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MasitinibL shows promise 
as a drug‑like analog of masitinib 
that elicits comparable SARS‑Cov‑2 
3CLpro inhibition with low kinase 
preference
Olanrewaju Ayodeji Durojaye 1,2,3, Nkwachukwu Oziamara Okoro 4, 
Arome Solomon Odiba 5,6* & Bennett Chima Nwanguma 5,6*

SARS-CoV-2 infection has led to several million deaths worldwide and ravaged the economies of 
many countries. Hence, developing therapeutics against SARS-CoV-2 remains a core priority in 
the fight against COVID-19. Most of the drugs that have received emergency use authorization for 
treating SARS-CoV-2 infection exhibit a number of limitations, including side effects and questionable 
efficacy. This challenge is further compounded by reinfection after vaccination and the high likelihood 
of mutations, as well as the emergence of viral escape mutants that render SARS-CoV-2 spike 
glycoprotein-targeting vaccines ineffective. Employing de novo drug synthesis or repurposing to 
discover broad-spectrum antivirals that target highly conserved pathways within the viral machinery 
is a focus of current research. In a recent drug repurposing study, masitinib, a clinically safe drug 
against the human coronavirus OC43 (HCoV-OC43), was identified as an antiviral agent with effective 
inhibitory activity against the SARS-CoV-2 3CLpro. Masitinib is currently under clinical trial in 
combination with isoquercetin in hospitalized patients (NCT04622865). Nevertheless, masitinib has 
kinase-related side effects; hence, the development of masitinib analogs with lower anti–tyrosine 
kinase activity becomes necessary. In this study, in an attempt to address this limitation, we executed 
a comprehensive virtual workflow in silico to discover drug-like compounds matching selected 
pharmacophore features in the SARS-CoV-2 3CLpro-bound state of masitinib. We identified a novel 
lead compound, “masitinibL”, a drug-like analog of masitinib that demonstrated strong inhibitory 
properties against the SARS-CoV-2 3CLpro. In addition, masitinibL further displayed low selectivity 
for tyrosine kinases, which strongly suggests that masitinibL is a highly promising therapeutic that is 
preferable to masitinib.

SARS-CoV-2 (severe acute respiratory syndrome), the cause of COVID-19 (coronavirus disease 2019), has 
resulted in 627,104,342 confirmed cases and 6,567,552 deaths globally as of the end of October 2022, according 
to the World Health Organization (WHO)1. The urgency to mitigate this acute infection justifies the race to 
develop or repurpose therapeutics, especially with the continuing emergence of new variants with varying degrees 
of infectivity and disease severity. These efforts yielded several options with Emergency Use Authorization 
(EUA) status for treating COVID-19, of which some include dexamethasone2, RNA-dependent RNA polymerase 
inhibitors (molnupiravir and remdesivir), 3CLpro inhibitors (nirmatrelvir), monoclonal antibodies (MABs), 
and convalescent plasma3. However, most of these treatment options displayed major setbacks in large clinical 
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trials in hospitalized patients, either exhibiting uncertain efficacy or serious side effects4,5. Moreover, the SARS-
CoV-2 virus mutates frequently, and this is an obstacle to some potential drugs, and the emergence of viral escape 
mutants that render SARS-CoV-2 spike glycoprotein-targeting vaccines ineffective remains a possibility6,7. This 
challenge necessitates the search for broad-spectrum antivirals that will also be effective against possible future 
variants. Tackling this challenge will require targeting a highly conserved and stable region of the SARS-CoV-2 
virus core protein machinery8. The main viral protease, 3CLpro (also known as Mpro or nonstructural protein 
5 [nsp5]), is responsible for cleaving translated proteins into active proteins9. Hence, it is an attractive target 
for antiviral drugs because it is indispensable for viral replication and is well conserved among coronaviruses10. 
Furthermore, drugs that target 3CLpro are unlikely to be unaffected by possible spike protein mutations caused 
by immunological pressure following natural infection or vaccination. Hence, targeting 3CLpro by de novo drug 
design or drug-repurposing remains a viable therapeutic path to be explored11,12.

Global efforts were accelerated nine months after the COVID-19 pandemic started, which allowed us to 
reach the point where preclinical and early clinical evidence were available for the vaccines currently in use13. 
About 128 candidate vaccines are now undergoing clinical examination; 194 candidate vaccines are undergoing 
preclinical evaluation; and more than 12 vaccines have finished phase 3 clinical trials, gained phased-in WHO 
approval, or been granted emergency authorization as of October 22, 202113. The basis of every authorized vac-
cination depends on the coronavirus spike protein (S) being expressed as the primary immunogenic antigen of 
the SARS-CoV-2 virus, inducing an immunological response that results in the production of certain antibod-
ies that are capable of neutralizing the virus14. The vaccines being tested in clinical trials use both conventional 
approaches, such as recombinant antigen subunits with immunogenic viral epitopes (45 vaccine candidates), 
purified whole-inactivated viruses (17 vaccine candidates), live attenuated viruses (2 vaccine candidates), virus-
like particle vaccines (5 candidate vaccines), and next-generation vaccination platforms, such as RNA- and DNA-
based formulations (35 vaccine candidates), and the bacterial antigen-spore vaccine (25 vaccine candidates)13.

De novo drug synthesis is an arduous process; hence, drug repurposing screens have been employed by 
numerous studies to identify existing approved drugs that can be used for other purposes15. Recently, one of 
these drug repurposing screens identified masitinib (the top candidate out of 1900 candidates) to be very effective 
against SARS-CoV-2, completely inhibiting 3CLpro activity and blocking replication of SARS-CoV-2 in cells16. 
Masitinib, a clinically safe drug against OC43 (the cause of the common cold), is an orally bioavailable tyrosine 
kinase inhibitor17. Masitinib has been considered for a broad range of applications in human diseases, including 
the treatment of cancer18, Alzheimer’s disease19, asthma20, amyotrophic lateral sclerosis21, multiple sclerosis16, 
and mast cell tumors in dogs22. Evidence from biochemical and X-ray crystallography shows that masitinib acts 
as a competitive inhibitor of SARS-CoV-23CLpro23. Masitinib reduced lung inflammation and displayed a > 200-
fold reduction in viral titers in the lungs and noses of mice infected with SARS-CoV-216. Interestingly, masitinib 
also showed in vitro effectiveness against B.1.1.7, B.1.351, and P.1 variants of SARS-CoV-2. The results further 
showed that masitinib reduced SARS-CoV-2 viral load in mice (> 99% on day six) and reduced inflammatory 
signatures, demonstrating potential benefits for survival24. Masitinib has been registered with clinicaltrials.gov 
(identifier: NCT04622865) to test its combined efficacy with isoquercetin on hospitalized patients23. Nevertheless, 
masitinib has limitations, such as kinase-related side-effects, and the study by Drayman et al.23 recommended the 
development of masitinib analogs with lower anti–tyrosine kinase activity, which would be beneficial to reduce 
its reported side-effects. Hence, we sought potential candidates with more advantages that would overcome the 
limitations of masitinib and also elicit better virucidal activity than masitinib.

