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Factor‑specific generative pattern 
from large‑scale drug‑induced gene 
expression profile
Se Hwan Ahn 1 & Ju Han Kim 1,2*

Drug discovery is a complex and interdisciplinary field that requires the identification of potential 
drug targets for specific diseases. In this study, we present FacPat, a novel approach that identifies 
the optimal factor-specific pattern explaining the drug-induced gene expression profile. FacPat uses 
a genetic algorithm based on pattern distance to mine the optimal factor-specific pattern for each 
gene in the LINCS L1000 dataset. We applied Benjamini–Hochberg correction to control the false 
discovery rate and identified significant and interpretable factor-specific patterns consisting of 480 
genes, 7 chemical compounds, and 38 human cell lines. Using our approach, we identified genes that 
show context-specific effects related to chemical compounds and/or human cell lines. Furthermore, 
we performed functional enrichment analysis to characterize biological features. We demonstrate that 
FacPat can be used to reveal novel relationships among drugs, diseases, and genes.

Identifying interactions between drugs and targets is important for discovering new drug candidates and repur-
posing existing ones1. Traditionally, the interaction between a drug and a target has been identified through 
clinical observations and biological experiments2. However, traditional gene expression profiling measured 
using microarray is time-consuming and expensive3. Owing to the development of modern high-throughput 
technology, large-scale gene expression profile data have accumulated4. These datasets enable the identification 
of biological mechanisms of drugs, diseases, and genetic factors5.

The Library of Network-based Cellular Signatures (LINCS), a program developed by the National Institutes 
of Health (NIH), generated large-scale perturbation-induced gene expression profiles6. The LINCS consortium 
generated the L1000 dataset measured using a high-throughput gene expression assay called the L1000 assay. 
Of 12,328 genes, the expression levels of 978 genes, termed landmark genes, were directly measured using the 
L1000 assay. The remaining 11,350 non-landmark genes were inferred from the computational model with Gene 
Expression Omnibus (GEO)7 data. The L1000 dataset provides large-scale multivariate gene expression signatures 
comprising thousands of perturbations to over 70 human cell lines under many different experimental conditions. 
Thus, the L1000 dataset is useful for pharmacogenomic research, and many different computational methods 
with the L1000 dataset have been proposed for predicting the mechanism of actions of drugs or repurposing 
the known ones8–10.

Although there are numerous biological features in large-scale multivariate datasets, such as the L1000 data, 
only a few are important11. The L1000 dataset provides more than one million drug-induced gene expression 
profiles obtained under various experimental conditions, including drugs, doses, cell lines, and time points. 
Identifying differentially expressed genes (DEGs) between perturbation and control conditions has facilitated the 
discovery of significant biological features from large-scale multivariate drug-induced gene expression profiles. 
DEGs are commonly identified using conventional statistical methods, such as analysis of variance (ANOVA) 
and multivariate analysis of variance (MANOVA); however, these methods are limited as they require a sufficient 
number of replicate experiments for accurate identification12. Additionally, analysis of the distribution of replicate 
experiments in the L1000 dataset revealed that approximately 98% of the dataset was measured from samples 
with one to eight replicate experiments, with most samples having three replicates13. Therefore, the development 
of novel approaches and methods that can effectively analyze the L1000 dataset is required.

Data-mining technology facilitates the extraction of useful information from large-scale data14. The present 
study aimed to identify the optimal biological factors that describe the expression profile using a method that 
mines the gene expression patterns. We propose a novel method named FacPat that can identify key biological 
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factor-specific patterns among chemical compounds, human cell lines, and genes using perturbation-induced 
gene expression signatures from the L1000 dataset (Fig. 1A). We first constructed an expression profile for 
every 12,328 genes comprising the gene expression signatures of 51 human cell lines treated with 19 chemical 
compounds. We assumed that the expression profile was combined with noise and an underlying factor-specific 
pattern. To quantify the impact of noise, we measured the pattern distance by counting the number of mismatch 
elements between the observed expression profile and factor-specific pattern. Therefore, the optimal factor-
specific pattern had the closest pattern distance between the factor-specific pattern and the observed expression 
profile. We then used a genetic algorithm to determine the optimal factor-specific pattern for each observed 
expression profile (Fig. 1B–E) and generated the distribution of pattern distances for each observed expression 
profile to address multiple testing corrections. Finally, we identified significant and directly interpretable biologi-
cal factor-specific patterns in the L1000 dataset. FacPat identified the relationships among chemical compounds, 
human cell lines, and genes that describe the expression profiles. The unique advantage of FacPat lies in its ability 
to identify these significant patterns without the need for sufficient replications, thereby overcoming the limita-
tions of traditional statistical methods, such as ANOVA and MANOVA.

