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Bogolon‑mediated light absorption 
in atomic condensates of different 
dimensionality
Dogyun Ko 1,2*, Meng Sun 1,3, Vadim Kovalev 4,5 & Ivan Savenko 1,2

In the case of structureless bosons, cooled down to low temperatures, the absorption of 
electromagnetic waves by their Bose‑Einstein condensate is usually forbidden due to the momentum 
and energy conservation laws: the phase velocity of the collective modes of the condensate called 
bogolons is sufficiently lower than the speed of light. Thus, only the light scattering processes persist. 
However, the situation might be different in the case of composite bosons or the bosons with an 
internal structure. Here, we develop a microscopic theory of electromagnetic power absorption by a 
Bose–Einstein condensates of cold atoms in various dimensions, utilizing the Bogoliubov model of a 
weakly‑interacting Bose gas. Thus, we address the transitions between a collective coherent state of 
bosons and the discrete energy levels corresponding to excited internal degrees of freedom of non‑
condensed individual bosons. It is shown, that such transitions are mediated by one and two‑bogolon 
excitations above the condensate, which demonstrate different efficiency at different frequencies and 
strongly depend on the condensate density, which influence varies depending on the dimensionality 
of the system.

Radiation pressure generates a flow of particles, for instance, electrons, molecules, or atoms due to the momen-
tum transfer from the photons into the system. The direction of the resultant, generated by the light field current 
of particles coincides (up to the sign) with the direction of the wave vector of the light field, j(ω) ∼ kα(ω)I , 
where k is the photon wave vector, I is the intensity of the electromagnetic (EM) wave and α(ω) is the absorp-
tion coefficient with ω the EM field frequency. This phenomenon is often referred to as the photon drag effect. 
It has been widely studied in generic two-dimensional (2D) electron gas and graphene  systems1,2, metal  films3,4, 
topological  insulators5,6, van der Waals structures and Dirac  materials7,8, and  cavities9.

In cold atoms, the role of radiation pressure-based techniques cannot be overestimated. The primary reason 
why the radiation pressure is so important there is the possibility of particle manipulation and trapping by 
external  fields10,11, resulting in their confinement and focusing or  acceleration12–16. This allows for, in particular, 
effective laser  cooling17–20 by utilizing several coherent laser beams with the possibility of subsequent formation 
of an atomic Bose–Einstein condensate (BEC)21.

In the normal state of atomic gas, it experiences two fundamental processes of light-matter interaction, i.e. 
light scattering and light absorption. However, once the BEC is formed, the interaction of light by the system 
gets suppressed. Indeed, according to, e.g., the Bogoliubov model of a weakly interacting Bose gas, since the 
over-BEC excitations of condensate density fluctuations, bogolons, possess linear dispersion with their velocity 
much smaller than the speed of light, the system absorption violates the conservation laws. That is why only the 
light scattering processes have been actively studied in cold atom BECs.

However, if we consider Bose particles with internal degrees of freedom, then finite absorption can happen 
involving the transitions between the energy states of internal particle motion. Then, the system still experiences 
the influence of the external light field after the formation of the BEC. Indeed, the spectrum of a single atom 
with an eigenfunction |η, p� reads Eη(p) = E(p)+�η , where E(p) = p2/2m is a kinetic energy of the particle 
center-of-mass motion, and �η is the energy spectrum of the internal motion of the atom; the index η stands 
for the full set of quantum numbers characterizing the internal spectrum of the particle, thus, the value η = 0 
refers to the ground state of the internal spectrum of Bose particles. Due to the interaction between the internal 
motion of the atomic gas and photon gas, photon bubbles become  unstable22. In absence of the coupling between 
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photon gas and atomic gas, the dispersion gives two independent modes. A purely decaying photon mode is 
characterized by damping, resulting from absorption and diffusion. An oscillating fluid mode is characterized 
by decay due to viscosity. However, with the coupling between the two fluids, the two modes become unstable, 
resulting in the formation of static and dynamic photon bubbles. The photon bubble instability is experimentally 
observed in two different  regimes23.

In our subsequent analysis, we assume that initially, the system is in the BEC state, |η = 0, p = 0� , and study 
a particular type of radiation pressure phenomena to occur in atomic condensates of different dimensional-
ties. To quantify the effect, we calculate the absorption probability and the absorption coefficient of the system 
and analyze their behavior. Obviously, the frequency dependence of the radiation pressure is determined by 
the spectrum of the absorption coefficient. This dependence is usually either monotonous or resonant: If the 
external EM field frequency ω approaches the energy of a quantum transition in the system, the response might 
experience resonant behavior.

