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On enabling collaborative 
non‑intrusive load monitoring 
for sustainable smart cities
Yunchuan Shi 1, Wei Li 1*, Xiaomin Chang 1, Ting Yang 2, Yaojie Sun 3 & Albert Y. Zomaya 1*

Improving energy efficiency is a crucial aspect of building a sustainable smart city and, more broadly, 
relevant for improving environmental, economic, and social well-being. Non-intrusive load monitoring 
(NILM) is a computing technique that estimates energy consumption in real-time and helps raise 
energy awareness among users to facilitate energy management. Most NILM solutions are still a 
single machine approach and do not fit well in smart cities. This work proposes a model-agnostic 
hybrid federated learning framework to collaboratively train NILM models for city-wide energy-saving 
applications. The framework supports both centralised and decentralised training modes to provide 
a cluster-based, customisable and optimal learning solution for users. The proposed framework is 
evaluated on a real-world energy disaggregation dataset. The results show that all NILM models 
trained in our proposed framework outperform the locally trained ones in accuracy. The results also 
suggest that the NILM models trained in our framework are resistant to privacy leakage.

Approximately 55% of the world’s population lives in urban areas, and the percentage is expected to increase 
to 68% by 20501. With the continued expansion of cities, it has become increasingly crucial to manage avail-
able resources to cater to the sustainability of urban systems for meeting the ever-increasing needs of the urban 
population. The recent advancements in the Internet of Things, edge computing, and machine learning provide 
hardware and software support for paving the way toward sustainable smart cities2. One of the grand challenges of 
realising sustainable smart cities is to address the increasing demand for electrical energy. Various approaches3–5 
have been developed to overcome this difficulty, but the common element of these approaches is to let consumers 
be aware of their detailed electricity consumption. Previous studies6,7 show that appliance-level information can 
help reduce energy consumption by raising consumer awareness and facilitating new energy-saving applications 
for sustainable smart cities.

The energy consumption of individual appliances can be obtained by using Non-Intrusive Load Monitoring 
(NILM), a computational method to identify appliance status and extract appliance-level electricity consumption 
from aggregated power data. The aggregated data is only monitored at a single central point, such as the electricity 
meter of a building or a house. NILM can provide the fine-grained energy consumption information needed by 
smart grid systems, an essential part of smart cities, to form a cohort for better service delivery. It provides online 
feedback on the energy consumption of households to let users be well aware of the situations and help them to 
change use patterns when needed. This information can also help to develop demand response strategies on the 
grid side for optimising power generation and dispatching. These pairwise interactions promote the progress of 
smart cities, energy saving, and sustainable development. Over the years, various experimentally feasible solutions 
have been developed using hidden Markov models, temporal motif mining, or other combinatorial optimisation 
techniques. Researchers have recently turned their attention to machine learning models due to their superior 
performance in various applications across multiple disciplines. Many deep learning-based algorithms8–10 and 
gradient boosting algorithms11,12 have been developed for NILM applications and outperformed the traditional 
models in terms of accuracy and efficiency.

Most existing NILM approaches still face significant challenges, hindering their widespread use for sustainable 
smart cities. First, NILM models need considerable training data to learn representative statistical characteristics 
to gain high performance. Conventional approaches address this problem by collecting data from stakeholders 
for centralised model training, with potentially costly data transfers and privacy and security issues precluding 
them from practical use. In recent years, federated learning was proposed13 to train a global model collabo-
ratively without exchanging the raw data of stakeholders. The existing NILM federated learning solutions are 
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deep learning oriented in a centralised setting14–16. The central server coordinates all the stakeholders to train a 
neural network model. These methods can achieve desired performance in experiments but are error-prone in 
real-world scenarios. Centralised federated learning generally experiences poor scalability due to the resource 
constraints turning the central node into a performance bottleneck when handling large clients. The complex 
structure of the deep learning model and the associated hyperparameters also impose a high computational 
overhead in training and inference, making it less suitable for running on resource-limited devices. In addition, 
the client data distribution is generally assumed to be non-independent and identical distribution (non-IID) 
since it is highly inconsistent in quantity and distribution. The non-IID distribution can potentially contribute 
different update factors to the client models and leads to poor global model fitting17. Recent works have attempted 
to address these issues through transfer learning and filter pruning18. These works cannot fundamentally change 
the nature of deep learning models that require extensive data and computing power for the training. Second, 
most studies10,19,20 focus on long-term (more than one hour) energy disaggregation, which naturally requires a 
long sequence of main readings for each analysis. The analytic devices need substantial storage space to manage 
such long readings. Lastly, the data for training NILM models is the electrical consumption readings collected 
from users and sampled in near real-time. The readings contain the instrumental activities of all appliances, 
including on and off and operating mode switching. Previous works21–23 show that using an off-the-shelf statisti-
cal approach, it is technically possible to disclose users’ usage patterns and behaviours from the readings, such 
as sleeping routines, dinning routines, etc. The current approaches rely heavily on encryption and differential 
privacy techniques to prevent data leakage24,25. The inevitable extra computational cost in model training is intro-
duced to the system and even degrades the model performance at runtime. In addition, a city includes users with 
different behaviours and activities. The data from these users may have different statistical distributions. There 
is no simple, cost-effective and secure way of putting all these data together and letting them work as a whole.

In this work, we propose a model-agnostic hybrid federated learning framework for NILM applications to 
address the above challenges in sustainable smart cities. By hybrid, we mean that our framework supports both 
centralised and decentralised federated learning modes. The major difference between them is to use a server 
to coordinate the model training in the centralised mode, while no such server is involved in the decentralised 
mode. In the decentralised mode, clients are connected through a decentralised network. Each client performs 
local model training and aggregates models from other clients. An asynchronous model aggregation mechanism 
can also be employed to refine the training protocol on the fly, providing further flexibility to the system. Under 
the dual support of training modes, our framework can offer the desired environment to end-users for acquiring 
performance, scalability, robustness or a combination of them for their NILM applications. By model-agnostic, 
we mean our framework supports the training of neural network models and gradient boosting decision tree 
(GBDT) models. Neural network models achieve state-of-the-art performance in energy decomposition, and 
their training process fits well in distributed learning. These models generally require considerable computing 
resources for training such scenarios. Some recent works also showed that they could experience privacy leakages 
during the run, making them not the one-for-all solution to support NILM applications. GBDT, on the other 
hand, inherits the simple structure of tree models and share fewer parameters during training thus becoming 
more resource-friendly and secure. The use of GBDT in our framework is motivated by its prior results in non-
linear regression problems with low computation complexity26,27. Our framework considers the non-independent 
and identical distributions (non-IID) data between clients on model performance by clustering users with similar 
energy consumption distribution into one training cluster. We also introduce a short-term energy disaggregation 
strategy to our framework by shrinking the window size used in the sequence-to-point analysis. This strategy 
can significantly reduce data management costs at local devices while making real-time decision making on 
energy management possible.

