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Interrelationships between urban 
travel demand and electricity 
consumption: a deep learning 
approach
Ali Movahedi 1*, Amir Bahador Parsa 1, Anton Rozhkov 2, Dongwoo Lee 3, 
Abolfazl Kouros Mohammadian 1 & Sybil Derrible 1,4

The analysis of infrastructure use data in relation to other components of the infrastructure can 
help better understand the interrelationships between infrastructures to eventually enhance their 
sustainability and resilience. In this study, we focus on electricity consumption and travel demand. In 
short, the premise is that when people are in buildings consuming electricity, they are not generating 
traffic on roads, and vice versa, hence the presence of interrelationships. We use Long Short Term 
Memory (LSTM) networks to model electricity consumption patterns of zip codes based on the traffic 
volume of the same zip code and nearby zip codes. For this, we merge two datasets for November 
2017 in Chicago: (1) aggregated electricity use data in 30-min intervals within the city of Chicago and 
(2) traffic volume data captured on the Chicago expressway network. Four analyses are conducted 
to identify interrelationships: (a) correlation between two time series, (b) temporal relationships, (c) 
spatial relationships, and (d) prediction of electricity consumption based on the total traffic volume. 
Overall, from over 250 models, we identify and discuss complex interrelationships between travel 
demand and electricity consumption. We also analyze and discuss how and why model performance 
varies across Chicago.

The analysis of infrastructure use data in relation to other components of the infrastructure can help better 
understand interdependencies and interrelationships between them, with the potential to enhance their sustain-
ability and resilience. Indeed, no infrastructure system works in isolation. All infrastructure systems—including 
transport, water, wastewater, electricity, gas, and telecommunications—are  interdependent1,2. In part because 
of these interdependencies, but also intrinsic to how people live, the way infrastructure systems are used is also 
interrelated. For example, Movahedi and  Derrible3 showed that electricity, gas, and water consumption in large-
scale buildings are interrelated (i.e., the consumption of one can be predicted by the two others). Zhang and  Qian4 
classified the patterns of electricity consumption over a night to estimate the traffic congestion of a highway in 
the morning. Overall, infrastructure systems are often more interrelated than initially expected, for example by 
sharing physical surface and subsurface  space5 and by competing for time and  resources6,7.

In this study, by using zip code-level electricity data as well as traffic loop detector data, we seek to identify and 
understand interrelationships between travel demand and electricity demand. More precisely, using traffic data 
to count the number of vehicles entering and exiting a zip code can capture the number of people in a zip code 
at a given time who may be in buildings otherwise, consuming electricity. Concurrently, a decrease in electricity 
consumption can express that people have left a building and may use a vehicle, generating traffic. In this study, 
we use electricity consumption data of several zip codes in Chicago at 30-min intervals for November 2017. To 
achieve our goal, we use Long Short Term Memory (LSTM) network—a type of deep learning model—to model 
electricity consumption patterns of zip codes based on the traffic volume of the same zip code and nearby zip 
codes. The specific objectives of the study are to:
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• Understand the correlation between electricity consumption and traffic volume.
• Investigate the temporal relationships between electricity consumption and traffic volume.
• Investigate the spatial relationships between electricity consumption and traffic volume.
• Develop models to predict electricity consumption based on traffic volume.

In the next section, we review the literature on electricity consumption and traffic modeling, and on inter-
relationships between infrastructure systems in cities. After, we describe the electricity consumption and traffic 
datasets used in the study. Next, we go over the results by addressing each objective sequentially, and we then 
discuss these results. Finally, we explain in detail the methodological approach utilized in the study.

Literature review
The electricity power grid is a complex system with many  components8. The stable and uninterrupted operation 
of the power grid plays a vital role in economic development, national security, and overall social welfare. As of 
this writing, electricity cannot be cheaply and effectively stored in required massive amounts. As a result, electric 
utilities and other power market players must forecast electricity consumption in the (a) short-term (few minutes 
to hours), (b) mid-term (hours to a day ahead), and (c) long-term (seasonal/annual, up to a few years) in gen-
eration, transmission, and distribution networks. Thanks to the deployment of smart meters, predictions have 
become generally more accurate. This accurate forecasting of electricity consumption levels is crucial for power 
systems, and the selected method for making predictions provides a better understanding of the dynamics of the 
system and can even help ease operating costs for market players. The traditional predictive techniques include 
the construction of mathematical and statistical models such as auto-regressive and moving average (ARMA) 
 models9; auto-regressive integrated moving average (ARIMA)  models10; multiple linear regression (MLR) and 
principal component analysis (PCA)  models11; gray models (GM)12; and Kalman filter-based (KF)  models13. 
Nonetheless, traditional statistical models are known to be limited. For instance, GM models are not always 
effective for electrical load forecasting but work better for addressing small sample  problems14 and ARMA models 
may fail to consider the influence of random variables other than in typical time series forecasting  methods10,14. 
This means that traditional statistical models work well in normal daily conditions, but they become less reli-
able while dealing with meteorological, sociological, and economic  changes15 or with relations to other systems.