In this study, we employed a comprehensive virtual screening workflow protocol to screen several chemical 
compound databases for drug-like compounds matching selected pharmacophore features in the SARS-CoV-2 
3CLpro-bound state of masitinib, from which significant hits were found. Similar pipelines have been employed 
in the recent design and synthesis of potent SARS-CoV-2 3CLpro inhibitors25. We identified a novel lead com-
pound through protein–ligand interaction fingerprinting and a comprehensive molecular dynamics simulation 
with the 3CLpro-bound masitinib, which strongly suggested that the novel lead compound (a structural analog 
of masitinib, named masitinibL in this study) is a highly potent inhibitor of the SARS-CoV-2 3CLpro, which 
further displayed a relatively lower anti–tyrosine kinase activity.

Materials and methods
3CLpro preparation and generation of receptor grid.  The 3-dimensional crystal structure of the 
SARS-CoV-2 3CLpro in complex with masitinib was obtained from the RSCB Protein Data Bank26. Thereafter, 
to ensure structural correctness and high confidence, we employed the Schrödinger Maestro suite (version 11.8) 
for structural preparation27. Preprocessing was carried out through the assignment of bond orders and the addi-
tion of hydrogen. Options to create zero-order bonds to metals, create disulfide bonds, and convert selenom-
ethionines to methionines were also selected, along with the filling of missing loops and sidechains using Prime. 
Furthermore, the temini were capped, water molecules beyond 5 angstroms were also deleted, and het states 
were generated at a pH of 7.0 ± 2.0 using Epik28. The energy minimization step was then carried out through the 
application of the OPLS3e force field29. Upon completion of the protein preparation protocol, we generated the 
receptor grid where the docked ligands will be confined during the virtual screening process using the receptor 
grid generation function of the Schrödinger Maestro suite. To generate an ideal grid, the bound masitinib was 
selected in the receptor tab, and other parameters were left at their default values. The generated X, Y, and Z 
coordinates for the docking grid are 13.66, 4.42, and 24.36, respectively.

Pharmacophore generation and chemical compound database screening.  Using the bound pose 
of the co-crystallized masitinib as a template, important pharmacophore features were identified and selected 
for screening through the ZINCPharmer platform30. The generated pharmacophore features were used to screen 
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the chemical compound databases for compounds matching the properties of the selected features, taking into 
consideration Lipinski’s rule of five for drug likeness31. The chemical compound databases screened (based on 
pharmacophore-matching) include the CHEMBL30, ChemDiv, ChemSpace, Mcule, Mcule-ultimate, MolPort, 
NCI Open Chemical Repository, WuXi LabNetwork, and the ZINC databases. A maximum of one hit per mol-
ecule and one hit per conformation reduction parameter were applied in order to narrow down the number 
of hits while satisfying the minimum requirement for drug likeness. The parameters set include a maximum 
molecular weight of 500, a maximum number of rotatable bonds of 10, a maximum LogP value of 5, a maximum 
of 10 hydrogen bond acceptors, and a maximum of 5 hydrogen bond donors. An in-house Python script was 
employed to address redundancy across databases.

Ligand preparation.  Having obtained all pharmacophore-matching chemical compounds from their 
respective databases, we used the Schrödinger Maestro Suite LigPrep module for all ligand preparation steps32. 
Multiple conformations (at most 32) of each ligand at a pH of 7.0 ± 2.0 were generated using Epik28, while also 
generating tautomeric stereoisomers. The 3D structure of masitinib in SDF format was subjected to a similar 
protocol that returned three conformers. All ligands were desalted, and other parameters were retained in their 
default settings. The Qikprop program screening was deselected before running LigPrep since Lipinski-based 
ligand filtering had been included during the compound database screening process. The LigPrep output was 
appended to the workspace upon completion and saved in Maestro format.

Virtual screening and MM‑GBSA postprocessing.  The ligand preparation process generated a huge 
number of compounds due to the permitted maximum limit of 32 conformers for each ligand. Hence, all the hits 
were taken through a cleanup protocol involving a 3-step virtual screening workflow followed by the MM-GBSA 
postprocessing to narrow down the number of hits. The 3-step virtual screening protocol includes the HTVS 
(High Throughput Virtual Screening)33, the SP (Standard Precision Module), and the XP (Extra Precision Mod-
ule)34. For the HTVS step, we maintained the default setting of 10% retention of the top 10 compounds. These 
sets of compounds were passed on to the standard precision module, and the same default setting as used in the 
HTVS was maintained. Additionally, for both the HTVS and the SP steps, only one pose was allowed to be gen-
erated per compound after docking. The output of the SP step was then passed on to the XP module, where 5% 
was retained. The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) protocol was conducted in 
an attempt to make a final selection after the ranking of the three generated pose outputs from the extra preci-
sion docking step. The binding affinity calculation based on pose ranking was conducted using the Schrödinger 
suite Prime MM-GBSA module35, which implements several methods such as the OPLS molecular mechanics 
energies, the presence of a non-polar solvent, and a SGB solvation model. The MM-GBSA was calculated using 
the equation:

Identification of lead compound.  In order to select the most ideal group of lead compounds for further 
analysis, we conducted a protein–ligand interaction fingerprinting (PLIF) study on the top 10 outputs from 
the MM-GBSA ranking using the Aupossom software36. Upon docking completion, the receptor and ligand 
files were converted to MOL2 format for Aupossom upload. The contact type for analysis was set to hydrogen 
bond (hb), while the module threshold for partial charges was set at 0.5. Other parameters were retained in 
their default settings to run the program. Upon completion of the Aupossom run, output files were loaded on 
Denroscope (version 3.5.7) for result visualization37. Visualization of the identified lead compounds based on 
the chemical interaction groupings by dendroscope was achieved using the PyMOL molecular visualizer38. All 
observed biomolecular interaction types were viewed using both the Protein Ligand Interaction Profiler39 and 
the MolADI tools40.

Assessment of drug‑likeness profile.  The ADMET profile of selected lead compounds in comparison 
with the reference compound (masitinib) was estimated using a combination of the SwissADME41 and Pro Tox-
II42. For both tools, the SMILES strings of each compound to be analyzed were used as input. The SwissADME 
was used for the evaluation of essential ADME parameters such as the physicochemical properties, lipophilicity, 
water solubility, pharmacokinetics, and drug likeness of the lead compounds, while the usage of the Pro Tox II 
was directed at the prediction of organ toxicity and toxicity endpoints such as hepatotoxicity, carcinogenicity, 
mutagenicity, and cytotoxicity. The oral toxicity of each lead compound was also estimated using Pro Tox II.