The main contributions of this paper include: 

1.	 We propose a model-agnostic hybrid federated learning framework to provide a flexible, efficient and secure 
means to train NILM models in sustainable smart cities. It supports the training of deep neural networks 
and gradient boosting tree models in the centralised federated learning mode and deep neural networks in 
the decentralised federated learning.

2.	 The performance of the proposed framework is empirically evaluated on a real world energy dataset. The 
results show that NILM models trained in our proposed framework for all training modes outperform those 
locally trained models in terms of accuracy.

3.	 We conduct extensive experiments to study the effectiveness of a state-of-the-art gradient attack method 
against our federated learning framework with NILM applications. We find that our proposed framework 
can protect user privacy from gradient attacks with promising results.

Methods
In this section, we present the design of our proposed hybrid federated learning framework for NILM 
applications.

An overview of the proposed framework.  We aim to propose a model-agnostic hybrid federated learn-
ing framework for city-wide NILM applications. The framework, as shown in Fig. 1, first groups clients into 
clusters according to their similarity in electricity usage and their computation resources. The appropriate fed-
erated learning mode (centralised or distributed) and the best-suited machine learning model are determined 
for each training cluster. Our framework can now support the training of deep neural networks and gradient 
boosting tree models in the centralised federated learning mode and deep neural networks in the decentralised 
federated learning mode. We develop a short-term energy decomposition strategy that analyses low-frequency 
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power reading by reducing the window size used in sequence-to-point. The short-term strategy can support real-
time energy management decisions, reduce data management costs, and depend less on hardware capabilities.

Cluster management.  It is impractical to expect the users’ consumption data to be always independent 
and identically distributed (IID) in federated learning scenarios. The locally computed gradients are likely the 
biased estimates of global gradients, which poses challenges to faster convergence and better performance. To 
address such a non-IID challenge, we perform clustering over different clients and group users with similar 
statistical patterns into the same cluster for model training. Our clustering approach also accounts for privacy-
preserving by exchanging the Markov transition probabilities rather than raw load measurements. Inspired by 
Markov Transition Field (MTF)28, we convert the clients’ time-series load measurements into Markov matrices. 
The input space of power consumption sequence {x1 . . . xn} is discretised as Q quantile bins, and each element 
of the sequence is assigned to a quantile. For example, qi and qj ( q ∈ [1,Q] ) denote the quantiles of xi and xj . The 
element Mij of the Markov matrix M can be calculated by the transition probability from qi to the quantile qj . 
With the Markov matrices from the engaged clients, the clustering phase can then be accomplished using TS-
SOM (Tree structured self-organizing maps)29. TS-SOM divides the generated matrices into multiple groups as 
a hierarchical clustering method by mapping each tree node to a standard SOM neural network. The clustering 
is iteratively performed from the root to the leaves until the pre-set tree depth is reached. At the bottom level of 
the tree, each leaf represents a group of clients that will collaboratively train a NILM model.

Figure 1.   The design of our proposed hybrid federated learning framework for NILM applications.
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Centralised federated learning mode.  In the centralised federated learning mode, the model training 
process of each cluster is coordinated by a central server hosted by a trusted third party. Each client maintains 
a local model for each appliance in this mode and updates the model with its locally available data. Meanwhile, 
the central server maintains a global model for each appliance and updates the global models by aggregating 
the updated local models from all corresponding clients. We further introduce the procedures of training deep 
neural networks and gradient boosting trees in the centralised federated learning mode below.

Neural network.  Training a deep neural network model in centralised federated learning mode consists of two 
parts: server execution and client local updates. In client local updates, all clients train the model in parallel and 
pass the updated model to the server at the end of the training process. The server execution is performed 
throughout the training process and continuously aggregates the locally updated model. The server execution 
starts by the central server initialises the global models ω0 while defining the training protocol based on the 
available computational resources. The training protocol defines the training-test split, learning rate η , local 
training batch size B, and local training epochs E. Each client prepare itself for training by splitting its local data 
set into a training set and a test set according to the training protocol. The training set is further divided into NB  
training batches where N is the size of the training set. Within each training iteration t, each client performs local 
update in parallel. Clients first request the latest global model(s) from the central server to update their local 
model(s). Each client trains the local models using its training data set for E epochs. When local training is com-
pleted, the performance of the updated local model is then evaluated on the test set. The evaluation result and 
the updated local model are sent to the central server for updating the global model. The central server updates 
the global model ωt through the federated averaging algorithm that performs a weighted aggregation of all cli-
ents’ models. Each model is assigned a weight Ni

∑C
j Nj

 , where ni denotes the number of data owned by client i, C is 

the number of clients in the training cluster. Finally, the central server checks if the termination condition is 
reached based on the evaluation result from clients in this training round. The algorithm pseudo codes are 
shown in Algorithm 1 and Algorithm 2. 
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GBDT.  The critical part of collaboratively constructing a tree model is to find the best split in the feature space 
point for all clients in the cluster but without sharing their raw data. We implement a federated gradient boosting 
decision tree model30 to achieve this goal, where gradient histograms are shared between clients and the central 
server and used as training data for model construction. Each such histogram represents the gradient statistics 
of a specific feature of training data. The histogram is constructed by mapping gradients into multiple buckets. 
A quantile sketch algorithm30 is used to determine Q − 1 quantile for each feature. Those quantiles are the cut 
points to divide the range of feature value into Q buckets. Similar to the deep neural network model, the GBDT 
model is built in two parts: Central Server Execution and Client Compute Histogram. The process of training 
GBDT in centralised federated learning mode is shown in Algorithm 3 and Algorithm 4. At the initialisation 
phase, the central server defines the training parameters of the tree growth algorithm and coordinates all the 
clients to run the quantile sketch algorithm to find the quantile of histograms for each feature. Each client com-
putes gradient histograms for each feature during the node split process in parallel by mapping its local train-
ing data into buckets according to corresponding feature values of training data. The gradient histograms are 
transmitted to the central server. Once the central server receives all the gradient histograms, it aggregates each 
feature’s histograms and searches all the aggregated histograms for the split point. The node is then split into two 
nodes, and the central server begins to coordinate the splitting of the next node. The tree growth process will be 
terminated when the stop criteria are met.