To deal with complex nonlinear relationships, machine learning (ML) and deep learning techniques are gen-
erally preferred. The following techniques are mentioned in the literature: artificial neural networks (ANN)16–18 
fuzzy-logic-based  algorithms19,20, genetic-algorithm-based (GA) neural  network21, support vector machine 
(SVM)22, tree-based  models23–25, LSTM-based neural  network26; single hidden layer network configurations 
with random weights (RWSLFN)27, and multilayer perceptron (MLP)28 to name a few. In the literature, LSTM 
has been shown to perform particularly well on time series data for a range of applications, including to predict 
the spread of COVID-1929–32. Specifically looking at traffic forecasting and flow prediction, several  studies33,34 
also found that LSTM performed better than traditional techniques like ARIMA or other ML techniques like 
support vector regression (SVR). In this study, we have opted to solely use LSTM as our main goal is not to find 
the best performing model but to investigate the presence of interrelationships between electricity consumption 
and traffic volume.

As many studies  demonstrate35–51, electricity consumption is linked to myriads of variables, from urban 
characteristics (e.g., morphology, density) and building characteristics (e.g., size and insulation technology) to 
weather characteristics (e.g., temperature and cloud coverage) and socio-economic and demographic characteris-
tics (e.g., household income and age). Yet, this list is not exhaustive. As infrastructure systems are interdependent 
and interrelated by  nature52, electricity consumption is also linked to demand patterns for other infrastructure 
services, such as residents commute time, traffic, and urban mobility patterns, suggesting that traffic network 
data can be used as a source of information to predict electricity consumption as  well53. To date, little research 
has been carried out and not many studies are available that focus on the interrelation between travel and elec-
tricity demand. Few studies explore the causal interdependencies between electricity, transport, and weather 
 data53,54. Gilanifar et al.55 developed a Bayesian Gaussian Process model that explores usage of electricity to 
enhance short-term load forecasting. Aparicio et al.56 studied the dependencies between power demand and 
road traffic data using linear correlation and compare the results with other standard features, such as historical 
load and temperature.

Data
Electricity. In this article, we work with anonymized energy usage data in 30-min intervals at the zip code 
level within the city of Chicago collected by the local utility Commonwealth Edison (ComEd) and accessible 
(for a fee)57. Each measurement in the dataset represents the total electricity consumed (in kWh) for a specific 
customer in a certain time interval (30 min). We decided to build our research on this dataset because we assume 
that the raw high-resolution interval data that we get directly from the automated metering infrastructure (AMI) 
have a high level of accuracy and fidelity.

Interval data from AMI has become widely available to utilities throughout the U.S.58. It is often used to 
identify energy use trends and peaks in the interest of anomaly  detection59 and to make predictions of electric-
ity  consumption60 to improve the stability of the power grid. Household data include load shapes measured 
at the household level considers seasonal and daily fluctuations and show significant differences in electricity 
consumption during the day, week, month, and year. We are interested in observing the loads in one month with 
a specific focus on the time of the day and the day of the week. We used residential electricity consumption from 
28 zip codes located along the main transport corridors of Chicago: I-290, I-90, I-55, I-57, and I-94 interstate 
expressways for the month of November 2017.
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While beneficial for both utilities and customers, data collected and utilized using AMI systems have caused 
concerns regarding customers’  privacy61. Although Martínez et al.62 observes a potential privacy issue of simple 
anonymization methods, the distribution of fine-grained data is normally considered acceptable as long as they 
cannot be linked to the households they originate from through an anonymization  process63.

In this study, we use data that consists of fine-grained records of electricity consumption aggregated by 5-digit 
zip codes where specific identifiers, including but not limited to name, address, and electric account number, are 
omitted. Table 1 shows average electricity consumption per building in each zip code (in kWh). The table also 
includes area (in square kilometers) and population (based in American Community Survey (ACS) 2019 5-Year 
Data) for each zip code for the interest of the reader.