This Letter is organized as follows: In “System Hamiltonian and light–bosons interaction”, we start with the 
Hamiltonian of the system describing the interaction between the bosonic particles and the external electro-
magnetic field and we employ the Bogoliubov model of a weakly-interacting bose gas in order to investigate the 
emission of bogolons in this system. In “Absorption probability”, we show two different types of processes that 
arise by the absorption of a photon, resulting in the creation of an excited particle and several bogolons and we 
calculate the absorption coefficients of the processes in various dimensions with different condensate densities.

System Hamiltonian and light–bosons interaction
Let us consider a bosonic field operator as a composition of the center of mass term, ψη(r, t) , and an internal 
motion term, χη , respectively. Thus, the full operator for the bosonic particle is ψη(r, t)χη , where r is the center 
of mass coordinate and η is the quantum number to represent the particle’s internal degrees of freedom. Then, 
the total Hamiltonian of the system  reads24,

where

describes interaction between the bosons and light. In Eq. (2), Ê(r, t) = Ê0 exp (ik · r − iωk t)+ c.c. according 
to the classical representation of the light field with ωk = c|k| , and, the matrix elements of the dipole moment 
operator read as dη′η = �χη′ |d̂|χη�.

Integrating out the internal particle motion variables yields bare Hamiltonian of the system,

where µ is the chemical potential and g is the particle–particle interaction strength for the ground state of the 
bosonic system; for simplicity and clarity of results, let us assume that the spectrum of the internal motion of 
particles is equidistant, �η = η� . The employment of a realistic spectrum of particular atoms, such as hydrogen-
like spectrum, �η = �/η2 , is a trivial complication.

The first line in Eq. (3) represents the Gross-Pitaevskii (GP) equation describing atomic BEC in the ground 
state with η = 0 and p = 0 , and the second line describes the bosons in the excited internal states η  = 0 . We will 
assume that most of the particles are in the condensate with the quantum number η = 0 , thus, the interaction of 
non-condensed particles with η  = 0 with each other and with the BEC is weak and can be disregarded.

The system described by the Hamiltonian (3) possesses two types of low-energy excitations. The BEC 
described by the GP equation is characterized by sound-like excitations of its density (bogolons) and single-
particle excitations describing the motion of individual atoms with η  = 0 , as indicated by the second term in 
Eq. (3). The field operator also contains two terms, ψ0 and ψη  =0 , corresponding to these two types of excitations 
in the system, respectively. We assume that |ψ0|2 ≫ |ψη �=0|2 , thus indicating that at low temperatures most of 
particles are in the BEC state.

For legibility, it is convenient to separate the terms containing η = 0 and η  = 0 in Eq. (2),

For the particles with η  = 0 , one can use the plain-wave ansatz: ψη  =0(r, t) =
∑

p cηp(t) exp(ipr) , where 
cηp(t) = cηp(0) exp(−iEη(p)t) with the corresponding energy Eη(p) = p2/2m+�η . For the condensate, η = 0 , 

(1)Ĥ = Ĥ0 + V̂ ,

(2)V̂ = −d̂ · Ê = −
∑

ηη′
dη′η

∫

drψ†
η′ (r, t)Ê(r, t)ψη(r, t)

(3)

Ĥ0 =
∫

drψ†
0 (r, t)

[

p̂2

2m
− µ+ g |ψ0(r, t)|2

]

ψ0(r, t)

+
∑

η �=0

∫

drψ†
η (r, t)

[

p̂2

2m
+�η

]

ψη(r, t),

(4)

V̂ = V̂1 + V̂2 + V̂3 + V̂4

= −d00

∫

drψ†
0 (r, t)Ê(r, t)ψ0(r, t)−

∑

η �=0

d0η

∫

drψ†
0 (r, t)Ê(r, t)ψη(r, t)

−
∑

η′ �=0

dη′0

∫

drψ†
η′ (r, t)Ê(r, t)ψ0(r, t)−

∑

η,η′ �=0

dη′η

∫

drψ†
η′ (r, t)Ê(r, t)ψη(r, t).
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the Bogoliubov transformation reads ψ0(r, t) =
∑

p

[√
ncδ(p)+ upbp(t)+ vpb

†
−p(t)

]

exp(ipr) , where nc is the 
density of the condensate, up and vp are the Bogoliubov transformation coefficients, and bp(t) = bp(0) exp(−iεpt) 
is the annihilation operator for Bogoliubov quasi-particle (bogolon). The spectrum of bogolons is given  by25 
εp = sp