Decentralised federated learning mode.  The central server is no longer needed to coordinate the col-
laborative model construction in the decentralised federated learning mode. Instead, the model is constructed 
by peer-to-peer communication between clients and the details are shown in Algorithm 5. We assume that cli-
ents in a training cluster form a fully connected network, meaning that information can be sent between any two 
clients. Each client is required to perform both local model training and model aggregation. Before the training 
begins, each client needs to perform the following steps: initiating the local model parameter using the same 
random seed, splitting its local dataset into a training set and a test set, and setting up a training protocol for the 
first round. An asynchronous model aggregation mechanism and dynamic training protocol are proposed to 
improve the flexibility and security of the framework. The framework allows clients to refine the training proto-
col on the fly by their network states and available computing resources. The model aggregation can be per-
formed immediately after a client completes its local training process without considering the status of other 
clients. The requests for the joint model update are randomly sent to K other clients in the same cluster during 
the model aggregation process. The requested clients send out their local models while continuing the training 
process. After the client has received all models, it uses the local test set to evaluate the performance of all 
received models and the local models. Each model is allocated with a performance-based weight according to its 
reaction to the test set. The reciprocal of the error is used as the weight of the model, as the smaller the value of 
errors in our experiments, the better the model performance. The weight is defined as L−1

k
∑K+1

i=1 L−1
i

 , where Lk is the 
MAE of the model of client k on the test set of the client currently performing aggregation. The local model is 
updated by a weighted average of all models, followed by starting a new round of training.
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Results
In this section, we first introduce the dataset, REFIT31 (Personalised Retrofit Decision Support Tools For UK 
Homes Using Smart Home Technology), used for conducting the experiments, followed by the performance 
metrics used to gauge the quality and utility of our approach. We then present the setup of our experimental stud-
ies, including both hardware and software. We conducted comprehensive experiments to evaluate our proposed 
framework from two perspectives, performance and privacy awareness. For the performance-related evaluations, 
we carefully examined the training error convergence and NILM disaggregation performance of our proposed 
federated learning framework in both centralised and decentralised modes. For convenience, we use the term 
centrally-trained, which refers to those models trained in the centralised mode, and distributively-trained refers 
to those trained in the decentralised mode. For the privacy awareness evaluations, we studied the effectiveness of 
a gradient attack on NILM applications in our framework. We demonstrated that the gradient attack is unlikely 
to acquire valuable information from our framework without explicit privacy protection mechanisms.

Data.  The REFIT electricity load measurement dataset31 is one of the four publicly available REFIT datasets. 
It contains raw electrical consumption data of 20 households in Loughborough, UK, from 2013 to 2015 at both 
aggregate and appliance levels. The data was measured in watts and sampled at 8-second intervals. We used the 
datasets from five houses and picked five commonly used appliances, namely, dishwasher, refrigerator, washing 
machine, microwave oven, and kettle, to form a total of 25 datasets for model training. The sequence-to-point 
NILM model is built to process the raw electrical consumption data. The aggregated consumption sequences 
were sliced by a window size of 19 data samples. Each sliced subsequence corresponds to a single appliance level 
consumption at its middle point. For each of the 25 datasets, 80% of the samples were used for model training 
and the remainder for testing.

Experiment setup.  We implemented our algorithm with PyTorch on Google Colab, which provides com-
puting resources of an Intel Xeon CPU 4 x 2.30GHz, 16GB RAM, and an NVIDIA Tesla P100 Graphic Card 
with 16GB VRAM. All experiments were carried out in Ubuntu 18.04. A convolutional neural network (CNN32) 
model with five convolutional layers followed by two linear layers and a gradient boosting decision tree (GBDT33) 
model were used to train sequence-to-point NILM models. The hyper-parameters for training these models are 
presented in Table 1, unless otherwise stated. All reported data points are an average of 500 executions.

Evaluation metrics.  We used the training convergence of the models to evaluate the efficacy and stability 
of the proposed framework. The training errors are recorded at the end of each training round, and the learn-
ing curve is plotted to check the convergence status of different machine learning models. The training loss is 
evaluated by RMSE, which measures the standard deviation of the training error as defined in Equation (1). 
RMSE is computationally simple and easily comprehensible to serve as an objective function for model train-
ing. We also employed four other performance metrics to evaluate the framework performance from different 
aspects. The disaggregation performance of NILM models is evaluated by three commonly used metrics, MAE, 
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SAE and NDE, in NILM stuides34,35. Mean absolute error (MAE) indicates the average absolute error between 
model prediction and actual value. It is formally defined as Equation (2) where y and ŷ represent the predicted 
value and actual value, respectively. Signal aggregate error (SAE), as shown in Equation (4), measures the relative 
difference between the total predicted energy consumption and the actual value in any given period T. Equa-
tion (5) mathematically defines normalised disaggregation error (NDE), which denotes the normalised error 
between the predicted consumption and the actual readings. Mean relative error (MRE) is used exclusively in 
privacy leakage evaluation, defined by Equation (3), representing prediction error relative to observed values. It 
shows the similarity of the recovered data to the actual data to reveal the risk of privacy leakage. For all metrics, 
the lower the value, the more minor the deviation between estimates and ground truth generated by the model.

Centralised federated learning CNN model evaluation.  This section evaluates the performance of 
sequence-to-point NILM models in our proposed framework under the centralised federated learning mode. 
The experiments were conducted on a training cluster consisting of five clients. The clients are connected via a 
central server for performing the centralised model training. In each round of training, all clients first update 
their local models using the private local data, and then the updated models are sent to the central server for 
aggregation. Please note that the selection of five clients is due to the simplicity of interpreting the results. Each 
client has a training set of the same size. We also assume that each client is equipped with the same computa-
tional resources and follows the same training protocol. The CNN and GBDT models mentioned above were 
used to perform NILM to identify the operations of the appliances. To benchmark and monitor the performance 
variation of our framework over time, we also tested the same models trained and running on the local device 
only to perform the same tasks.