Traffic. Traffic volume is captured by loop detectors on the Chicago expressway network. These data are col-
lected by the Gateway Traveler Information System and provided by the Illinois Department of Transportation 
(IDOT). For this study, 211 loop detectors across Chicago from the Kennedy (I-90/94), Eden (I-94), Eisenhower 
(I-290), Stevenson (I-55), Dan Ryan (I-90/94), Bishop Ford (I-94), and I-57 expressways are used. Each loop 
detector includes the number of cars that pass a point in the last 5 min. Standard data cleaning processes were 
applied to remove missing and erroneous data points that may originate from detector malfunction, pavement 
condition, or from any other reason. Finally, we aggregated traffic volumes to 30-min time periods to be able to 
merge the traffic dataset with the electricity consumption dataset. Table 2 shows the average traffic volume per 
lane per 5 min in each zip code across Chicago. Similar to Table 1, we added the area and population for each 
zip code. In this study, we only focus on 28 zip codes (out of 56 in Chicago) because the expressway system only 
cross 28 zip codes.

Results
Correlation between electricity consumption and traffic volume. First, we can look at the correla-
tion between two time-series datasets, traffic volume and electricity consumption. For that, we utilize the Pear-
son r correlation coefficient to measure the linear relation between electricity consumption and traffic volume. 
Specifically, we calculate the Pearson coefficients in three levels: loop detector, zip code, and citywide.

For each loop detector, we assign the zip code in which the loop detector is located. Then, we calculate the 
Pearson r value for each loop detector across the city. Figure 1a shows the histogram of the Pearson r values. 

Table 1.  Average electricity consumption (kWh).

Zip code 12 AM to 3 AM 3 AM to 6 AM 6 AM to 9 AM 9 AM to 12 PM 12 PM to 3 PM 3 PM to 6 PM 6 PM to 9 PM 9 PM to 12 AM Area  (km2) Population