Molecular dynamics simulation and post‑simulation analysis.  The molecular dynamics simula-
tion was performed using GROMACS (version 2020)43. Poses of selected lead compounds from the Aupossom 
output were chosen as the simulation’s starting conformation. The Charmm36 forcefield44 was used for both 
SARS-CoV-2 3CLpro (apo) simulation and the simulation of its complex with the selected lead compounds, 
including the co-crystallized ligand (masitinib). The Cgenff web server45 was used for the generation of topology 
files for each ligand, while the system was solvated in a cubic water box using the TIP3P water model. Chloride 
ions were added for the neutralization of the systems, and energy minimization was performed with the applica-
tion of position restraints for 50,000 steps. The system equilibration was also performed for 50,000 steps while 
system temperature and pressure were maintained at 300 K and 1 bar, respectively, followed by a 300-ns produc-

�Gbind = Gcomplex− Gpotein+ Gligand

where G = EMM+ VSGB+ GNP.
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tion run on all systems. Using the system trajectory files, we conducted several post-simulation analyses, such as 
the RMSD (root mean square deviation), RMSF (root mean square fluctuation), Rg (radius of gyration), SASA 
(solvent-accessible surface area), hydrogen bond analysis, PCA (principal component analysis), and the FEL 
(free energy landscape), in order to gain more insight into the differential system stability and dynamics upon 
ligand binding. The trajectory graphs were plotted using the XMGRACE software46, while visualization was car-
ried out on the PyMOL molecular visualizer38.

Target prediction.  To evaluate the most probable set of macromolecular protein targets for each lead com-
pound, we conducted a target prediction study using the SwissTargetPrediction tool47. This was necessary in 
order to identify from the lead compounds those that are less likely to inhibit tyrosine kinases, thereby greatly 
reducing the likelihood of possessing such tyrosine kinase inhibition-linked side effects as have been attributed 
to masitinib23.

Results
Unique co‑crystallized masitinib pharmacophore‑matching compounds exist across chemical 
databases.  Drayman et al.23 in their recent work have recommended the development of analogs of masi-
tinib with better inhibitory activity against the SARS-CoV-2 3CLpro and likewise possessing a lower degree of 
tyrosine kinase inhibition-associated side effects. More recently, Gurung et  al.48 carried out a computational 
study to examine the toxicity and drug-likeness of various chemical moieties that were substituted for the 
N-methylpiperazine group of masitinib. The filtered analogues were put through molecular docking studies, 
and it was discovered that the analogues with the substituents morpholine in M23 (CID59789397), 4-methyl-
morpholine in M32 (CID143003625), and methylamine in M10 (CID10409602), have a stronger affinity to the 
3CLpro than masitinib48.

In an attempt to generate not just structural analogs but compounds that can mimic the binding pose and 
interaction profile of masitinib in the SARS-CoV-2 active site, we extracted the bound pose of the drug as co-
crystallized with the 3CLpro, from which the pharmacophore features were selected23. Pharmacophore features 
on selected atoms of masitinib that make important biomolecular interactions with pocket residues of the SARS-
CoV-2 3CLpro were selected on the assumption that compounds possessing the same set of features at similar 
distances are likely to exhibit a similar inhibitory effect. The selected pharmacophore features for screening 
include a hydrogen bond donor and three aromatic and hydrophobic features each (Fig. 1A,B). Having identified 
the pharmacophore-matching features, the several chemical compound databases screened returned a cumulative 
of 91,285, of which some are overlapping (Table 1). After we ran the in-house Python script to identify multiple 
recurrences of a single compound and remove redundancy49, a total of 68,568 unique compounds were retained. 
These sets of compounds served as the input structures for the ligand preparation process. The workflow for the 
virtual screening protocol begins with the pharmacophore generation and ends with the MM-GBSA ranking 
(Fig. 1C). The output of the docked masitinib structure with SARS-CoV-2 3CLpro maintained a reliably high 
pose comparable to the co-crystallized pose of masitinib with SARS-CoV-2 3CLpro (Fig. 1D)50.

MM‑GBSA‑based scoring identified and ranked lead compounds.  As represented in the virtual 
screening workflow (Fig.  1C), a total of 74 compounds (including differential conformational states) were 
ranked as the final top hits based on the MM-GBSA pose reranking scoring function. The MM-GBSA scoring 
function has been optimized for binding free energy prediction with regard to a series of congeneric molecules 
and is therefore usually used after the completion of the glide docking/virtual screening workflow. Furthermore, 
ligand ranking based on MM-GBSA binding energy calculation can be expected to be highly consistent with 
experimental binding energy estimation, mostly when considering congeneric sets of molecules. The lower the 
estimated MM-GBSA binding energy value, the stronger the binding affinity51. However, we have selected the 
top 10 hits from the final output of the MM-GBSA ranking for further analysis in this study (Table 2, Supple-
mentary Figs. 1A–J).

For the identification of the most promising set of compounds to be further analyzed, the protein–ligand 
interaction fingerprint of the top 10 hits from Table 2, along with masitinib, was generated using the AuPos-
SOM program. AuPosSOM evaluates protein–ligand complexes via existing atomic interactions and the use 
of self-organizing contact maps. In this case, the 3CLpro is the receptor, while the ligands to be evaluated are 
the top 10 hits from the MM-GBSA ranking, along with the co-crystallized masitinib52. Clustering in the self-
organizing contact map is based on the degree of similarity in interactions between each evaluated ligand and 
the binding pocket residues of the receptor52. Using the Dendroscope program37, the generated dendrogram by 
Aupossom, which represents the various shared chemical interactions among the top 10 hits and masitinib, was 
visualized (Fig. 2A). The dendrogram gave comparative details on how each structural analog of masitinib in the 
top 10 hits shared their chemical interactions with one or multiple regions of the 3CLpro active site. Thus, each 
branch represents similarity groupings of the potential inhibitors based on both bound and unbound interac-
tions with the active site residues of the SARS-CoV-2 3CLpro (Fig. 2A). The output suggests CHEMBL3642843 
and CHEMBL2058939 might share the most similar interaction profile with masitinib, as these three fall within 
the same clade. A view of the binding poses of these compounds in the 3CLpro active site also strongly supports 
the AuPosSOM output (Fig. 2B,C). We therefore selected CHEMBL3642843 and CHEMBL2058939 along with 
masitinib for further analysis.