Figure 2 shows the training loss convergences of the centrally-trained CNN models in our framework. It 
can be seen that our framework provides stable training loss convergences on all target appliances. This result 
suggests that the centrally-trained models have strong generalisation capabilities within the training cluster. The 
framework can guarantee stable convergence of the loss for the target appliances without compromising any cli-
ent, regardless of appliance types, the number of appliances and usage patterns. We compared the disaggregation 
error on test the set between the centrally-trained CNN model and locally-trained CNN in Fig. 3 and Table 2. As 
shown in Table 2, the centrally-trained CNNs achieve a lower decomposition error on three evaluation metrics 
than that of locally-trained CNN models for most of the appliances. Figure 3 depicts the MAE of each client on 
the test set. It can be clearly observed that the MAE of centrally-trained CNN is kept below the locally-trained 
CNN model in most cases. This result suggests that not only does the centrally-trained CNN achieve an overall 
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Table 1.   The parameters for training NILM models.

Parameters for training GBDT model

Total boosting rounds 100 Maximum tree depth 10

Maximum bins 500 Learning rate 0.25

L1 regularisation 0.02 L2 regularisation 0.0001

Parameters for training CNN model

Total training rounds 50 Local training epochs 2

Batch size 1024 Optimiser Adam

Learning rate 0.001 Beta1 0.09

Beta2 0.999 Epsilon 1E-08
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lower decomposition error, but all clients in the training cluster can obtain a more accurate energy decomposition 
model through the centralised federated learning mode. The centrally-trained CNN model actually represents a 
existing deep learning-based federated learning NILM solution. A similar model structure can be found in14,36. 
It is used as a baseline for the subsequent comparisons.

Decentralised federated learning CNN model evaluation.  In this section, the performance of the 
NILM models trained in the decentralised federated learning mode is assessed. We conducted the experiments 
with the same tasks as the centralised federated learning experiments. In the decentralised federated learning 
mode, each client defines its own training protocol to update the local model asynchronously during the train-
ing process. Once a client reaches the model aggregation phase, it acquires models from k other clients in the 
same cluster for model aggregation according to a weighted average of values that reflects the performance of 
each model on the local test set. In the experiments, we investigated the impact of the choice of k on training 
loss convergence. We then compared the performance of the NILM algorithms trained in centralised federated 
learning, decentralised federated learning and local modes.

Figure 4 shows the loss convergences of the CNN models trained in the decentralised mode with different k. 
Although the training error of each appliance model is quickly converged in all experiments, a noticeable dif-
ference still exists in the local convergence process. Figure 4a depicts the convergence curves when k is set to 1. 
We noticed that rapid fluctuations exist in the convergence curves of each model, which is particularly evident in 
the washing machine and microwave models. The change of the convergence rate of the models is quite slow, e.g. 
the dishwasher model was still trapped at a local minimum after 100 rounds of training. However, these issues 
were mitigated by increasing the value of k. Figure 4b,c show the convergence curves when k is set to 2 and 3, 
respectively. We can observe that the curves of the training loss convergence became smoother along with the 
increase of the k value and the model convergence curve showed a tendency to match the curve obtained from 
the centralised federal learning mode. We also compared the performance of the NILM models trained in the 
decentralised mode and the centralised mode. We set k to be 2 for training the NILM models in the decentral-
ised mode for a fair comparison. Table 3 shows the evaluated performance of the NILM models trained in the 
decentralised mode on the test sets, and Fig. 5 compares the performance of the NILM models trained in three 

Figure 2.   Convergence of training loss for the centrally-trained CNN across five houses on REFIT.

Figure 3.   Comparison of MAE between centrally-trained CNN and locally-trained CNN across five houses on 
REFIT.

Table 2.   Comparison of disaggregation error on test sets between centrally-trained CNN and locally-trained 
CNN.

Model Metrics Dishwasher Fridge Kettle Microwave Washing Machine

Locally-trained CNN

MAE 40.2367 33.5251 28.0363 7.8309 15.4629

SAE 0.0245 0.0194 0.2116 0.2659 0.1776

NDE 0.8487 0.7012 0.8279 0.9523 0.7608

Centrally-trained CNN

MAE 32.5741 32.5331 24.9767 8.3338 13.7557

SAE 0.0521 0.0092 0.0281 0.0532 0.0215

NDE 0.8284 0.6975 0.8567 0.9934 0.7600
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different modes. We can see that the models trained in the decentralised mode clearly outperform the locally-
trained ones and show similar performance to those trained in the centralised mode in terms of accuracy.

GBDT model evaluation.  In this section, we examined the performance of GBDT in centralised training 
mode for the sequence-to-point NILM problems. We also used locally-trained GBDT models and centrally-
trained CNN as benchmarks in the experiments. As shown in Fig. 6, the training loss of the centrally-trained 

Figure 4.   Convergence of training loss for decentralised federated learning mode with different k across five 
houses on REFIT.

Table 3.   Disaggregation error on test sets for distributively-trained CNN.

Model Metrics Dishwasher Fridge Kettle Microwave Washing machine

Distributively-trained CNN

MAE 27.6742 32.4415 26.7001 8.4139 14.1102

SAE 0.1525 0.0592 0.1750 0.1255 0.0823

NDE 0.8400 0.6914 0.8314 0.9999 0.7729

Figure 5.   Comparison of MAE among distributively-trained CNN, centrally-trained CNN and locally-trained 
CNN across five houses on REFIT.
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GBDT model on all clients converged quickly (in about 20 epochs or less) to a stable value. Compared to the 
same test with CNN depicted in Fig. 2, the GBDT models clearly outperformed the CNN ones as the loss curves 
decrease smoothly and coherently to the stable statuses in noticeably short epochs, This result suggests that 
the lightweight nature of GBDT requires fewer parameters to fit during training, making the model conver-
gence rapidly. We also compared the performance between the centrally-trained and locally-trained GBDTs. The 
results are shown in both Fig. 7 and Table 4. Not surprisingly, the results show that the centrally-trained GBDT 
outperformed the locally-trained one in nearly all aspects. We believe the performance difference comes from 
the centrally-trained GBDT model can learn extra knowledge from the data of the other members in the training 
cluster to improve its prediction accuracy. In Fig. 7, we also observed that the GBDT model achieved the state 
of the art performance. Its performance was equally matched to the CNN model in our tests. More importantly, 
the GBDT model consumed small computational resources. As shown in Table 5, its model size and inference 
time are about 1/6 and 1/12 of the CNN model. The above results demonstrate that the GBDT model can provide 
accurate predictions while requiring significantly fewer computing resources. These unique properties make it 
the leading candidate for performing NILM on those resource-limited devices.