60607 1.09 1.07 1.30 1.44 1.45 1.43 1.41 1.27 6.06 30,306

60608 0.57 0.56 0.66 0.71 0.71 0.70 0.71 0.65 16.78 80,011

60609 0.71 0.70 0.84 0.91 0.91 0.88 0.88 0.81 20.18 60,551

60612 0.69 0.68 0.83 0.92 0.91 0.88 0.85 0.79 9.63 32,240

60614 0.52 0.50 0.60 0.65 0.66 0.69 0.75 0.66 10.00 72,391

60616 0.53 0.51 0.58 0.63 0.63 0.64 0.67 0.62 11.58 52,557

60618 0.40 0.38 0.45 0.50 0.51 0.53 0.57 0.50 13.11 94,646

60619 0.39 0.37 0.40 0.42 0.42 0.43 0.48 0.45 15.85 61,372

60620 0.44 0.42 0.46 0.48 0.48 0.49 0.54 0.51 18.13 68,761

60621 0.47 0.43 0.47 0.50 0.49 0.50 0.53 0.50 9.71 26,736

60623 0.41 0.39 0.44 0.48 0.49 0.49 0.52 0.48 14.14 77,732

60624 0.50 0.48 0.55 0.61 0.60 0.60 0.61 0.56 9.19 35,054

60625 0.30 0.28 0.33 0.36 0.37 0.39 0.43 0.39 9.84 78,820

60628 0.58 0.56 0.61 0.64 0.63 0.64 0.68 0.66 28.62 65,008

60630 0.36 0.34 0.40 0.44 0.45 0.47 0.51 0.45 12.28 55,692

60631 0.42 0.40 0.49 0.56 0.56 0.59 0.63 0.55 9.71 28,864

60632 0.59 0.58 0.73 0.81 0.81 0.79 0.79 0.71 19.42 86,715

60633 0.57 0.56 0.64 0.66 0.64 0.64 0.69 0.65 30.10 12,720

60637 0.37 0.35 0.38 0.39 0.39 0.40 0.45 0.42 11.97 46,621

60641 0.36 0.34 0.41 0.45 0.46 0.47 0.51 0.45 10.44 70,163

60642 0.31 0.29 0.34 0.38 0.41 0.42 0.46 0.41 4.53 20,191

60643 0.50 0.47 0.53 0.57 0.56 0.60 0.66 0.60 19.09 48,572

60644 0.44 0.42 0.47 0.51 0.50 0.50 0.53 0.50 9.12 45,919

60647 0.37 0.34 0.40 0.44 0.45 0.47 0.51 0.53 10.33 85,658

60656 0.34 0.32 0.38 0.41 0.42 0.44 0.49 0.44 8.39 28,982

60661 0.95 0.94 1.16 1.31 1.31 1.28 1.22 1.10 0.80 10,734

60804 0.47 0.45 0.53 0.58 0.59 0.60 0.64 0.58 19.84 84,573

60827 0.45 0.43 0.48 0.50 0.49 0.50 0.54 0.51 18.16 27,946
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They are distributed between 0.004 and 0.81. The highest frequency of Pearson r values (66 out of total 211 loop 
detectors) is in the range [0.6, 0.7). To interpret properly the Pearson results we need to consider where zip 
codes with similar Pearson r values are located. Figure 2 shows the Pearson r values of the loop detectors and 
zip codes on a Chicago map. We can see that most loop detectors and zip codes with similar Pearson r values 
are located near one another.

At the zip code level, we consider all loop detectors in one zip code and calculate the Pearson r values for 
electricity consumption and traffic volume. Figure 1b shows that Pearson r values are distributed between 0.09 
and 0.66 with eight values being in the range [0.6, 0.7). Figure 2 shows how different zip codes have different 
correlations between electricity consumption and traffic volume. Except for a few zip codes, the figure suggests 
that the correlation is higher in the north side and the center of the city, and it decreases as we move south. This 
difference likely stems from the fact that expressways are used as the boundary between zip codes in the south. 
On a map, while individual loop detectors belong to one zip code, the drivers getting off the expressway may 

Table 2.  Average traffic volume (vehicles per lane per 5 min).

Zip code 12 AM to 3 AM 3 AM to 6 AM 6 AM to 9 AM 9 AM to 12 PM 12 PM to 3 PM 3 PM to 6 PM 6 PM to 9 PM 9 PM to 12 AM Area  (km2) Population

60607 20.32 20.97 43.89 44.20 44.65 42.37 42.66 39.62 6.06 30,306

60608 18.68 19.68 39.52 39.95 39.71 34.47 37.27 33.78 16.78 80,011

60609 18.15 19.54 40.87 42.86 47.02 41.59 39.89 35.95 20.18 60,551

60612 16.42 15.00 39.66 41.16 44.75 40.63 41.51 34.72 9.63 32,240

60614 22.42 22.10 43.20 53.33 54.79 46.30 48.54 42.88 10.00 72,391

60616 12.26 12.92 26.62 27.51 28.94 27.07 25.61 22.37 11.58 52,557

60618 13.68 15.46 32.49 35.05 38.01 34.61 35.17 29.71 13.11 94,646

60619 14.05 25.55 51.39 50.65 49.50 50.56 44.02 32.73 15.85 61,372

60620 18.61 19.11 43.09 45.61 48.40 47.05 43.99 37.78 18.13 68,761

60621 16.64 21.46 47.54 46.32 48.12 44.76 41.87 35.73 9.71 26,736

60623 20.71 21.47 42.82 43.25 47.07 45.43 47.08 37.84 14.14 77,732

60624 16.97 16.57 43.00 46.05 48.44 43.93 46.10 37.70 9.19 35,054

60625 14.80 14.69 41.18 48.03 51.21 49.72 44.90 34.15 9.84 78,820

60628 11.74 9.78 18.98 23.95 27.50 29.16 27.70 22.04 28.62 65,008

60630 16.74 18.72 39.09 44.45 46.00 41.39 41.16 36.40 12.28 55,692

60631 17.44 24.40 48.47 53.64 55.24 51.92 48.78 39.36 9.71 28,864

60632 16.60 21.48 42.88 41.39 43.04 45.05 42.88 32.50 19.42 86,715

60633 10.40 9.35 18.12 21.30 24.09 27.33 25.02 19.07 30.10 12,720

60637 22.51 15.16 39.94 44.95 50.27 39.65 42.16 42.02 11.97 46,621

60641 12.53 15.35 27.37 31.38 33.59 28.69 32.07 27.91 10.44 70,163

60642 16.92 17.39 36.33 39.14 37.31 35.46 38.64 33.75 4.53 20,191

60643 12.63 12.05 26.06 30.23 34.43 39.42 34.14 24.22 19.09 48,572

60644 16.25 17.75 38.98 45.32 46.45 42.77 45.15 36.64 9.12 45,919

60647 14.43 15.84 33.13 36.12 37.65 34.36 35.04 30.74 10.33 85,658

60656 20.44 24.41 47.95 54.78 56.17 54.05 51.49 44.28 8.39 28,982

60661 16.33 18.07 40.17 40.77 36.15 36.86 40.52 35.08 0.80 10,734

60804 15.58 21.48 38.39 40.01 44.50 47.07 44.23 31.76 19.84 84,573

60827 13.56 14.91 32.76 34.04 36.33 42.42 36.72 25.27 18.16 27,946

Figure 1.  Pearson r values.
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be going to the adjoining zip code. The low accuracy values therefore do not necessarily suggest the absence of 
interrelationships, but the lack adequate data.