√

1+ p2ξ 2 with s =
√

ncg/m being the sound velocity and ξ = (2ms)−1 being the healing length. Then, 
the first term in Eq. (4) reads:

In what follows, let us only focus on the light absorption processes, thus disregarding the terms containing 
Ê†
0 . Moreover, at low temperatures only the processes accompanied by the emission (not absorption) of bogolons 

are considerable, thus only the terms containing b† and b†b† matter. After the integration, Eq. (5) reads:

where the trivial case ( k = 0 ) was disregarded. Thus, V̂1 describes a possible direct light absorption by the BEC 
with a possible excitation of single or two bogolons in the BEC. It should be noted that these processes are pos-
sible only in the BEC of atoms having a nonzero dipole moment in its ground state, d00  = 0.

Following a similar procedure gives other interaction terms,

Before the system being irradiated, all the particles are in BEC. Therefore, V̂2 and V̂4 terms can be disregarded 
in later consideration.

Let us now discuss the physical meaning of the processes incorporated in V3 term. The first term in V3 , which 
is ∝ √

nc  , describes the absorption of the photon with energy ωk and momentum k accompanied by the direct 
excitation of the atom from the BEC state η = 0; p = 0 to the noncondensed state with η′ �= 0 and momentum 
p′ = k with the energy Eη′(p′ = k) = ωk.

The second term in V3 describes the transition of the BEC atom to the final state with η′ �= 0 and momentum 
p′ = p+ k with an arbitrary value of p . To conserve the total momentum, a single bogolon with energy ε−p 
is excited in the BEC carrying away the missing momentum −p in such a way that the total momentum in the 
system is conserved. Below, the processes described by V1 and V3 terms are analyzed in more detail.

Absorption probability
According to the Fermi golden rule, the absorption  probability26 for different interaction channels reads as

where |i� is the initial (unperturbed) state. The perturbation, which is the EM field, results in the transitions from 
the initial state to the final state |f � . The V̂1 part of BEC-light interaction Hamiltonian contains two different 
processes. In the first term in Eq. (6), the initial state of the system is the unperturbed BEC and the photon with 
energy ωk , whereas the final state corresponds to the presence of single bogolon in the system with energy εk . 
Thus, the corresponding probability can be written as

here, 1b stands for one-bogolon–mediated processes, the δ-function indicates the energy conservation law for 
the direct process, photon transforming its energy into a bogolon.

The probability due to the second term in Eq. (6) describes the transitions from the BEC accompanied by 
two bogolons (2b),

(5)

V̂1 = −d00

∫

drψ†
0 (r, t)Ê(r, t)ψ0(r, t)

= −d00
∑

p′p

[√
ncδ(p

′)+ up′b
†
p′(t)+ vp′b−p′(t)

]

×
∫

dr exp(−ip′r)Ê(r, t) exp(ipr)
[√

ncδ(p)+ upbp(t)+ vpb
†
−p(t)

]

.

(6)

V̂1 =− (2π)d
∑

p′p

δ(p′ − p− k)
[√

nc

(

δ(p)up′b
†
p′(t)+ δ(p′)vpb

†
−p(t)

)

+up′vpb
†
p′(t)b

†
−p(t)

]

d00 · Ê0(t),

(7)V̂2 = −(2π)d
∑

p′p

∑

η

δ(p′ − p− k)× up′b
†
p′(t)cηp(t)d0η · Ê0(t)

(8)V̂3 = −(2π)d
∑

p′p

∑

η

δ(p′ − p− k)× c†ηp′(t)
[√

ncδ(p)+ vpb
†
−p(t)

]

dη0 · Ê0(t)

(9)V̂4 = −(2π)d
∑

p′p

∑

ηη′
δ(p′ − p− k)× c†η′p′(t)cηp(t)dη′η · Ê0(t).

(10)α = 2π

�
| �f | V̂ |i� |2δ

(

Ef + Ei − ω
)

,

(11)α1
1b =

2π

�
|d00 · Ê0|2|u−k + vk |2δ(εk − ωk).
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Expressions (11) and (12) describe light absorption with a direct transfer of the photon energy to the excita-
tions of the BEC. Since the phase velocity of bogolons is much lower than the speed of light, εk  = ωk for any finite 
values of k . Thus, Eq. (11) does not give a contribution. In contrast, the probability (12) can be finite. Its value 
for typical parameters characterizing atomic BECs of different dimensionalities is analyzed below. In order to 
observe the absorption of the two bogolons process, the bogolons should be in the linear regime of nearly k = 0 . 
Both k + p and k should be less than 1/ξ and this leads to also k� ≪ 1/ξ . The linear regime can be achieved by 
using the light being nearly perpendicularly incident to the system.