Training cluster evaluation.  In this section, we studied how the clustering algorithm affects the perfor-
mance of the federated learning model on clients. We used more clients in the cluster experiments to better 

Figure 6.   Convergence of training loss for centrally-trained GBDT across five houses on REFIT.

Figure 7.   Comparison of MAE between centrally-trained GBDT, locally-trained GBDT, and centrally-trained 
CNN model across five houses on REFIT.

Table 4.   Comparison of disaggregation error on test sets between centrally-trained GBDT and locally-trained 
GBDT.

Model Metrics Dishwasher Fridge Kettle Microwave Washing machine

Locally-trained GBDT

MAE 36.1568 36.8310 27.2049 7.1743 21.7627

SAE 0.0195 0.0031 0.4791 0.9799 0.1039

NDE 0.7892 0.7194 0.7878 0.9061 0.8480

Centrally-trained 
GBDT

MAE 32.1918 36.3702 24.4394 7.1335 19.2950

SAE 0.0088 0.0063 0.0155 0.0726 0.0639

NDE 0.7568 0.7278 0.7655 0.8605 0.7804

Table 5.   Comparison of model size and inference time between centrally-trained GBDT and centrally-trained 
CNN. Both models were tested 10 times on a test set of 100,000 samples in a single-core CPU setting.

Model Model size Inference time

Centrally-trained CNN 4.463MB 11.21s

Centrally-trained GBDT 0.756MB 0.97s
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demonstrate the algorithm. Ten houses were selected from REFIT to represent ten individual energy users and 
divided into two equal-sized training clusters by the clustering algorithm described before. The CNN model 
was used to perform NILM tasks in our experiments. We tested the CNN model in three different scenarios, 1) 
centrally-trained with the data only from the belonging cluster, 2) distributively-trained with the data only from 
the belonging cluster, and 3) centrally-trained with all data from ten houses. The trained models were tested on 
the test set of each house. Note that the model trained with data from all ten houses uses twice the training data 
as the other two models.

The experiment results are shown below. Figure 8 shows the MAE comparison between centrally-trained 
CNN models with and without clustering. It is not hard to see that the prediction error of the model decreased 
after clustering in most cases. The average MAE of the model trained with clustering dropped from 22.51 to 21.02 
compared to the one without clustering. This result indicates that employing a clustering algorithm can help 
to reduce the discrepancies in the distribution of the grouped user data and improve the overall model perfor-
mance accordingly. Figure 9 shows the MAE comparison between the distributively-trained CNN model with 
clustering and the centrally-trained CNN model without clustering. We can again observe a clear performance 
improvement after clustering. The distributively-trained CNN model trained in each training cluster reduces 
the average MAE by 0.53 compared to the non-clustered centralised one. Our experiment results indicate that 
clustering clients with similar statistical distributions can mitigate the impact of non-IID (Independent and 
Identically Distributed) data on the global model. In addition, we found that the simple increment in clients does 
not necessarily improve the global model performance. This finding is against the conventional machine learn-
ing common sense - the more training data, the better the model performance. However, in federated learning, 
a simple combination of the clients with non-iid data distribution can slow down the convergence of the global 
model and sacrifice performance. The naive increase in training data could be counterproductive and will not 
be the best strategy for performance improvement.

Privacy leakage evaluation.  This section conducted comprehensive experiments to evaluate the effec-
tiveness of gradient attacks on our federated learning framework and analyse the privacy leakage risks for NILM 
applications.

We start with a brief introduction of the gradient attack, followed by the experimental results.

Deep leakage from gradients.  Deep Leakage from Gradients (DLG)37 is an optimisation-based method that 
recovers raw training data by continuously adjusting the randomly initialised dummy data and matching its 
gradient to the observed gradient. The objective function is

 where L(▽W ′,▽W) represents the loss function measuring the similarity between the gradient of dummy data 
▽W ′ and the actual gradient ▽W  . ℓ(F(x′,W), y′) is the objective function for deep network training. It only 
needs to ensure ℓ as a differentiable function held for most machine learning tasks. This optimisation problem 
can then be solved by using a standard gradient-based method.

x′
∗
, y′

∗
= argmin x′ ,y′L(▽W

′,▽W) = argmin x′ ,y′ ||
∂ℓ(F(x′,W), y′)

∂W
− ▽W ||2

Figure 8.   Comparison of MAE between centrally-trained CNN with and without clustering on REFIT.

Figure 9.   Comparison of MAE between distributively-trained CNN with clustering and centrally-trained CNN 
without clustering on REFIT.
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Result.  We focus primarily on the centralised training mode, as the decentralised training mode can be some-
how seen as each client running a centralised training program. Therefore, the privacy evaluation for the cen-
tralised mode is also applicable to the decentralised mode. We used the cosine similarity between the observed 
and actual gradients as the objective function for the gradient attack. The Adam optimiser was used to solve the 
optimisation problem. Each experiment ran at least 200,000 iterations to ensure that the loss function converged. 
We examined the effectiveness of gradient attacks on the recovery of training data under different settings (e.g., 
batch size, model convergence status, and various machine learning tasks) for federated learning separately. 
We used the centrally-trained CNN models for the tests as this mode is more vulnerable to privacy leakage. 
The experiment data were 24 randomly selected datasets equally extracted from the washing machine, fridge, 
and kettle. We employed MAE, MRE, SAE, and NDE as the performance metrics to measure the quality of the 
attacks.