Results
Overview of FacPat.  In the present study, we developed a novel approach called FacPat for identifying 
significant biological key factor-specific patterns for each gene in the L1000 dataset. For our analysis, we con-
structed a complete expression profile for each gene using expression signatures of 51 cell lines treated with 19 
chemical compounds at the 6-h time point (Tables 1 and 2).

To determine differential expression, we dichotomized the expression signatures using a threshold of |Z|> 2.0, 
which indicates significantly altered gene expression signatures compared to the control. The optimal factor-
specific pattern was determined using a genetic algorithm from the observed expression profiles of all 12,328 
genes based on the pattern distance (Fig. 1A). Of these genes, 480 were judged significant with an false discovery 
rate (FDR) of < 5% (Supplementary Table 1 and Fig. 2). In Fig. 2, we show the significant and interpretable inter-
actions for 480 genes, 7 chemical compounds, and 38 cell lines identified from the L1000 dataset (FDR < 0.05). 
A total of 383 genes showed only chemical compound-specific effects, 86 genes showed only cell-specific effects, 
and 11 genes showed both chemical compound- and cell-specific effects.

Evaluation.  We compared our results with the Comparative Toxicogenomics Databases (CTD)15 to deter-
mine the extent of overlap between our findings and previously reported relationships. The CTD is a compre-
hensive public resource that curates data on the relationships among chemicals, genes, and diseases. Our analysis 

Figure 1.   (A) Workflow schema of FacPat. For our analysis, the gene expression profiles of 51 cell lines treated 
with 19 chemical compounds from the L1000 dataset were constructed. The threshold β > 2 was used to identify 
differentially expressed genes (DEGs) in the expression profile. The optimal biological factor-specific patterns 
are identified by a genetic algorithm. (B–D) The optimal factor-specific pattern (red line) and pattern distance 
(d) from the expression profile using a genetic algorithm. The gray color shows identified DEGs. (B) The β - and 
Eij-specific pattern (d = 0). (C) The E′

ij-specific pattern (d = 1). (D) The 
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(d = 3). (E) The null pattern (d = 6). In binary space, pattern distance is defined as the count of mismatches. c4 , 
the ith cell line; p4 , the ith perturbagen.
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revealed that 56.04% (269 out of 480) of the genes that we identified as significant were previously reported in 
the CTD. Notably, among the 11 genes that exhibited both cell line- and chemical compound-specific effects, 8 
genes were previously reported in the CTD.

Characterizing biological features through enrichment analysis.  We conducted functional enrich-
ment analysis to identify the biological features of genes that are specific to certain chemical compounds and/or 
cell types. Our findings revealed significant results for genes related to trichostatin-A (TSA), ingenol 3,20-diben-
zoate (IDB), and phorbol-12-myristate-13-acetate (PMA) in the Biological Process (BP) and KEGG pathways 
(Fig. 3) but not for genes showing only cell-specific effects.

We found that 66.5% (319 out of 480) of genes were specifically associated with TSA, which was initially 
isolated from Streptomyces hygroscopicus16. Functional enrichment analysis highlighted that these TSA-specific 
genes are significantly associated with the negative regulation of the apoptotic process (GO:0043066) and the 
cell cycle (hsa04110) (Fig. 3A,B). These findings align with the reported anticancer properties of TSA, which 
functions as a histone deacetylase (HDAC) inhibitor, leading to cell apoptosis and growth arrest17. TSA causes 
hyperacetylation of histones, thereby altering gene expression patterns and ultimately resulting in cell cycle arrest, 
induction of apoptosis, and inhibition of tumor cell proliferation17.

Table 1.   List of 51 cell lines by primary sites.