At the citywide level, we use all the traffic volume data and the corresponding electricity consumption of the 
zip codes to calculate the overall Pearson r value for Chicago that comes to 0.14. Next, we consider a delay in the 
datasets since a person leaving a building can take time before reaching an expressway and vice versa. Specifi-
cally, we increase the delay from 30 min to one day in 30-miniute increments (i.e., 30 min, 60 min, 90 min, …, 
1 day) and calculate the correlation of the electricity consumption with the delayed traffic volume. The result of 
the overall Pearson coefficient correlation shows that the 60 min delay has the highest Pearson value with 0.16, 
which is low and does not suggest strong correlations at the citywide level.

Temporal relationships. The goal of this section is to investigate the temporal relationships between traffic 
volume and electricity consumption. For that, we train LSTM models using traffic volume to predict electricity 
consumption in a zip code. The first question that arises is the size of the time window that should be used. For 
example, if we want to predict electricity consumption of a zip code at 4:00 PM, is using traffic volume at 4:00 
PM in nearby loop detectors sufficient? Or is it better to consider two time windows with traffic volumes at 3:30 
PM and 4:00 PM together to predict the electricity consumption at 4:00 PM? Or is it better to consider more time 
windows, like 16 from 8:30 AM to 4:00 PM?

To answer this question, we test many time windows for each zip code and compare the performance of the 
model. Specifically, to predict electricity consumption at time t, first we use traffic volume at time t and train 
and assess the performance of the trained LSTM model. Then we use traffic volumes at times t and t −  30 min 
and perform the same analysis. The same procedure is repeated until 24 30-min periods are tested, representing 
a 12-h time window.

The results can be categorized into two groups. In group 1, increasing the time window steadily increases 
the model performance; Fig. 3 shows an example for zip code 60631. In group 2, increasing the time window 
initially increases the model performance, but only up to a point (around 16 time periods or 8 h); Fig. 3 shows 
an example for zip code 60616.

While every zip code has a specific optimal time window, a time window of 16 periods (8 h) tends to perform 
well across all zip codes since it shows both a high performance for groups 1 and 2 zip codes.

Figure 2.  Pearson’s r values—Chicago map. Environmental Systems Research Institute (Esri) ArcGIS Desktop 
10.8.1 commercial versions were used to perform preliminary data preparation and convert tabular data to 
spatial data. URL: https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- deskt op/ resou rces.

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
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These results are interesting and suggest that the temporal interrelationships between electricity use and 
travel demand are complex. In particular, we expected the optimal time window to be around 2–3 h for every 
zip code, to take into account typical rush hour periods, but we find that accuracy keeps increasing until at least 
8 h. This means that to predict electricity consumption at 5PM, the use of traffic data between 9AM and 5PM is 
preferred. We posit that a larger time window of 8 h better captures lifestyle elements, such as an 8-h workday, 
but this value could vary across by culture.

Spatial relationships. The goal of this section is to investigate the impact of the distance between zip codes 
and loop detectors on the relationships between electricity consumption and traffic volume. Therefore, in this 
section, first, we train LSTM models to predict electricity consumption based on the traffic data from the closest 
loop detectors, then we increase the distance between loop detectors and the zip code. Here, we use an 8-h time 
window in our LSTM models (as found preferable in the previous section). To choose the zip codes to study the 
spatial relationships, we consider four conditions to control the impact of traffic volume from one expressway 
on the electricity consumption of a zip code. First the zip code should be crossed by only one expressway. Sec-
ond, there should be only the loop detectors from the same expressway and no other loop detectors from other 
expressways in a radius of 5 km to limit the amount of noise fed to the model. Third, the zip code should be far 
enough from the boundaries of Chicago so we can have loop detectors on both side of the zip codes. Fourth, the 
accuracy of the LSTM model should be significantly more than zero to suggest the existence of a relationship. 
We applied these four conditions on the Chicago map and few zip codes satisfied them. As an example, we select 
three zip codes to study the relationships between electricity and travel demand.

To investigate the spatial relationship, we select one set of loop detectors that cross the zip code; each set 
has one loop detector in one direction of the expressway (toward the zip code) and one in the other direction 
(away from the zip code). The initial set is the ones closest to the centroid of the zip code. Then, we increase the 
distance and consider two new loop detectors further away from the centroid of the zip code. The procedure is 
repeated several times to loop detectors further away on the same expressway. Each time, a model is trained and 
the performance is compared.