We first investigated the effect of local batch size on a basic scenario where the model is in its initial state 
without any training. Each client feeds a small batch of data to update the model in the local update phase and 
then sends the updated model to the central server. Once the central server receives a model from a client, it can 
derive the gradients of that client in the current training round by calculating the weight differences between the 
global model and the received one. The central server recovers the client’s raw inputs and labels from the gradi-
ent using the DLG algorithm. Table 6 shows the error of the training data recovered from the gradient attack for 
different tasks under different batch sizes. It is easy to note that the gradient attack can effectively recover the 
training data when the batch size is small. For example, when the batch size is equivalent to 1 (batch size denoted 
by B1), the errors of the recovered training inputs and labels are concentrated within a limited range. However, as 
the batch size increases, the error of the recovered data increases dramatically. When the batch size equals 8, the 
MAE values between the recovered data and the actual training data reach 994.98 and 986.45 in the classification 
and regression tests. Meanwhile, the MRE values reach 2.58 and 3.55, respectively. The recovered data errors are 
even larger than the actual training data values. Under such circumstances, the recovered data can hardly reveal 
any useful information. To provide a clear demonstration, we show the results of recovered data in Fig. 10. Please 
note that the gradient does not contain any information about the order of the training data. The recovered data 
is out of order and cannot be directly compared with the original batch data. As a result, we applied the Hungar-
ian algorithm38 to find a match between the recovered and the actual training data so as to evaluate the recovery 
error on the matching result. It can be seen that when the batch size is 1, the recovered training data matches 
perfectly with the actual training data. The MAE between the recovered and actual labels is maintained within 
an acceptable range. As the batch size increases, the MAE gradually increases. When the batch size is 2 and 4, 
there is a mismatch on the part of the recovered training data, while some of the recovered data still align with 
the actual training data. When the batch size increases to 8, the gradient attack fails to recover any training data.

We also evaluated whether the effectiveness of the gradient attacks would be affected by the convergence 
state of the model. The convergence of the model is quantified by the number of epochs in which the model is 
trained. We set the recovery batch size to 1 and recovered the training data by the models’ weights from 0, 1, 5, 
and 10 epochs. Table 7 illustrates the recovery performance of gradient attack under different states of model 
convergence. Both regression and classification tasks are presented. It is not hard to note that the convergence 
of the model has a significant impact on the gradient attack. When recovering training data from the weights of 
an untrained model, the discrepancy between the recovered and real data is low. As the training epoch increases 
from 0 to 10, the MRE value of the recovered input increases from 0.01 to 6.6 for the classification tasks and 
from 0.0006 to 10.462 for the regression tasks. Also, the accuracy of the recovered training labels decreases 
significantly. The MAE of the labels grows from 0 to 474.89 for the regression tasks, while the accuracy of the 
labels drops from 100% to 66.67% for the classification tasks. The results indicate that the gradient attack rapidly 
loses efficacy in recovering the training data with the epoch increasing. Thus, we can conclude that, for NILM 
tasks, the gradient attack method only works in the very early stages of NILM model training, but such leakage 
is shallow and not sufficient to pose a threat to user privacy.

Discussion
In this work, we propose a model-agnostic hybrid federated learning framework for NILM applications in 
sustainable smart cities. It aims to provide a flexible, efficient, and secure way to train NILM models collabo-
ratively. The core idea of the framework is to let every user use the best-suited NILM models introduced in the 

Table 6.   Effectiveness of gradient attack on different NILM tasks with different local batch size.

Experimental Input recovery Label Recovery

Task Batch size MAE MRE SAE NDE MAE/Accuracy

Classification B1 2.5578 0.0103 0.0004 0.0028 100%

Classification B2 915.6924 1.6454 1.0017 1.6096 100%

Classification B4 1115.2008 2.8736 1.216 1.8586 87.51%

Classification B8 994.9842 2.5825 0.9251 1.52 70.83%

Regression B1 0.0852 0.0003 0.0001 0.0006 0

Regression B2 351.2712 1.5227 0.3029 0.6359 2679.7218

Regression B4 653.9442 2.7614 0.7304 1.1266 1679.622

Regression B8 986.4582 3.5523 1.143 1.3202 3511.8594



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6569  | https://doi.org/10.1038/s41598-023-33131-0

www.nature.com/scientificreports/

appropriate environment to meet their needs. Both centralised and decentralised federated learning is supported 
in our framework. In the centralised federated learning mode, the server in each training cluster is responsible 
for provisioning and managing the training process for all users. This training mode has many advantages, such 
as fast convergence of the global model, good generalisation, and low communication costs. Besides, the energy 
wholesalers and retailers can utilise real-time information from their fellow users to better understand their 
behaviours and activities. They can align with the dominant understanding of users as rational individuals to 

Figure 10.   Some of recovered training data from model updates with different batch sizes. The recovered 
training data were randomly selected from the kettle dataset.

Table 7.   Effectiveness of Gradient Attack on different NILM tasks with different model convergence state size.

Experimental Input recovery Label recovery

Task Epoch MAE MRE SAE NDE MAE/accuracy

Classification 0 2.5578 0.0105 0.0001 0.003 100%

Classification 1 899.493 4.6346 0.8739 1.5489 91.67%

Classification 5 765.6348 3.4149 0.5519 1.1988 79.17%

Classification 10 1268.6688 6.6326 1.3876 1.7306 66.67%

Regression 0 0.0921 0.0006 0 0.0008 0

Regression 1 882.441 3.5588 0.8478 1.3624 446.7624

Regression 5 1081.0968 4.1875 0.9005 1.3197 509.8548

Regression 10 2302.8726 10.4625 2.8196 2.6742 474.8982
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set up more attractive financial incentives for participating in demand response39 programs, which have been 
acknowledged as a viable solution to ensure grid stability and security of power supply. Despite the versatility 
of the centralised federated learning mode, it encounters multiple issues at the system level, such as single point 
failure and poor scalability. In addition, the server could quickly turn into a performance bottleneck of the 
framework. As the number of users increases, the communication and computation load on the server increases 
rapidly. The time required for training per round also increases. In the decentralised federated learning mode, 
the users in the same training cluster share the models asynchronously with others via peer-to-peer communi-
cation, and each user is only responsible for their models. This mode improves the scalability and elasticity of 
the framework. Our framework currently supports the training of neural network models in both centralised 
and decentralised modes and gradient boosting tree models in centralised mode. We tested the performance 
of two machine learning models using our proposed framework on a real-world dataset and compared it with 
locally trained models. The experimental results show that the models trained in our framework outperform the 
locally trained models in terms of accuracy and diversity. Also, the models trained in the decentralised mode 
have similar convergence speed and performance to those trained in the centralised mode.