A similar analysis can be applied to expression (8). The first term in V̂3 describes the direct transition of 
individual atom energy from the ground to an excited state under photon absorption. This interaction channel 
does not involve any bogolons,

The second term in Eq. (8) involves 1b processes, and the corresponding probability reads

Thus, in zero-temperature limit, photons can only be absorbed by the BEC in three different channels: (1) by 
generating an excited boson; (2) by generating a single bogolon and an excited boson; (3) by generating a pair 
of bogolons from the condensate.

In the most interesting case pξ ≪ 1 when the dispersion of the Bogoliubov excitations of the BEC can be 
approximated by the linear dispersion as εp ≈ sp , analytical results for the probabilities of these processes can 
be found. Under this approximation, the Bogoliubov transformation coefficients can be written as

Furthermore, we analytically calculate the absorption probabilities given by Eqs. (12), (13) and (14) in vari-
ous dimensions.

Absorption probability α1

2b

. Let us, first, find α1
2b in different dimensionalities by substituting Eq. (15) in 

Eq. (12), yielding

In case of 1D BEC, the absorption probability is

where

In Eq. (18), the momentum k‖ inherent from the photon is just the component which is parallel to the 1D 
sample. It should be noted, that the frequency of light ωk depends on both the parallel and vertical components 
of k

(

k�, k⊥
)

.
In the 2D case, the absorption probability reads (See the details in “Supplemental material”),

In 3D, we have

Absorption probability α3

1b

. By plugging Eq. (15) into Eq. (14), we attain

(12)α1
2b =

2π

�
|d00 · Ê0|2

∑

p

|up+kvp|2δ(εp+k + ε−p − ωk).

(13)α3
0b =

2π

�
nc

∑

η �=0

|dη0 · Ê0|2δ(Eη(k)− ωk).

(14)α3
1b =

2π

�

∑

η,p

|dη0 · Ê0|2|vp|2δ(Eη(p+ k)+ ε−p − ωk).

(15)up ≈
√

ms

2|p| , vp ≈ −
√

ms

2|p| .

(16)α1
2b =

πm2s

2�
|d00 · Ê0|2

1

(2π�)d

∫

dp
1

|p||p+ k| δ
(

|p+ k| + |p| − ωk

s

)

.

(17)a12b,1D =m2s

4�2
|d00 · Ê0|2I12b,1D = 2m2s

�2
|d00 · Ê0|2

�
[

ωk/s − k�
]

(ωk/s)2 − k2�
,

(18)I12b,1D =
∫

dp
1

|p||p+ k�|
δ

(

|p+ k�| + |p| − ωk

s

)

.

(19)α1
2b,2D = sm2

8π�3
|d00 · Ê0|2I12b,2D = sm2

4�3
|d00 · Ê0|2

�[ωk/s − k�]
√

(ωk/s)2 − k2�
.

(20)α1
2b,3D = sm2

16π2�4
|d00 · Ê0|2I12b,3D = sm2

8π�4
|d00 · Ê0|2�[ωk/s − k].
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here, several approximations have been assumed. First, the bogolon dispersion is linear, εp ≈ sp . This approxima-
tion implies the dropping of the p2 and other higher-order terms in the bogolon dispersion. At the same level of 
approximation, we must disregard the kinetic energy of individual atom, (p+ k)2/2m , assuming Eη(p+ k) ≈ �η 
in Eq. (14).

This formula, Eq. (21), produces different results for BECs of different dimensions (See the details in “Sup-
plemental material”),

Let us compare the absorption probability for the 1b and 2b processes.

Discussion
As concerns expression (13), it produces a series of resonances corresponding to direct transitions of the atoms 
from BEC without the excitation of the condensate density. Despite the absence of bogolons under this photon 
absorption processes, its magnitude is determined by the BEC density nc.

Figure 1 shows the absorption probabilities in case of 1b processes for different dimensionalities of the system 
and for various condensate densities. Below certain threshold, � = 2 eV in our case, the absorption in all the 
1D, 2D and 3D samples is absent. At higher frequencies ω > � , in 1D case, the absorption experiences a comb-
like behavior with the peaks at ωk = η� . By increasing the condensate density, the absorption probability also 
increases. In the 2D case, the absorption reveals a step-like behavior, and it does not depends on the condensate 
density. In 3D, the absorption probability curve reminds a broken threshold. Interesting to note, that it decreases 
with the increase of the condensate density, which is opposie to the 1D case.