Protein–ligand profiling revealed interaction profile of the lead compounds comparable to 
3CLpro‑masitinb complex.  Aiming to further delineate the interaction profile of the selected two lead 
compounds, the protein–ligand interaction profiler was used for the visualization of the interaction of the lead 
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compounds with active site residues of the SARS-CoV-2 3CLpro (Fig. 3A–C). The structural description of the 
binding of masitinib to the SARS-CoV-2 3CLpro suggests that it interacts non-covalently between the I and II 
domains in order to block major catalytic residues at the two dimeric active sites23. Drayman et al.23 demon-
strated that the pyridine ring of masitinib specifically fits into the S1 peptide recognition pocket of the 3CLpro. 
Aside from Van der Waals and hydrophobic interactions between the surrounding residues and the pyridine ring 
of masitinib, a hydrogen bond within a distance of 2.78 Å was also identified between the S1 pocket His163 and 
the pyridine ring. Two additional hydrogen bonds were identified between the aminothiazole ring of masitinib 
and the 3CLpro residues, with one formed between His164 and the amine group of masitinib at a distance of 
3.09 Å and the other between Cys145 (a crucial 3CLpro catalytic residue) Sγ atom and masitinib’s thiazole nitro-
gen at a distance of 3.38 Å. Furthermore, a perfect π–π stacking interaction was shown to be formed between 
His41 (the second residue making up the catalytic dyad of the protease) and masitinib’s hydrophobic toluene 

Figure 1.   Pharmacophore modelling and virtual screening workflow. (A) The 3CLpro-bound pose of masitinib 
with selected pharmacophore features for chemical database screening. (B) The four selected pharmacophore 
points with individual distances. The single hydrogen bond donor is shown in a white color mesh, while the 
aromatic and hydrophobic features (mapped on each other) are shown in purple and green color meshes, 
respectively. (C) A workflow for the virtual screening protocol, starting from the pharmacophore generation 
stage to the final MM-GBSA ranking. (D) Zoomed-in superimposition of the docked masitinib 3D structure 
(represented in yellow stick format) against the 3CLpro co-crystallized masitinib structure (represented in cyan 
stick format) for the reliability test of the virtual screening protocol.
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ring while occupying the protease S2 binding cavity, and the benzamide also shown to interact mainly with the 
protease main chain between Cys44 and Ser4623.

Aside from the absence of the previously described interaction between Cys145 and the thiazole nitrogen of 
masitinib in our predicted interaction profile for the 3CLpro-masitinib complex (Fig. 3A), the protein–ligand 
interaction profiler accurately identified other major existing interactions consistently with the earlier report, 
suggesting a high level of confidence in the prediction output for each protein–ligand interaction profile. Further-
more, consistent with the protein–ligand interaction fingerprinting result (Fig. 2A,B), the interaction profiles of 
CHEMBL3642843 and CHEMBL2058939 in complex with the 3CLpro (Fig. 3B,C) showed great similarity with 
the predicted interaction profile of the 3CLpro-masitinb complex (Fig. 3A). Another important factor to note 
in the structure of CHEMBL2058939 is the presence of a double bond, which is expected to have an impact on 
the binding conformation and activity of the compound as it entails more than one geometry (Supplementary 
Figs. 1, 2). However, the docked pose to the catalytic pocket of the SAR-CoV-2 3CLpro suggests that the active 
state of the compound might be the Trans isometric geometry (Supplementary Fig. 2C).

The lead compounds exhibit acceptable drug properties based on ADMET evalua‑
tion.  Structural analysis of the selected chemical structures suggests that both prospective lead compounds 
(CHEMBL3642843 and CHEMBL2058939) contain reactive moieties such as vinyl Michael acceptor 1 and 
maleimide in CHEMBL3642843 (Supplementary Fig. 3A,B). Via S-Michael addition reactions, maleimide is fre-
quently used to conjugate with thiol groups. The resultant thiolated maleimide is frequently utilized as a helpful 
handle in chemical synthesis and exhibits distinct biological activity53. Maleimide is also frequently employed 
to make antibody–drug conjugates (ADCs), although this method can result in drug loss in the bloodstream 
due to a retro-Michael reaction, as seen in Adcetris54. Analysis of the CHEMBL2058939 chemical structure also 
shows it contains a Michael acceptor (Supplementary Fig. 3C). Being electrophilic agents, Michael acceptors 
may create covalent connections to biological organisms’ DNA and nucleophilic protein sites, causing disorders 
such as allergic contact dermatitis, carcinogenicity, and excess toxicity (as contrasted to unspecific narcosis or 
baseline toxicity) for aquatic creatures. Additionally, cyclopentenone prostaglandins’ anti-inflammatory activity, 
the activation of nerve system ion channels, the induction of enzymes guarding against carcinogenesis, patholo-
gies connected to atherosclerosis and oxidative stress, and the Michael addition to endogenous cysteine thiol 
sites are all affected55.

To evaluate the ADMET profile of the selected lead compounds, we used an in silico approach, which has 
been widely used because of its capacity to save time and cost in the process of drug development56. ADME 

Table 1.   Number of pharmacophore-matching compounds identified per database screened.

Chemical databases screened Number of generated pharmacophore-matching compounds

CHEMBL30 3003

ChemDiv 3728

ChemSpace 9428

MCULE 30,283

MCULE-ULTIMATE 21,373

MolPort 8781

NCI Open Chemistry Repository 8

WuXi LabNetwork 3495

ZINC 11,186

Cumulative 91,285

Table 2.   List of the top 10 hits according to the MM-GBSA binding energy ranking in descending order.

Compounds Prime energy
Docking score 
(Kcal/mol) XP GScore

Glide gscore (Kcal/
mol) Glide emodel

MM-GBSA (Kcal/
mol)

MCULE-1361639875  − 13,614.98  − 7.893  − 8.35  − 8.35  − 94.286  − 88.49

CHEMBL230286  − 13,678.65  − 9.476  − 9.476  − 9.476  − 100.305  − 84.4

CHEMBL3805890  − 13,616.78  − 9.446  − 9.446  − 9.446  − 90.924  − 82.09

CSC097356065  − 13,588.21  − 8.225  − 8.225  − 8.225  − 87.663  − 80.94

MCULE-6370590876  − 13,612.52  − 7.905  − 7.913  − 7.913  − 82.884  − 80.75

519959077  − 13,602.45  − 8.229  − 8.245  − 8.245  − 101.481  − 80.39

MCULE-6357305429  − 13,579.22  − 8.112  − 8.112  − 8.112  − 78.572  − 79.88

MCULE-8253455899  − 13,596.91  − 8.068  − 8.526  − 8.526  − 90.643  − 79.64

CHEMBL3642843  − 13,691.7  − 8.221  − 8.221  − 8.221  − 100.687  − 79.4

CHEMBL2058939  − 13,634.06  − 7.899  − 7.899  − 7.899  − 90.546  − 79.31
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properties were estimated using the SwissADME web server41, while the toxicity profile was estimated using the 
Pro Tox-II server42. The ADMET analysis in this study covered the evaluation of the physicochemical properties, 
lipophilicity, water solubility, pharmacokinetics, drug-likeness, medicinal chemistry properties, oral toxicity, and 
toxicity endpoint of each selected lead compound and masitinib (Supplementary Tables 1–7, Supplementary 
Figs. 4A–C, 5). The analysis includes individual parameters such as, the calculation of number of heavy atoms, 
number of hydrogen bond donors and acceptors, number of aromatic heavy atoms, fraction Csp3 (ratio of sp3 
hybridized carbons over the total carbon count of the molecule), molar refractivity, topological polar surface 
area, consensus Log P, and Log S estimation using several water solubility prediction models. Parameters such as 
gastrointestinal absorption, blood–brain barrier permeation, substrate/inhibitor of the P-glycoprotein, and the 
cytochrome P450 protein family were also estimated alongside the evaluation of drug-likeness and medicinal 
chemistry parameters with different prediction models. Finally, individual toxicity parameters such as the lethal 
dose, toxicity class, hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity of individual 
lead candidates were evaluated. The analyses taken together suggest that both masitinib and the identified lead 
compounds possess acceptable ADMET properties for good drug candidates, and as such, they were analyzed 
further for activity against the SARS-CoV-2 3CLpro (Supplementary Tables 1–7).