We have also investigated the user privacy issues in federated learning for NILM applications. As mentioned 
previously, the leakage of an electrical consumption dataset can reveal behavioural patterns of energy users 
and seriously compromise their privacy. Therefore, we investigate the effectiveness of a state-of-the-art attack 
method against federated learning frameworks in NILM applications. Through our experiments, we came up 
with two findings. The first is that gradient attack is only applicable to centralised federal learning frameworks. 
To perform the gradient attack, the attacker must know updated gradients and the size of the local dataset used 
for training. Such information is only available to a central server in the centralised federated learning mode. In 
a decentralised federated learning mode, the central server is no longer used, and asynchronous model updates 
are employed. An attacker masquerading as a client has access to models from only a few random clients, and 
they have no way of knowing the size of the local dataset used for each model update. Therefore, gradient attack 
can hardly be applied to a decentralised federated learning framework. Although a gradient attack can be used 
to attack a centralised federated learning framework, this does not mean that it can compromise user privacy. 
We show that gradient attack is only valid to recover some fragments of electrical consumption data used for 
training under certain conditions, such as in the early stages of model training and when a very small train-
ing batch size is chosen. These limitations make almost impossible for gradient attack to compromise any user 
privacy in practice. We have good reason to believe that the gradient attack is not effective in violating user 
privacy in our proposed framework. Furthermore, we consider it unnecessary to use encryption or add noise 
to prevent gradient attack in federated learning for NILM applications. However, previous studies have come 
to the opposite conclusion. They experimentally show that gradient attack has a satisfactory recovery accuracy 
in image processing tasks and suggest that precautions need to be taken to prevent gradient attack. This makes 
us wonder why gradient attack do not work well on NILM tasks. We believe that there are two reasons behind 
the contradiction. First, image data usually describes real-world objects, which are more easily understood by 
people. So even if the accuracy of the reconstructed data is not as high, one can still guess what is in the image by 
associating the partially recovered image fragments with known real-world objects. Secondly, the specificity of 
image recognition tasks, for example in face recognition tasks where each participant holds a person’s face data, 
gives gradient attack more opportunities to steal the user’s facial features from the batch training data. These 
reasons make gradient attack a higher risk of privacy violation on image datasets.

This work presents our preliminary results in realising a model-agnostic hybrid federated learning frame-
work for NILM applications. In the future, we aim to implement an end-to-end federated learning framework 
comprising a complete training process from data pre-processing, model training and deployment. We will inte-
grate more machine learning models and more federated learning modes into our framework to handle various 
smart city applications. We will also optimise our decentralised federated learning framework by improving the 
convergence speed of models and the overall communication efficiency.

Data availibility
The datasets analysed during the current study are available in the REFIT repository https://​www.​refit​smart​
homes.​org/​datas​ets/.

Received: 1 June 2022; Accepted: 7 April 2023

References
	 1.	 United Nations, P. The World’s Cities in 2016 (2016).
	 2.	 Silva, B. N., Khan, M. & Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open chal-

lenges in smart cities. Sustain. Cities Soc. 38, 697–713 (2018).
	 3.	 Morstyn, T., Farrell, N., Darby, S. J. & McCulloch, M. D. Using peer-to-peer energy-trading platforms to incentivize prosumers to 

form federated power plants. Nat. Energy 3, 94–101 (2018).
	 4.	 Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 

(2022).
	 5.	 Li, W. et al. On enabling sustainable edge computing with renewable energy resources. IEEE Commun. Mag. 56, 94–101 (2018).
	 6.	 Li, W. et al. A sustainable and user-behavior-aware cyber-physical system for home energy management. ACM Trans. Cyber-Phys. 

Syst. 3, 1–24 (2019).
	 7.	 Ehrhardt-Martinez, K. et al. Advanced Metering Initiatives and Residential Feedback Programs: A Meta-Review for Household 

Electricity-Saving Opportunities (American Council for an Energy-Efficient Economy, 2010).

https://www.refitsmarthomes.org/datasets/
https://www.refitsmarthomes.org/datasets/


15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6569  | https://doi.org/10.1038/s41598-023-33131-0

www.nature.com/scientificreports/

	 8.	 Gopinath, R., Kumar, M. & Srinivas, K. Feature mapping based deep neural networks for non-intrusive load monitoring of similar 
appliances in buildings. In Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, 
and Transportation 262–265 (2020).

	 9.	 Kukunuri, R. et al. Edgenilm: towards nilm on edge devices. In Proceedings of the 7th ACM International Conference on Systems 
for Energy-Efficient Buildings, Cities, and Transportation 90–99 (2020).

	10.	 Shin, C. et al. Subtask gated networks for non-intrusive load monitoring. Proc. AAAI Conf. Artif. Intell. 33, 1150–1157 (2019).
	11.	 Chang, X. et al. Transferable tree-based ensemble model for non-intrusive load monitoring. IEEE Trans. Sustain. Comput. 7, 

970–981 (2022).
	12.	 Tan, D., Suvarna, M., Tan, Y. S., Li, J. & Wang, X. A three-step machine learning framework for energy profiling, activity state 

prediction and production estimation in smart process manufacturing. Appl. Energy 291, 116808 (2021).
	13.	 Bonawitz, K. et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 1, 374–388 (2019).
	14.	 Wang, H. et al. Fed-nilm: A federated learning-based non-intrusive load monitoring method for privacy-protection. Energy 

Convers. Econ. 3, 51–60 (2022).
	15.	 Zhou, X., Feng, J., Wang, J. & Pan, J. Privacy-preserving household load forecasting based on non-intrusive load monitoring: A 

federated deep learning approach. PeerJ Comput. Sci. 8, e1049 (2022).
	16.	 Dai, S., Meng, F., Wang, Q. & Chen, X. Federatednilm: A Distributed and Privacy-preserving Framework For Non-intrusive Load 

Monitoring Based on Federated Deep Learning. arXiv preprint arXiv:​2108.​03591 (2021).
	17.	 Adabi, A., Manovi, P. & Mantey, P. Seads: A modifiable platform for real time monitoring of residential appliance energy consump-

tion. In 2015 Sixth International Green and Sustainable Computing Conference (IGSC) 1–4 (IEEE, 2015).
	18.	 Zhang, Y. et al. Fednilm: Applying federated learning to nilm applications at the edge. IEEE Trans. Green Commun. Netw.https://​

doi.​org/​10.​1109/​TGCN.​2022.​31673​92 (2022).
	19.	 Pan, Y., Liu, K., Shen, Z., Cai, X. & Jia, Z. Sequence-to-subsequence learning with conditional gan for power disaggregation. In 