Primary site Cell line

Bone A673

Breast MCF7

Endometrium HEC108, JHUEM2, SNGM

Hematopoietic and lymphoid tissue NOMO1, PL21, SKM1, THP1, U937, WSUDLCL2

Kidney HA1E

Large intestine CL34, HCT116, HT115, HT29, LOVO, MDST8, NCIH508, RKO, SNU1040, SNUC4, SNUC5, 
SW480, SW620, SW948

Liver HEPG2

Lung A549, CORL23, DV90, NCIH1299, HCC15, HCC515, NCIH1694, NCIH1836, NCIH2073, 
NCIH596, SKLU1, T3M10

Ovary COV644, EFO27, OV7, RMGI, RMUGS, TYKNU

Prostate PC3, VCAP

Stomach AGS

Skin A375, SKMEL1, SKMEL28

Table 2.   List of 19 chemical compounds.

PubChem CID Name Dosage Mechanism of action

3413 Forskolin Racemate 10 μM Adenylyl cyclase activator

441294584 Alda-1 40 μM Aldehyde dehydrogenase activator

24857885 PTP1B-IN-3 10 μM AMP-activated protein kinase activator

200 AICA-ribonucleotide 10 μM AMPK activator

135421197 PAC-1 10 μM Caspase activator

44197249 BRD-K30064966 10 μM Caspase activator

6376322 Trichostatin-A (TSA) 10 μM Histone deacetylase inhibitor

9886086 Ro-28-1675 160 μM Glucokinase activator

638278 Isoliquiritigenin 10 μM Guanylate cyclase activator

4201 Minoxidil 10 μM ATP-sensitive potassium channels activator

6603728 BAY-K-8644-(S)-(−) 10 μM L-type calcium channel activator

761523 m-3M3FBS 80 μM Phospholipase activator

442042 Ingenol 3,20-dibenzoate (IDB) 10 μM Protein Kinase C activator

4792 Phorbol-12-myristate-13-acetate (PMA) 10 μM Protein Kinase C activator

10474339 BMS-191011 10 μM Potassium channel activator

60138087 M2-PK-activator 90 μM Pyruvate kinase isozyme activator

445154 Resveratrol 10 μM Sirtuin activator

44240264 SRT-1720 10 μM Sirtuin activator

237 Mepacrine 10 μM TP53 activator
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IDB exhibits various biological activities, including anti-inflammatory and anticancer effects18,19; therefore, 
further understanding of the precise mechanism of action of IDB is crucial for its potential therapeutic appli-
cations. Despite ongoing research and numerous studies, the precise mechanism of action of IDB is yet to be 
fully elucidated20,21. We found that 6.7% (32 out of 480) of the significant genes exhibited IDB-specific effects 
(Fig. 2). As shown in Fig. 3C,D, IDB-specific genes were significantly enriched in the inflammatory response 
(GO:0006954), TNF signaling pathway (hsa04668), NF-κB signaling pathway (hsa04064), and NOD-like receptor 

Figure 2.   Gene, cell line, and chemical compound association network graph visualized using the igraph R 
package. The network visualizes the significant factor-specific patterns (FDR < 0.05) obtained from FacPat, 
representing the associations among 480 genes, 38 cell lines, and 7 chemical compounds. The nodes in the 
graph represent individual genes, cell lines, and chemical compounds, while the edge connections indicate their 
associations.

Figure 3.   Results of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis for each TSA, IDB, and PMA-specific gene. Due to a large number of significant results, 
we visualized the top five significant terms based on statistical significance (p < 0.05) for each category. (A,B) 
Enriched GO terms of biological processes and KEGG pathways for TSA-specific genes, respectively. (C,D) 
Enriched GO terms of biological processes and KEGG pathways for IDB-specific genes, respectively. (E,F) 
Enriched GO terms of biological processes and KEGG pathways for PMA-specific genes, respectively. TSA 
Trichostatin-A, IDB Ingenol 3,20-dibenzoate, PMA Phorbol-12-myristate-13-acetate.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6339  | https://doi.org/10.1038/s41598-023-33061-x

www.nature.com/scientificreports/

signaling pathway (hsa04621). These results are consistent with previously reported findings, where IDB has 
been shown to modulate inflammation and immune responses through its effects on signaling pathways, such 
as NF-κB and TNF22. Overall, our findings are consistent with previous studies on the mechanism of action of 
IDB, highlighting its potential as a therapeutic agent targeting inflammation and immune-related pathways.