MasitinibL binding alters the molecular trajectory of 3CLpro.  The molecular dynamics simula-
tion study was carried out in order to evaluate the effect of ligand binding on the dynamics and stability profile 
of the SARS-CoV-2 3CLpro. By computing the root mean square deviation based on the atomic backbone of 
both the apo and inhibitor-bound 3CLpro, the equilibrium state of the protein was evaluated comparatively. 
Root mean square deviation is used for the measurement of changes in the structural backbone of proteins 
between the initial and final conformational states. Protein stability relative to conformation can be evaluated 

Figure 2.   Lead compound identification through protein–ligand interaction fingerprinting. (A) AuPosSOM-
calculated dendrogram for the top 10 hits of the MM-GBSA binding energy ranking and masitinib. The 
image was generated with the Dendroscope software. (B) The binding of masitinib, CHEMBL3642843, and 
CHEMBL2058939 to the SARS-CoV-2 3CLpro active site. (C) A zoomed-in view of the binding pose similarity 
between masitinib, CHEMBL3642843, and CHEMBL2058939 based on the protein–ligand interaction 
fingerprinting grouping. Masitinib is shown in cyan, while CHEMBL3642843 and CHEMBL2058939 are 
displayed in purple and yellow, respectively.
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through the trajectory deviations during simulations. The greater the deviation, the more unstable a protein 
is likely to be57. We estimated the changes in the stability profile of the 3CLpro both in the unbound (apo) 
state and the ligand-bound state. The RMSD plot over 300 ns of simulation time, as shown in Fig. 4A, suggests 
that CHEMBL2058939 might be a very potent inhibitor of 3CLpro. Although no significant differences were 
observed in the root mean square deviation of each trajectory as of 100 ns, However, a highly significant rise in 
RMSD was observed for the CHEMBL2058939-bound 3CLpro trajectory after 100 ns of simulation time, and 
another sharp rise in the RMSD was observed at about 230 ns of simulation time to hit a peak of about 0.9 nm. 
This particular deviation was massive compared to the maximum deviations generated by the other systems 
(including the masitinib-bound 3CLpro trajectory) (Fig. 4A, Supplementary Fig. 6A–C). This signifies that the 
binding of CHEMBL2058939 to the 3CLpro active site is likely to result in a huge conformational instability in 
the viral protein.

We also estimated the root mean square deviation of each 3CLpro-bound ligand. Although significant fluc-
tuations were observed in the RMSD trajectory of each bound ligand at different stages during the simulation 
period, signifying a state of instability at those points. However, the trajectories were stabilized before 150 ns, and 
the stability was maintained till the end of the simulation time for each ligand. The root mean square deviation 
value of CHEMBL2058939 upon binding the 3CLpro active site was also observed to be maintained at about 
0.1 angstroms for the most part of the period of simulation (the lowest), suggesting that CHEMBL2058939, 
in comparison to the other 3CLpro-bound ligands, might be the most stable upon receptor binding (Fig. 4B).

Structural mobility analysis and molecular dynamics simulation play crucial roles in the interpretation of 
data, mostly for biomolecules. The most frequently used measures of mobility that are computed from molecular 
dynamics simulations are the structural root mean square deviation and root mean square fluctuation. Both 
factors are estimated after atomic coordinate alignment in trajectory steps to a reference structure58,59. The root 
mean square fluctuation specifically provides a measure of an average particle deviation (deviation of individual 
residues of proteins) from a reference point over a particular period of time. Thus, the root mean square devia-
tion analyzes structural portions that fluctuate the most or the least from their mean structure60. In comparison 
with the other analyzed systems, the highest residue fluctuation was observed in the trajectory representing the 
3CLpro-CHEMBL2058939 complex (Fig. 5A, Supplementary Fig. 7A–C). This shows great consistency with the 
root mean square deviation profile of CHEMBL2058939, which upon binding the SARS-CoV-2 3CLpro active 
site resulted in a massive increase in trajectory fluctuation (Fig. 4A, Supplementary Fig. 6A–C).

Figure 3.   Protein–ligand interaction profile prediction of masitinib and the selected lead compounds. (A) The 
predicted interaction profile of masitinib in complex with the SARS-CoV-2 3CLpro. Masitinib is displayed in 
cyan-colored stick while interacting active site residues of the 3CLpro are displayed in green-colored sticks. (B, 
C) The predicted interaction profiles of CHEMBL2058939 (yellow stick) and CHEMBL3642843 (purple stick) 
respectively, after docking against the 3CLpro active site. All interacting active site residues are shown in green 
sticks.
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The radius of gyration of a protein represents the distribution of its atoms around its axis. The length, showing 
the distance between the rotation point and the point where energy transfer exerts its maximum impact, gives the 
radius of gyration. This concept further helps in the identification of different types of polymers (as in the case 
of a protein). Distance calculations and the estimation of the radius of gyration are among the most important 
and widely used indicators for the prediction of macromolecular structural activities61. Upon the binding of lead 
compounds/ligands, proteins experience changes in conformation that alter their radius of gyration62. Protein 
structural compactness is directly related to the folding rate, which can be monitored via the radius of gyration 
calculation. A good comprehension of the radius of gyration further helps in the prediction of the binding pat-
terns and compactness of proteins and drugs62.

In order to evaluate the changes in the degree of compactness of the SARS-CoV-2 3CLpro upon ligand bind-
ing, we analyzed the radius of gyration trajectories after a 300 ns molecular dynamics simulation period. The high 
degree of fluctuation observed in the trajectory representing the 3CLpro-CHEMBL2058939 complex suggests 

Figure 4.   Root mean square deviation plots from molecular dynamics simulation. (A) represent the RMSD plot 
for the 3CLpro C-alpha backbone. Trajectories for the Apo, and complexes with masitinib, CHEMBL3642843 
and CHEMBL2058939 are shown in black, red, green, and blue colors respectively. (B) The ligand RMSD plot. 
Trajectories for masitinib, CHEMBL3642843 and CHEMBL2058939 are shown in black, red, and green colors, 
respectively.