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 3202–3206 (IEEE, 2020).
	20.	 Zhang, C., Zhong, M., Wang, Z., Goddard, N. & Sutton, C. Sequence-to-point learning with neural networks for non-intrusive 

load monitoring. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32 (2018).
	21.	 Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E. & Irwin, D. Private memoirs of a smart meter. In Proceedings of the 2nd ACM 

Workshop on Embedded Sensing Systems for Energy-Efficiency in Building 61–66 (2010).
	22.	 Shi, Y., Li, W., Chang, X. & Zomaya, A. Y. User privacy leakages from federated learning in nilm applications. In Proceedings of the 

8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation 212–213 (2021).
	23.	 Wang, H., Zhang, J., Lu, C. & Wu, C. Privacy preserving in non-intrusive load monitoring: A differential privacy perspective. IEEE 

Trans. Smart Grid 12, 2529–2543 (2020).
	24.	 Choi, W.-S., Tomei, M., Vicarte, J. R. S., Hanumolu, P. K. & Kumar, R. Guaranteeing local differential privacy on ultra-low-power 

systems. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA) 561–574 (IEEE, 2018).
	25.	 Sun, L. et al. Optimal skeleton-network restoration considering generator start-up sequence and load pickup. IEEE Trans. Smart 

Grid 10, 3174–3185 (2018).
	26.	 Chang, X., Li, W. & Zomaya, A. Y. A lightweight short-term photovoltaic power prediction for edge computing. IEEE Trans. Green 

Commun. Network. 4, 946–955 (2020).
	27.	 Gao, X. et al. A human activity recognition algorithm based on stacking denoising autoencoder and lightgbm. Sensors 19, 947 

(2019).
	28.	 Liu, L. & Wang, Z. Encoding temporal markov dynamics in graph for visualizing and mining time series. In Workshops at the 

Thirty-Second AAAI Conference on Artificial Intelligence (2018).
	29.	 Koikkalainen, P. & Oja, E. Self-organizing hierarchical feature maps. In 1990 IJCNN International Joint Conference on Neural 

Networks 279–284 (IEEE, 1990).
	30.	 Tian, Z., Zhang, R., Hou, X., Liu, J. & Ren, K. Federboost: Private Federated Learning for GBDT. arXiv e-prints arXiv​–2011 (2020).
	31.	 Murray, D., Stankovic, L. & Stankovic, V. An electrical load measurements dataset of united kingdom households from a two-year 

longitudinal study. Sci. Data 4, 1–12 (2017).
	32.	 LeCun, Y. et al. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361, 1995 (1995).
	33.	 Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30, 1–13 (2017).
	34.	 Lange, H. & Bergés, M. Efficient inference in dual-emission fhmm for energy disaggregation. In Workshops at the Thirtieth AAAI 

Conference on Artificial Intelligence (2016).
	35.	 D’Incecco, M., Squartini, S. & Zhong, M. Transfer learning for non-intrusive load monitoring. IEEE Trans. Smart Grid 11, 1419–

1429 (2019).
	36.	 Wang, H., Si, C. & Zhao, J. A Federated Learning Framework for Non-intrusive Load Monitoring. arXiv preprint arXiv:​2104.​01618 

(2021).
	37.	 Zhu, L. & Han, S. Deep leakage from gradients. In Federated Learning 17–31 (Springer, 2020).
	38.	 Kuhn, H. The hungarian method for the assignment problem. Naval Research Logistics 52, 7–21. (All Open Access, Green Open 

Access, 2005). https://​doi.​org/​10.​1002/​nav.​20053
	39.	 Palensky, P. & Dietrich, D. Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Trans. 

Ind. Inf. 7, 381–388 (2011).

Acknowledgements
Yunchuan Shi acknowledges the Faculty of Engineering Research Stipend Scholarship support from The Uni-
versity of Sydney. Dr. Wei Li acknowledges the support of the Australian Research Council (ARC) through the 
Discovery Early Career Researcher Award (DE210100263). Professor Zomaya and Dr. Wei Li acknowledge the 
support of an ARC Discovery Project (DP200103494) and the support from Australia-China Centre for Energy 
Informatics and Demand Response Technologies through Department of Industry, Innovation and Science, 
Australia (ACSRIII000004). Professor Yang’s work was supported in part by the National Key Research and 
Development Program of China (2022YFB2403800), National Natural Science Foundation of China (61971305) 
and Natural Science Foundation of Tianjin - Key Program (21JCZDJC00640). Professor Sun acknowledges the 
support of The National Key R&D Program of China (Grant No. 2019YFB2103200).

Author contributions
W.L. and A.Z. jointly supervised the work. Y.S. and X.C. were responsible for data pre-processing. Y.S., W.L., 
and X.C. designed the machine learning framework, analysed data and conducted experiments. T.Y. and Y.S. 
interpret the experimental results from the power engineering perspective. W.L., Y.S., and X.C. wrote the main 
manuscript text. All authors conceived the project and reviewed and revised the manuscript.

http://arxiv.org/abs/2108.03591
https://doi.org/10.1109/TGCN.2022.3167392
https://doi.org/10.1109/TGCN.2022.3167392
http://arxiv.org/abs/2011
http://arxiv.org/abs/2104.01618
https://doi.org/10.1002/nav.20053


16

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6569  | https://doi.org/10.1038/s41598-023-33131-0

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.L. or A.Y.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	On enabling collaborative non-intrusive load monitoring for sustainable smart cities
	Methods
	An overview of the proposed framework. 
	Cluster management. 
	Centralised federated learning mode. 
	Neural network. 
	GBDT. 

	Decentralised federated learning mode. 

	Results
	Data. 
	Experiment setup. 
	Evaluation metrics. 
	Centralised federated learning CNN model evaluation. 
	Decentralised federated learning CNN model evaluation. 
	GBDT model evaluation. 
	Training cluster evaluation. 
	Privacy leakage evaluation. 
	Deep leakage from gradients. 
	Result. 


	Discussion
	References
	Acknowledgements