In addition, we found that 7.5% (36 out of 480) of the significant genes exhibited a PMA-specific effect 
(Fig. 2). As shown in Fig. 3E,F, PMA-specific genes were also significantly enriched in the inflammatory response 
(GO:0006954), TNF signaling pathway (hsa04668), NF-κB signaling pathway (hsa04064), and NOD-like receptor 
signaling pathway (hsa04621). Furthermore, we identified 24 genes that were associated with both IDB and PMA, 
and these genes also demonstrated significant enrichment in the inflammatory response (GO:0006954) and the 
NF-κB signaling pathway (hsa04064). Our findings suggest that IDB and PMA may exert their biological effects 
through common mechanisms, particularly in the modulation of inflammation and immune responses. This 
result is also supported by their shared mechanism to activate PKC, a key enzyme involved in signal transduction 
and the regulation of various cellular processes18,23.

Both chemical compound‑ and cell‑specific genes.  Subsequently, we focused on 11 genes that exhib-
ited both chemical compound- and cell-specific effects. The significant optimal factor-specific patterns for the 
11 genes are shown in Fig. 4. AKAP8 and ADRB2 showed specific effects in both TSA- and small-cell lung 
cancer (SCLC) cell lines, NCIH1694. DHRS2, TYMS, PLCB3, and ATP6V1D showed both TSA- and non-small-
cell lung cancer (NSCLC) cell line-specific effects. ATP6V1D was also associated with mepacrine and SNUC5, 
the only gene associated with dual-chemical compounds and cell lines. SPTLC2 exhibited both mepacrine and 
A673-specific effects. KDM3A showed both PAC-1- and NOMO1-specific effects. MCOLN1 and TUBA1A were 
associated with both TSA- and colorectal cancer cell line-specific effects. Moreover, STX1A exhibited both TSA- 
and WSUDLCL2-specific effects.

Discussion
In this study, we developed a novel approach, FacPat, for identifying context-specific associations among genes, 
chemical compounds, and human cell lines, using gene expression profiles from the LINCS L1000 dataset. FacPat 
is based on a genetic algorithm and uses pattern distance to determine the optimal factor-specific pattern from 
observed gene expression profiles. Using this approach, we identified 480 significant genes specifically associated 
with chemical compounds and/or cell lines at an FDR < 0.05. We also performed functional enrichment analysis 
to identify biological processes and pathways affected by the identified genes. Our results provide insights into 
the different context-specific effects of genes, which are potential targets for disease treatment.

Our approach has several novel aspects. First, we focused on identifying genes that are specifically associ-
ated with chemical compounds and/or human cell lines, which can facilitate the identification of potential drug 
targets for specific diseases. Second, we used a genetic algorithm to identify the optimal factor-specific pattern, 
which allowed for the identification of subtle but important differences in gene expression patterns. Third, we 

Figure 4.   Cell line and chemical compound-specific patterns. The significant factor-specific patterns exhibiting 
both chemical compound- and cell-specific effects are visualized.
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used pattern distance to quantify the impact of noise and determine the closest factor-specific pattern. Finally, we 
performed functional enrichment analysis to further explore the biological processes and pathways influenced 
by the identified genes.

Our results revealed that all significant genes can be interpreted as three context-specific effects. The first 
effect is associated with genes that display only chemical compound-specific effects, which suggests their involve-
ment in chemical interactions across different diseases. The second effect pertains to genes that display cell 
line-specific effects, indicating their association with disease-specific molecular mechanisms, irrespective of the 
chemical compound treatment. The third effect suggests that these genes, which are specific to both chemical 
compounds and cell lines, can be targeted by chemical compounds for treating specific diseases. Moreover, we 
identified several genes that are potential targets for therapeutic interventions in various cancers. Specifically, 
two genes, AKAP8 and ADRB2, were associated with SCLC and trichostatin-A (TSA). TSA is an anticancer drug 
that inhibits the growth of lung cancer cells through histone hyperacetylation, and AKAP8 is involved in DNA 
replication and condensation during the cell cycle24–27. ADRB2 is associated with the beta-adrenergic receptor 
( β-AR), whose activation promotes the progression of lung cancer28. Several studies have been conducted to 
elucidate the mechanism of action of β-ARs in lung cancer. However, further studies investigating ADRB2 as a 
candidate target gene for TSA in NSCLC are required.