Figure 5.   Root mean square fluctuation and radius of gyration plots. (A) The RMSF plot for the 
3CLpro structural backbone. The 3CLpro apo trajectory and trajectories of its complexes with masitinib, 
CHEMBL3642843 and CHEMBL2058939 are displayed in black, red, green, and blue colors respectively. (B) 
The radius of gyration plot from the 300 ns molecular dynamics simulation run. Trajectories of the apo protein 
and its complexes with masitinib, CHEMBL3642843 and CHEMBL2058939 are displayed in black, red, green, 
and blue colors respectively.
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that the viral protein exhibited the lowest degree of compactness upon the binding of the lead compound (Fig. 5B, 
Supplementary Fig. 8A–C). This further increases the confidence in the outcomes of previous analyses, all of 
which have suggested a high level of structural instability upon the binding of CHEMBL2058939.

Hydrogen bonds have justifiably been known as the master key of molecular recognition. Because hydrogen 
bonds have a stronger interaction than van der Waals interactions but a weaker interaction than covalent bonds, 
their flexibility and ubiquity make them the most important biomolecular system physical interaction in aqueous 
solution. Hydrogen bonding plays critical roles in several biological and chemical processes, including enzyme 
catalysis and ligand binding63,64. Analysis of the intra-protein hydrogen bonding of the SAR-CoV-2 3CLpro 
suggests that the binding of each compound has less impact on the hydrogen bond profile of the viral protein, 
as there were no significant differences between the trajectories of the apo protein and its complex with the lead 
compounds and masitinib (Fig. 6A, Supplementary Fig. 9A–C). Analysis of the protein–ligand hydrogen bond 
interaction trajectory showed that a total of six hydrogen bond interactions were formed between the complex 
involving the 3CLpro and CHEMBL2058939 (Fig. 6B). However, five of these interactions were predominantly 
constant all through the period of simulation, unlike the other analyzed systems where a total of five hydrogen 
bond interactions were observed and much fewer were constant throughout the period of simulation (Fig. 6B). 
Consistent with the ligand RMSD analysis, this further suggests that CHEMBL2058939 might form a more stable 
complex with the SARS-CoV-2 3CLpro upon binding to the active site.

Lee and Richards introduced the solvent accessibility concept for globular protein residues in 1971. It was 
defined as the extent to which surface atoms of proteins can make contacts with a solvent. In biological systems, 
the solvent is taken as water with a 1.4 Å radius. This represents the locus of the center of the solvent molecule 
as it rolls along the protein, making the maximum allowed van der Waals interactions without penetrating other 
atoms. Lee and Richards have also described it as the "static accessible surface area," since potential flexibility was 
excluded from the system65. Solvent accessible surface area (SASA) is a quantity of great interest in functional 
studies and protein folding, as it plays a crucial role in the delineation of the structure–function relationship of 
proteins. The burying of hydrophobic residues is an essential factor for the folding of proteins. Therefore, the 
exposure of these residues to the hydrophobic core and solvent is directly related to protein stability4,66. The 
solvent-accessible surface area analysis was carried out over the 300-ns simulation period in order to evaluate 
the changes in the stability profile of the SARS-CoV-2 3CLpro upon the binding of potential lead compounds 
and the co-crystallized masitinib. The trajectories of the other systems, in comparison with the apo, have dis-
played increases in the solvent accessible surface area of the viral protein at varying degrees from the start of the 
simulation. However, the generated trajectory from the SASA plot showed that the complex of CHEMBL2058939 
with the SARS-CoV-2 3CLpro resulted in the largest surface area exposure all through the period of simulation, 
likewise suggesting a decrease in the viral protein stability upon the binding of the potential lead compound 
(Fig. 7A, Supplementary Fig. 10A–C).

Protein structures and structures of other biological macromolecules are characterized by a set of multidi-
mensional variables, such as dihedral angles and atomic coordinates, and details with respect to the dynamics of 
these macromolecules are typically derived as experimentally determined structural ensembles or as a time series 
of high-dimensional data. Although the large ensemble of dimensional data is composed of essential details, such 
information is difficult to interpret. The extraction of crucial features from high-dimensional data is therefore 

Figure 6.   Hydrogen bond plots from molecular dynamics simulation. (A) The intra-protein H-BOND analysis 
plot of the SARS-CoV-2 3CLpro. The apo protein H-BOND plot and the plot of its complexes with masitinib, 
CHEMBL3642843 and CHEMBL2058939 are shown in black, red, green, and blue, respectively. (B) The 
protein–ligand H-BOND plot over 300 ns of simulation time. Trajectories for masitinib, CHEMBL3642843 and 
CHEMBL2058939 are shown in black, red, and green, respectively.
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important for the understanding of the dynamics of biological macromolecules67. The principal component 
analysis is used in many research areas for the reduction of dimensions in high dimensional datasets. Biological 
macromolecules demonstrate many degrees of freedom, which allows the adoption of intricate structures and 
the exhibition of complex functionalities. The principal component analysis decomposes the overall motion of 
biological macromolecules over a specific period of simulation into a mode set, which can be ordered from the 
largest to smallest contributions to the root mean square fluctuation of the protein as estimated by the eigenvalues 
of the covariance matrix67.

A 2D projection of the principal component trajectories (PC1 and PC2) was used for the evaluation of the 
collective motion of all the systems over a 300 ns simulation time (Fig. 7B, Supplementary Fig. 11A–C). The PCA 
plot showed that the system representing the SARS-CoV-2 3CLpro-CHEMBL2058939 complex occupied a much 
wider phase space compared to the apo and other systems. In principle, systems with collective motions occupy-
ing a lesser phase space and likewise forming regular clusters represent stable systems, while the distribution of 
collective motion over a wider phase space with irregular clusters suggests relative instability68. This shows great 
consistency with previous analyses to further suggest that the binding of CHEMBL2058939 to the active site of 
the 3CLpro might result in massive conformational instability in the viral protein.

An energy landscape depicts a map of different possible systemic states. The concept provides descriptions of 
all possible conformational states of a molecular system, the spatial positioning of interacting molecules, and their 
corresponding levels of energy (basically the Gibbs free energy)69. The free energy landscape is, geometrically, a 
plot of energy function across a systemic configuration space. While proteins can exist theoretically in a nearly 
limitless number of conformations along their energy landscape, in reality they relax into secondary and tertiary 
structural conformations with the lowest possible free energy69. The folding funnel hypothesis represents a major 
concept in the application of energy landscapes to the folding of proteins. The hypothesis is based on the assump-
tion that the native state of a protein correlates with its free energy minimum under solution conditions regu-
larly experienced in cells. Although free energy landscapes might tend to be rough with many non-native local 
minima that can trap partially folded proteins, the assumption of the folding funnel hypothesis likens the native 
state to a deep free energy minimum with steep walls that corresponds to a well-defined tertiary structure70. We 
evaluated the free energy landscape of each system in order to study the underlying conformational stability 
changes upon ligand binding to the SARS-CoV-2 3CLpro. The landscapes were extracted from PC1 and PC2 
of the principal component analysis. The dark blue segment of each free energy landscape plot represents the 
most stable conformational state with the lowest energy for each system (Fig. 8A–D). As compared to the other 
systems, there exists a very high energy barrier between the three global minima generated in the free energy 
landscape plot representing the 3CLpro-CHEMBL2058939 complex, suggesting that the viral protein, upon 
binding the lead compound, underwent a massive conformational change as indicated by the energy barriers 
between each conformational basin (Fig. 8D). This also shows great consistency with all previous analyses to 
suggest that CHEMBL2058939 might be a potential lead compound for COVID-19 therapeutics.