Figure 2 shows the absorption probabilities for 2b processes and for different condensate densities. By increas-
ing the condensate density, the absorption probability increases in all dimensionalities. For 1D and 2D, we 
observe an exponential decay, and in 3D, the absorption probability is a constant.

There are several differences between 1b and 2b process. In 2D, 2b processes-mediated absorption does 
depend on the condensate density as compared to 1b processes, which do not experience any dependence on 
the condensate density. Another principle difference between 1b and 2b processes is that for 2b process, the 
absorption is finite even at small frequencies ( ω < � ). Moreover, it is more pronounced at smaller frequencies.

The theory developed above is based on the model, which disregards the disorder and interaction between 
photo-excited particles and BEC. These effects result in finite lifetime of the particles, changing the density of 
state in the system, which, in order, might modify the frequency dependence of the light absorption coefficient, 
which is defined as the ratio of number of absorbed photons and number of incident photons, α(�ω) = �ωW/P
26, where W is absorption probability and P is the average of the Poynting flux for the light intensity, P = cǫ0E

2
0/2 , 

where ǫ0 is the vacuum permittivity.

(21)α3
1b =

mπ

�

s

(2π�)d

∑

η

|dη0 · Ê0|2
∫

dp
1

p
δ(�η + sp− ωk).

(22)α3
1b,1D = m

2�2

∑

η

|dη0 · Ê0|2I31b,1D = ms

�2

∑

η

|dη0 · Ê0|2
�[ωk −�η]
ωk −�η

,

(23)α3
1b,2D = m

4π�3

∑

η

|dη0 · Ê0|2I31b,2D = m

2�3

∑

η

|dη0 · Ê0|2�[ωk −�η],

(24)α3
1b,3D = m

8π2�4

∑

η

|dη0 · Ê0|2I31b,3D = m

2πs�4

∑

η

|dη0 · Ê0|2(ωk −�η)�[ωk −�η].
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Figure 1.  Spectrum of the absorption probability in each dimensionality for 1b processes. The parameters 
used are: m = 1.443× 10

−25 kg is the mass of atom. �η = η · 2 eV is the energy spectrum of the internal 
motion, |dη0 · Ê0| = 2× 10

−3 eV is the transition matrix element with dη0 = 3.584× 10
−29C ·m the transition 

dipole matrix element; Ê0 = 100 KV/cm is electric field intensity. k = ω/c is the wavevector of light. For 
1D, the condensate densities are n1d = 80 µm−1 (blue), n1d = 150 µm−1 (red), n1d = 300 µm−1 (green). For 
2D, n2d = 100 µm−2 . For 3D, the condensate densities are n3d = 250 µm−3 (blue), n3d = 320 µm−3 (red), 
n3d = 400 µm−3 (green).
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In the case of a disordered BEC or finite lifetime of bogolons, the δ-functions in the equations for the absorp-
tion probability terms has to be widened into the Lorenz form. The microscopic analysis of the disorder or 
particle collisions is a separate question, which we leave beyond the scope of the present paper.

The other specific feature of the presented theory is that we consider BEC in different dimensions to be 
spatially uniform, such that nc = const . In the case of 0D trapped or spatially-modulated BECs the condensate 
density in equilibrium becomes spatially-dependent, nc(r) . Thus, the system preserves the translation invariance. 
In that case, the Bose particles momenta (and bogolons’ ones) p are not conserved violating the momentum 
conservation law under optical transitions. A careful analysis of light absorption in these BECs requires a sepa-
rate consideration.

Conclusions
We studied the response of cold atomic gas in the BEC phase to an external electromagnetic field by calculating 
the absorption probabilities. For that, we used the standard Bogoliubov theory, extending it to the case of Bose 
particles possessing internal degrees of freedom. We show, that several specific processes might occur if the 
atomic gas is in the BEC state. In particular, two types of transitions occur, which contribute to light absorption 
by the system. The processes of the first kind involve an excitation of an atom accompanied by an emission of 
a bogolon—the quantum of BEC density fluctuations. The processes of the second type involve creating two 
bogolons with different momenta. We demonstrate that the one-bogolon processes are dominant in a broad range 
of the external EM field frequencies except for the small-frequency region. Moreover, the light absorption in 
different dimensionalities depends differently on the condensate density. For one-bogolon processes, the absorp-
tion increases with larger condensate densities in 1D. However, in 3D, by increasing the condensate density, the 
absorption decreases. In 2D, the absorption does not depend on the condensate density. For the process involv-
ing pairs of bogolons, in all the dimensions, the absorption increases with the increases of condensate density.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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