Figure 4 shows the accuracy and errors of the models in terms of  R2, MAE, and RMSE. In Fig. 4a,b, the aver-
age distance between the set of loop detectors (one for each direction) and the centroid of the corresponding 
zone is shown on the x-axis.

The purple line in Fig. 4a shows the spatial relationship found in zip code 60624. Here, increasing the distance 
between loop detectors and zip code reduces the accuracy and increases the MAE and RMSE. As expected, 
increasing the distance reduces the relationships between electricity consumption and traffic volume in this case.

Second, the dark red line in Fig. 4a is for zip code 60618. There, we observe that by increasing the distance, the 
model accuracy first increases and then it decreases after a certain distance. This phenomenon was unexpected 
since it suggests that loop detectors located in other zip codes are better able to predict electricity consumption. 
To further analyze the spatial relationships, we can use all loop detectors in the same zip code to predict the 
electricity consumption, which we present in the next section.

Finally, the green line in Fig. 4a shows the third type of spatial relationship. Here, increasing distance has no 
straightforward impact on the model performance.

Overall, we find that complex and unobvious relationships can exist between electricity consumption and 
traffic volume. Nonetheless, we should consider that each zip code has its own attributes, and to capture these 
attributes we can include a zip-code level fixed effect as is common in econometrics. Fixed effect variables are 
used to capture unique features of a data point despite the presence of common  attributes63. What we can do here 
is to express  R2 values as a function of distance from the zip code centroid. But because electricity consumption 
is collected at the zip code level—a surface area in square kilometers—we should use the square of the distance 
in our model instead. Our model therefore becomes:

Figure 3.  Temporal interrelationships.
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where RSquaredij is the accuracy of model i in zip code j, distanceij is the distance between loop detectors and 
the zip code centroid in the model i in zip code j, zcj is the zip code fixed effect to distinguish between zip codes, 
εij is the error term, and a0 is the constant term.

The result of the regression is as follows a0 = 0.293 and a1 = −0.0052 with a p-value of 0.04, and the zip code 
fixed effect values are 0.317 for zip code 60618 and − 0.085 for 60624 (note that since we have three zip codes, we 

(1)RSquaredij = a0 + a1 × distance2ij + zcj + εij

Figure 4.  Spatial relationships between electricity consumption and travel demand.
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have two fixed effect values for the zip codes). The  R2 of the general fit is 0.78. Figure 4c shows the actual versus 
predicted values of  R2 using Eq. (1) and the coefficient values that we calculated. We find a negative relationship 
with the value of 0.0052 between distance squared and  R2 values. In other words, we find that increasing the 
squared distance by one square kilometer generally decreases the accuracy of the model by 0.0052. An ANOVA 
test is also performed to test the null hypothesis (i.e., whether all variables could be statistically zero). Table 3 
shows the result of the ANOVA test. Because the value of the F statistic is 21.77, which is greater than F(3, 
18) = 2.416, the null hypothesis can be rejected with a 99% confidence level.

Overall, despite a careful selection of zip codes, we can see that the spatial relationship between traffic volume 
and electricity consumption are also complex, but they exist. More work is needed to gain a better understanding 
of these relationships.

Prediction models across the city. Here, we train two sets of models. The first set of models uses all loop 
detectors in a zip code to predict the electricity consumption of the zip code. The second set of models uses single 
loop detectors to predict electricity consumption of the zip code in which they are located.

In the first set of models, we develop 28 LSTM models for the 28 zip codes that are crossed by at least one 
expressway in Chicago. The input of the models is 8 h of traffic volume collected by all loop detectors in a zip 
code (8 h is selected since it performed well across all zip codes in the temporal interrelationships section). The 
output is the average electricity consumption of the zip code at the end of the 8-h period.

Figure 5a shows maps of Chicago with the  R2, MAE, and RMSE values of the 28 LSTM models. First, we can 
see the overall performance of the models are better in the north side of Chicago than the south side. As men-
tioned above, one problem we face with the south side of Chicago is that the expressway serves as a boundary 
between zip codes. It is therefore more difficult to determine whether drivers exiting the expressway stay in the 
zip code where the loop detector is located or whether they go to the adjoining zip code.