MasitinibL exhibit lower affinity for tyrosine kinases.  While masitinib has been shown to display 
an excellent inhibitory profile against the SARS-CoV-2 3CLpro, the reported side effects as a result of its inhibi-
tory activity against tyrosine kinases remain an issue of concern23. As a key objective in this study, we aimed to 
identify, among the selected lead compounds, analogs of masitinib with lesser anti-tyrosine kinase activity. To 

Figure 7.   Solvent accessible surface area and principal component analysis plots. (A) represents the 
plot of solvent accessibility for the apo protein and its complexes with masitinib, CHEMBL3642843 and 
CHEMBL2058939. Their individual trajectories are shown in black, red, green, and blue, respectively. (B) A 
2-dimensional projection of the principal components of each system. The collective motion trajectory of the 
apo protein and its complex with masitinib, CHEMBL3642843 and CHEMBL2058939 are displayed in black, 
red, green, and blue, respectively.
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achieve this objective, we used the SwissTargetPrediction server, which predicts accurately targets of bioactive 
compounds centered on a combination of 2- and 3-dimensional measures of similarity with known ligands47. 
The prediction output was in excellent agreement with previous reports on the anti-tyrosine kinase activity of 
masitinib and showed that the drug is highly selective for kinase targets (Fig. 9A). Furthermore, seven tyrosine 
kinases were found among the list of predicted top 15 targets, including tyrosine-protein kinase LCK, tyrosine-
protein kinase SRC, tyrosine-protein kinase FYN, tyrosine-protein kinase ABL, tyrosine-protein kinase YES, 
tyrosine-protein kinase BLK, and tyrosine-protein kinase Lyn (Supplementary Fig. 12). CHEMBL3642843 also 
demonstrated a high preference for kinases, with 93.3% of its predicted targets being kinases (Fig. 9B). Addition-
ally, four tyrosine kinases were identified among its predicted top 15 classes of targets, including tyrosine-protein 
kinase ABL, tyrosine-protein kinase SYK, tyrosine-protein kinase receptor FLT3, and tyrosine-protein kinase 
LCK (Supplementary Fig. 13). However, the predictive model identified no single tyrosine kinase among the 
list of predicted top 15 targets of CHEMBL2058939 (Supplementary Fig. 14), even though a negligible percent-
age (6.7%) of its top class of predicted targets were identified as kinases (Fig. 9C). This strongly suggests that 
CHEMBL2058939 (hereafter named and also referred to as “masitinibL” or “masitinib-like”) might be the most 
suitable therapeutic analog of masitinib for the inhibition of the SARS-CoV-2 3CLpro.

Furthermore, the masitinibL (CHEMBL2058939) target prediction information as obtained from the 
ChEMBL database71 suggests that the compound might also be active against the human microtubule-associated 
protein 2 (CHEMBL2390810), with an activity threshold score of 6. The human herpes virus 5 capsid protein 
40 (CHEMBL3771) also falls among the top predicted targets of masitinibL (likewise with an estimated activity 
threshold score of 6). The prediction method, which involves a detailed comparative study between the traditional 
quantitative structure–activity relationship (QSAR) and the Mondrian conformal prediction (MCP)72, further 
substantiates the initial prediction of the low preference of masitinibL for tyrosine kinases (Fig. 9).

Figure 8.   Free energy landscape (FEL) plots of the first two principal components. (A) Apo protein FEL plot, 
(B) FEL plot of the 3CLpro-masitinib complex, (C) FEL plot of the 3CLpro-CHEMBL3642843 complex, (D) 
FEL plot of the 3CLpro-CHEMBL2058939 complex.
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MasitinibL binds to 3CLpro through a variety of molecular bonds and interactions.  To deline-
ate the interaction profile of masitinibL (CHEMBL2058939) in complex with the SARS-CoV-2 3CLpro over 
the final 50 ns of the simulation period, we subjected the 3-dimensional coordinate file and the trajectory file 
to a dynamic protein–ligand interaction analysis using the MolADI tool40. The dynamic interaction analysis 
was restricted to the final 50 ns of the simulation time as a result of the MolADI trajectory file size limitation (a 
maximum of 100 megabytes). Consistent with the reported interaction profile of masitinib with the active site 
residues of the SARS-CoV-2 3CLpro23, masitinibL maintained a strong hydrogen bond interaction with Cys145 
and His164 all through the simulation period (Fig. 10, Supplementary Fig. 15). Furthermore, stronger hydrogen 
bond interactions were shown to exist between atoms of masitinibL and residues of the viral protein active site, 
such as Gly143 and Ser144 (Fig. 10, Supplementary Fig. 15). His41 in addition to the consistent pi stacking inter-
action with masitinibL, also formed a strong hydrophobic interaction and a weaker pi cation interaction. Other 
residues involved in weak hydrophobic interactions include His164, Met165, Asp187, and Gln189 (Fig. 10, Sup-
plementary Fig. 15). Finally, several weak halogen bonds were observed between the lead compound and active 
site residues such as Thr24, Cys44, Glu47, and Asn51 (Fig. 10, Supplementary Fig. 15). Collectively, this analysis 
suggests essential interactions for efficacious inhibitory activity against the SARS-CoV-2 3CLpro.

Discussion
SARS-CoV-2 infection remains a major health concern globally due to the resurfacing of different variants of 
the virus. Although several vaccines have received authorization for emergency use, and their deployment is 
currently ongoing worldwide, vaccinating the entire population of the world will take a long time6. New viral 
escape mutants might also likely emerge as a result of the slow rate of vaccination, eventually making vaccines 
ineffective6,7. The development of novel antiviral therapeutics and other broad therapies for possible future 
emergence is therefore of great necessity. One of the most effective strategies for designing therapeutics against 
SARS-CoV-2 is to target the core essential protein machinery required for the lifecycle of the virus. Upon 

Figure 9.   Pie chart showing the top 15 predicted target classes for each compound. (A) The predicted target 
class for masitinib. (B) The predicted classes of target for CHEMBL3642843. (C) The predicted classes of target 
for CHEMBL2058939.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6972  | https://doi.org/10.1038/s41598-023-33024-2

www.nature.com/scientificreports/

infection, SARS-CoV-2 gains entrance into the cytoplasm of the host, where its genome is translated into about 
thirty different proteins. Sixteen of these are initially translated as two polyproteins that must undergo cleavage 
into individual proteins to facilitate the progression of infection. Two proteases encoded by the virus mediate 
this cleavage, and they include 3CLpro and PLpro73,74 and have become major hotspots for drug targets via de 
novo development or drug repurposing.

