google.com/drive/1h28ZJu0KfTvrPmPv7ATahjb1PAPUDakd?usp=sharing
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