In the second set of models, we train 211 LSTM models for the 211 loop detectors in Chicago to predict the 
electricity consumption of the zip code to which each loop detector belongs. For each model,  R2, MAE, and 
RMSE are calculated and shown in Fig. 5b; larger circles represent higher accuracies. We can see that accura-
cies are higher in the north side, similar to the previous models, likely again because the expressways serve as a 
boundary between zip codes in the south.

Overall, these results suggest that electricity demand and travel demand are interrelated, as in, one is related 
to the other and vice versa, but these interrelationships can be complex.

Interestingly, we note that the model performances are similar whether all or single loop detector are selected. 
This result suggest that single loop detectors may be sufficient to capture relationships between travel demand 
and electricity consumption. Another future area of research could focus on how much data is needed to capture 
interrelationships between infrastructure systems.

Discussion
The results show that the correlation between electricity consumption and traffic volume is complex since it 
varies by zip code across Chicago with Pearson values ranging between 0.04 and 0.81. Second, the optimum 
time window to analyze the temporal interrelationship between electricity consumption and traffic volume is 
8 h. Furthermore, we investigated the spatial relationship between electricity consumption and travel demand. 
Despite finding complex and unobvious relationships, we detected a global linear relationship between distance 
squared and  R2 values; specifically, that increasing the squared distance by one square kilometer decreases the 
accuracy of the model by 0.0052. Finally, we developed 239 LSTM models to predict electricity consumption of 
a zip code using traffic volume from the same zip code and found a range of model performance across the city.

Overall, the idea of the study is novel. The articles listed in the literature review section explore various 
methods for short-term load forecasting and related applications in the field of energy and transport. While they 
also discuss applications of these methods in energy management, travel mode choice modeling, and accident 
detection, none of them explore the spatial relationship between electricity consumption and travel demand. 
As our study is novel, it cannot be compared with other articles. Nevertheless, we recognize that the interrela-
tionships between traffic volume and electricity consumption are likely influenced by a range of complex and 
context-specific factors from obvious factors like the presence of alternate travel modes (e.g., transit, walk, bike) 
to less obvious factors related to household  characterisitcs13, and  daily10 and  seasonal12 effects.

Furthermore, this study has several limitations. In particular, it would have benefited from having access to 
origin–destination data (not for a typical date but for a specific day to compare energy use patterns) and to more 
detailed travel volume data (beyond traffic volumes on the expressway system).

In terms of policy implications, this work suggests that policies made to impact one infrastructure system 
can impact others. For example, many cities have adopted time-varying pricing practices for tollways (e.g., Sin-
gapore) and public transport (e.g., Washington DC) to encourage people to avoid rush hour periods and lessen 

Table 3.  ANOVA test results. Significance Level: ‘***’ 0.001.

Df Sum Sq Mean Sq F value Pr(> F)

Model 3 0.77939 0.25979 21.77  < 0.00009***

Residuals 18 0.21483 0.01193

Total 21 0.99422 0.04734
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congestion, which must have an impact of electricity consumption (as well as other resources such as water 
and gas). With the global push toward infrastructure decentralization and  distribution65, we recommend better 
coordination among utilities and transport service providers.

Future work should focus on further understanding these interrelationships, ideally using other more spatially 
disaggregate datasets. It is aligned with limitations from other  research25, which uses a similar methodology 
and mentions that the exploration of many datasets from distant energy contexts is necessary for a broader 
understanding of the problem. Another future area of research is on how much data is needed to capture inter-
relationships between infrastructure systems. For instance, increasing the spatial resolution of the data by collect-
ing information at a more disaggregated level, as well as incorporating data on public transportation usage and 
other mobility-related variables, could further provide additional insights and improve the accuracy of models.

Material and methods
Long short-term memory (LSTM). Neural Networks (NN) are one of the most widely used types of 
machine learning techniques. They are made of three layers: (a) input, (b) output, and (c) hidden. The most 
common types of NN have a cost function, and the goal is to minimize this cost function through re-adjusting 

Figure 5.  Performance of zip code and loop detector level models that use traffic volume to predict electricity 
consumption. Environmental Systems Research Institute (Esri) ArcGIS Desktop 10.8.1 commercial versions 
were used to perform preliminary data preparation and convert tabular data to spatial data. URL: https:// www. 
esri. com/ en- us/ arcgis/ produ cts/ arcgis- deskt op/ resou rces.

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
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the weights (i.e., model parameters) using a backpropagation technique. Recurrent Neural Networks (RNN) are 
more advanced and complex models that belong to the family of deep learning techniques. In RNN, a temporal 
loop connects the hidden layer to itself, meaning that the hidden layer not only impacts the output but also gives 
feedback to itself. The structure of an RNN model is shown in Fig. 6.