A recent drug repurposing screening study found that masitinib is a broad antiviral with high inhibitory 
activity against the 3CLpro of picorna- and coronaviruses and was also effective in treating mice infected with 
the SARS-CoV-223. However, the study pointed out a main limitation of masitinib resulting from its high tyros-
ine kinase preference, which could be responsible for the side effects of masitinib. Hence, the study strongly 
recommended the development of therapeutics with comparable efficacy but lower tyrosine kinase activity. In 
light of this, we identified key pharmacophore features in the 3CLpro-bound pose of masitinib that make crucial 
biomolecular interactions with active site residues of the viral protein. From this set of pharmacophore features, 

Figure 10.   2D representation of the dynamic protein–ligand interaction profile of CHEMBL in complex with 
the SARS-CoV-2 3CLpro. All observed forms of interaction include hydrophobic interaction, hydrogen bond, pi 
stacking interaction, pi cation interaction, and halogen bond.
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we screened known chemical databases for compounds matching the model. With the aid of an extensive vir-
tual screening workflow (HTVS, SP, and XP) and MM-GBSA pose ranking approach, top hits were identified 
as potential masitinib analogs.

One of the major challenges of the virtual screening approach was the identification of active compounds from 
a group of docked compounds, as the calculation of binding affinity in this method is typically based on scoring 
function estimation75. Scoring functions ideally should be able to identify the correct poses for each docked mol-
ecule and as well rank ligands according to their affinity for the receptor. However, the relevant binding affinity 
estimation for the ideal poses remain a challenging task76. We have, therefore, implemented the protein–ligand 
interaction fingerprinting method52 for the selection of potential lead compounds among the top 10 outputs of 
the MM-GBSA ranking (Table 2, Supplementary Fig. 1). Using the co-crystallized masitinib as reference, the 
constructed fingerprint map identified CHEMBL3642843 and CHEMBL2058939 (ranked 9th and 10th based on 
the MM-GBSA binding affinity estimation) in the same interaction fingerprint group as masitinib (Fig. 2A,B). 
This suggests that the two compounds share close protein–ligand interaction similarities with the co-crystallized 
masitinib and, as such, can be potential lead compounds for additional computational investigation. The sug-
gested interaction similarities were further visualized using the protein–ligand interaction profiler (Fig. 3A–C).

To be an effective drug, a sufficient concentration of a compound must get to its cellular target and be retained 
long enough in its bioactive form for the required therapeutic activity to occur. The development of drugs 
involves ADMET (absorption, distribution, metabolism, excretion, and toxicity) assessment, but in cases where 
access to physical samples of the experimental compounds is not feasible, computational assessment remains an 
acceptable alternative for ADMET evaluation77. Additionally, different challenges, such as ethical concerns with 
regard to trials on animals, time, and cost, have limited the possibility of conducting experimental evaluations on 
potential therapeutic agents, thus making in silico assessment an inevitable approach for ADMET prediction78. 
Harnessing the availability of highly reliable predictive models for in silico ADMET assessment, we evaluated 
the drug-likeness profile of the selected lead compounds (CHEMBL3642843 and CHEMBL2058939) along with 
masitinib (Supplementary Tables 1–7). Although the predictive model highlighted a few violations for each 
assessed compound, including masitinib, the collective output suggests that the compounds possess an acceptable 
safety profile for drug-like molecules and, as such, can be recommended for further experimental assessment.

Molecular dynamics simulation, in addition to its usage for the analysis of the dynamic movement of atoms, 
is also an important tool in drug discovery for the analysis of protein stability changes upon ligand binding79. 
The effect of the two selected lead compounds, with masitinib as a reference, on the stability profile of the SARS-
CoV-2 3CLpro was evaluated through different post-simulation analyses upon completion of a 300 ns molecular 
dynamics simulation protocol (Figs. 4, 5, 6, 7, 8, Supplementary Figs. 6–11). Analysis of the molecular dynamics 
trajectories of CHEMBL3642843 in complex with the 3CLpro suggests that the compound might show lesser 
activity against the viral protease, as no significant deviations to depict destabilization of the 3CLpro were 
observed. Although masitinib has demonstrated potency experimentally against the SARS-CoV-2 3CLpro23, 
analysis of its molecular dynamics simulation trajectory in complex with the 3CLpro also showed appreciable 
deviations. However, the distinct pattern of deviation observed from the trajectories of masitinibL in complex 
with 3CLpro strongly suggests that the lead compound might be a promising therapeutic candidate for the 
ravaging COVID-19.

In any attempt to repurpose, discover, or develop novel bioactive molecules, the identification of targeted mac-
romolecules using ligand-based target prediction approaches is an essential step80. Although masitinib has shown 
desirable inhibitory effects against the SARS-CoV-2 3CLpro, its inhibitory activity against tyrosine kinases, which 
results in several undesirable side effects, remains a major concern. Prediction of novel targets for the selected 
lead compounds is therefore an important screening approach to identify the most ideal analog of masitinib. 
MasitinibL was the only one of the three drug-like compounds that was predicted to have a low preference for 
kinases in general and no predicted anti-tyrosine kinase activity (Fig. 9A–C, Supplementary Fig. 10–12). This, 
in addition to previous analyses, strongly suggests that masitinibL might be the most ideal masitinib analog for 
the inhibition of the SARS-CoV-2 3CLpro.

Limitation
The limitation of this study is that its conclusion is still relatively preliminary. By subjecting masitinibL (the in sil-
ico-validated molecule) to in vitro and in vivo tests and, following the success of those, by evaluating the efficacy 
of the molecule in clinical trials in humans, the scope of this study can be expanded to overcome the limitation.

Conclusion
The results described herein were obtained via a comprehensive in silico evaluation approach in which a potential 
novel drug-like candidate for the inhibition of the SARS-CoV-2 3CLpro was discovered. A set of pharmacophore-
matching compounds was passed through an exhaustive virtual screening workflow, out of which masitinibL 
(ranked 10th) was identified. The lead compound showed a comparable interaction profile with masitinib and 
likewise displayed both an acceptable drug-likeness profile and promising inhibitory potentials against the 
viral protease. An earlier report on the efficacy of masitinib in effectively inhibiting the SARS-CoV-2 3CLpro 
highlighted the need for the development of analogs of masitinib with low inhibitory activity against tyrosine 
kinases in order to avoid the side effects that might be linked to such inhibition. Our target prediction study 
additionally suggested that masitinibL might be that ideal candidate, with high inhibitory activity against 3CLpro 
and low anti-tyrosine kinase activity. However, as this study is based on comprehensive computational evalua-
tions, additional experimental studies are required for the validation of the suggested inhibitory activity of the 
lead compound.
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