In the present study, we identified four genes, ATP6V1D, TYMS, PLCB3, and DHRS2, that are associated 
with both TSA and NSCLC. ATP6V1D encodes a vacuolar ATPase (V-ATPase), and in NSCLC, chemotherapy 
drug resistance is associated with the expression of V-ATPase29. TYMS is a common target gene of HDAC 
inhibitors and is suppressed by HDAC inhibition30. PLCB3 is associated with poor overall survival of patients 
with NSCLC and poor prognosis of adenocarcinoma31; however, the interaction between PLCB3 and TSA has 
not yet been discovered. DHRS2 is associated with various functions, such as cell proliferation and migration, in 
many different cancers32. In our study, we found that it may be a novel target of TSA in NSCLC. These findings 
suggest that genes showing both TSA- and NSCLC-specific effects may be potential targets of TSA in NSCLC.

In addition, we found that another gene, SPTLC2, was associated with both mepacrine and the human Ewing’s 
sarcoma cell line, A673. Mepacrine promotes apoptotic signaling through several pathways, including inducing 
p5333. Small-molecule p53 activators, such as actinomycin D, are being considered as potential treatments for 
Ewing’s sarcoma34. Therefore, SPTLC2 may be a novel mepacrine target for treating human Ewing’s sarcoma. 
We also found that KDM3A is related to both PAC-1 and the human acute myeloid leukemia (AML) cell line 
NOMO1. The role of KDM3A in AML has not yet been fully elucidated; however, it is known to promote the 
growth of many solid tumors35. PAC-1 increases the concentration of caspase-3 and has been studied extensively 
as a strategy for treating many cancers, including leukemia36. These findings suggest that KDM3A is a potential 
target for the treatment of leukemia.

Furthermore, we identified two genes, TUBA1A and MCOLN1, which are associated with TSA and colorectal 
adenocarcinoma. TUBA1A is one of the three α-tubulin genes, and TSA induces α-tubulin acetylation, which 
effectively inhibits HDAC637. In colon cancer, HDAC6 expression is high and associated with poor prognosis38. 
Therefore, TUBA1A may act as a potential target when TSA is used to treat colon cancer. MCOLN1, a member of 
the mucolipin family of transient receptor potential channels (TRPMLs), is significantly differentially expressed 
among colon cancer cells39. In this study, we found that MCOLN1 is a novel target of TSA for the treatment of 
colon cancer. Forever, further studies are required to identify the biological processes of MCOLN1 and TSA in 
colon cancer.

Our approach can be used to discover novel drug targets for disease treatment from large-scale drug-induced 
expression profiles. We focused on two biological factors, human cell lines, and chemical compounds. However, 
they can also be extended to other biological factors. For example, it can be applied to determine the concen-
tration of a drug to identify dose-specific effects. Additionally, it is scalable to an N-dimensional matrix rather 
than a two-dimensional matrix, allowing for the identification of higher-order interactions of biological fac-
tors. Moreover, we computed the pattern distance between the observed expression profile and the biological 
factor-specific pattern by counting the mismatch elements. However, it is also possible to use other methods to 
compute pattern distances. In summary, we believe that our FacPat approach is valuable for uncovering biologi-
cally relevant patterns, and it has the potential to be applied to other large-scale datasets, further advancing our 
understanding of drug action and disease mechanisms.

Our study has some limitations. First, when there are several optimal factor-specific patterns for each gene 
that are not null patterns, one of them is randomly selected. In addition, we only focused on the optimal biologi-
cal factor-specific pattern that describes the expression profiles of differentially expressed signatures; however, 
patterns with the closest pattern distance and the other patterns were also statistically significant.

In conclusion, our approach has the potential to identify novel drug targets for disease treatment from large-
scale gene expression datasets. Our findings contribute to the growing body of research on the identification 
of context-specific patterns, which will improve our understanding of disease pathogenesis and facilitate the 
development of more effective treatments.