In sequence prediction problems, Long Short-Term Memory (LSTM) networks are a specific type of RNN 
that can learn the dependency in the sequence of time-series data. Since there could be a lag between the events 
of interest in a time series, these networks can perform well with different types of problem such as classifica-
tion, processing, and prediction using time series data. One important issue in the standard RNN models is the 
inefficiency of the model to learn when there are time lags greater than five to ten discrete time steps between the 
input data target variable that can cause a vanishing gradient—that is, the gradient is too small, preventing the 
weight from changing its value. LSTMs were developed to cope with the problem of vanishing gradient. They can 
learn to connect minimal time lags when there exist many discrete time steps by enforcing constant error flow 
through special units, called cells; see Eqs. (2) and (3). In LSTMs, the flow of information is controlled through 
gates that keep or override information in the memory cell, forgetting previous information, and deciding how 
to access memory cell; see Eq. (4). An LSTM consists of three gates. The two gates that learn to open and close 
access to error within the memory cell are input and output gates. The third type of gate is the forget gate that 
has a specific role to reset operations for the cells. In another word, the input gate decides how much of the new 
state h[t] should be updated; the output gate determines the portion of the state that must be outputted; and the 
forget gate decides the part of the information that needs to be forgotten and eliminated from the previous cell 
state h[t-1]. The main flow of information happens through a cell state. The cell state is updated in a forward 
process and the output is computed as displayed in Eq. (5):

where x[t] is the input at time t, σ(·) is a sigmoid function, g1(·) and g2(·) denote the point wise nonlinear activa-
tion function, (∙) denotes the entry wise multiplication between two vectors, Ro, Ru, Rh, and Rf represents weight 
matrices of the recurrent connections, Wo, Wu, Wh, and Wf are weight matrices for the inputs of LSTM cells, bo, 
bu, bf, and bh are bias  vectors5. The LSTM model was developed in Python (v3.7.3) using the Keras (v2.2.4) Deep 
Learning Library that itself uses TensorFlow (v2.0.0b0) in the backend.

Model execution and validation. In this study, the dataset is split into two groups: the first 22 days of 
November for training and the last 8 days of November for testing. The groups were not split randomly on pur-
pose to ensure both the training and testing sets had weekdays and weekends. Moreover, it is a common practice 
when modeling time series to use earlier data for training and later data for testing. The premise is that a good 

(2)forget gate : σf [t] = σ(Wf · x[t]+ Rf · y[t − 1]+ bf )

(3)candidate state : h̃[t] = g1
(
Wh · x[t]+ Rh · y[t − 1]+ bh

)

(4)input gate : σu[t] = σ(Wu · x[t]+ Ru · y[t − 1]+ bu)

(5)cell state : h[t] = σu[t](·)h̃[t]+ σf [t](·)h[t − 1]

(6)output gate : σo[t] = σ(Wo · x[t]+ Ro · y[t − 1]+ bo)

(7)output : y[t] = σo[t](·)g2(h[t])

Figure 6.  Structure of RNN model. Microsoft Visio 2019 was used to draw the visual concept of LSTM based 
on the Authors’ understanding of the model. https:// www. micro soft. com/ en- us/ micro soft- 365/ visio/ flowc hart- 
softw are.

https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
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model should be able to capture new, unseen trends. We kept the same practice even our goal is not to develop 
the best performing model, but to study interrelationships.

Around 250 LSTM models were trained and compared to select optimal hyperparameters. The hyperparam-
eters used in the end are as follows: number of epochs: 200; batch size: 50; learning rate: 0.001, optimizer: Adam; 
activation function: sigmoid; loss function: Binary crossentropy.

In terms of performance, we use goodness of fit R2 , mean absolute error (MAE), and root mean squared 
error (RMSE) defined as:

where yi is the actual value of a data point, ŷi is the predicted value,n is the number of data points, and y is the 
mean value of all n actual values.

To calculate the correlation between two time-series we use Pearson r value, defined as:

where x and y are the data points of two time-series and mx and my are the mean of the vector x and y respectively.

Data availability
Traffic volume data is collected by the Gateway Traveler Information System and provided by the Illinois Depart-
ment of Transportation (IDOT) to some of the team members. The authors were not granted the right to share 
the data. Electricity data was collected from Commonwealth Edison (ComEd). Anyone can access it for a fee 
at https:// www. comed. com/ Smart Energy/ Innov ation Techn ology/ pages/ anony mousd atase rvice. aspx (accessed 
March 15, 2023).
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