Methods
Drug‑induced gene expression data from the LINCS dataset.  In the L1000 dataset, there are 
approximately 1.3 million gene expression profiles that are perturbed in over 70 human cell lines with 16,425 
perturbations induced by chemical compounds (e.g., drugs and small molecules) and 5806 genetic perturbations 
(e.g., over-expression and single-gene knockdown) under various experimental conditions (e.g., dose and time 
point)40,41. The L1000 dataset contains five preprocessing steps and provides the dataset for each step. In sum-
mary, the level 1 data consist of raw fluorescent intensity values measured using Luminex scanners, level 2 is the 
deconvolution step from the measured fluorescent intensity values of 978 landmark genes, level 3 is the inference 
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step for 11,350 non-landmark genes based on the normalized values for the 978 landmark genes, level 4 data 
consist of z-scores for each gene based on level 3, and level 5 data consist of replicate collapsed z-score signatures 
based on level 4 by moderated z-scores (MODZ) procedure6. All levels of L1000 datasets are deposited into the 
GEO database and are available for download. Therefore, we downloaded L1000 level 5 data (GSE92742) from 
the GEO database.

Although the L1000 dataset is a large-scale dataset, most of the data are focused on only nine core cell lines: 
A375, A549, HA1E, HCC515, HT29, HEPG2, MCF7, PC3, and VCAP13. With these nine core cell lines, all the 
data in Touchstone, the reference dataset of L1000, was generated. For our analysis, we selected experimental 
conditions to create a complete expression profile without missing values from the large-scale L1000 dataset. 
Finally, we constructed a complete expression profile for each of the 12,328 gene expression signatures of 51 cell 
lines treated with 19 chemical compounds at the 6-h time point (Tables 1 and 2).

Mining factor‑specific pattern algorithm.  We hypothesized that the observed expression profile would 
be combined with noise- and an underlying factor-specific pattern. To quantify the impact of noise, we calcu-
lated the pattern distance by counting the number of mismatched elements between the factor-specific pattern 
and the observed expression profile. Pattern distance was equivalent to the number of mismatches when the 
expression signature was dichotomized into one (significantly changed) or zero (unchanged). In a two-dimen-
sional matrix, the pattern distance between the observed expression profile ( Eij ) and factor-specific pattern ( E′

ij ) 

is defined as 
∑

∣

∣

∣
Eij − E

′

ij

∣

∣

∣
.

The optimal factor-specific pattern was defined as the closest pattern distance. We applied a genetic 
algorithm42 to identify the optimal factor-specific pattern from the observed expression profile. Through the 
selection, crossover, mutation, and mating steps, the optimal factor-specific pattern was determined (Fig. 1A).

As shown in Fig. 1B, the optimal factor-specific pattern matches the observed expression profile perfectly, 
resulting in a pattern distance of zero. Figure 1C shows an expression profile that has a single mismatch with the 
optimal factor-specific pattern, Pattern ( c4 ), resulting in a distance of 1. Similarly, Fig. 1D depicts an expression 
profile that has three mismatches with the optimal factor-specific pattern, Pattern ( c4,p4 ), resulting in a distance 
of 3. When the optimal factor-specific pattern was not specific to any biological factor, we defined it as a null 
pattern (Fig. 1E).

Because we scored the pattern distance for each gene simultaneously, we applied Benjamini–Hochberg 
(BH)43 correction to control the FDR. To estimate the FDR, we shuffled the observed expression profiles for 
each group. A group was defined as having the same number of significant elements in the observed expres-
sion profile. We defined Dn as the pattern distance of the observed expression profile, where n is the number 
of significant elements. Therefore, the pattern distances of the permuted expression profiles can be represented 
Dperm(n) = {D

perm1
n ,D

perm2
n , . . . ,D

permL
n } , for L = 10,000. From Dperm(n) , we estimated the p-values using:

Using Eq. (1), we calculated p-values for each observed expression profile. We then converted p-values into 
q-values to control the FDR using the BH method42. Finally, significant factor-specific patterns were obtained 
at the 5% significance level.

The association network among genes, cell lines, and chemical compounds from significant factor-specific 
patterns was visualized using the R igraph software package44.

Functional enrichment analysis.  Furthermore, we performed Gene Ontology (GO) analysis using the 
Database for Annotation, Visualization, and Integrated Discovery (DAVID v6.8)45,46 for genes that showed 
identical significant context-specific patterns. Functional annotations for biological processes (BP) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways47–49 were used to perform enrichment analysis. The 
significant results of the enrichment analysis (p < 0.05) were visualized with the R ggplot2 software package50.

Data availability
We used an open-access L1000 dataset from clue.io (https://​clue.​io). The L1000 dataset was downloaded from 
the NCBI GEO (accession no.GSE92742).

Code availability
The code is publicly available on Github (https://​github.​com/​sehwa​nahn/​FacPat).
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