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A framework for Li‑ion battery 
prognosis based on hybrid 
Bayesian physics‑informed neural 
networks
Renato G. Nascimento 1,3, Felipe A. C. Viana 1,3, Matteo Corbetta 2,3* & Chetan S. Kulkarni 2,3

Li‑ion batteries are the main power source used in electric propulsion applications (e.g., electric 
cars, unmanned aerial vehicles, and advanced air mobility aircraft). Analytics‑based monitoring 
and forecasting for metrics such as state of charge and state of health based on battery‑specific 
usage data are critical to ensure high reliability levels. However, the complex electrochemistry that 
governs battery operation leads to computationally expensive physics‑based models; which become 
unsuitable for prognosis and health management applications. We propose a hybrid physics‑informed 
machine learning approach that simulates dynamical responses by directly implementing numerical 
integration of principle‑based governing equations through recurrent neural networks. While reduced‑
order models describe part of the voltage discharge under constant or variable loading conditions, 
model‑form uncertainty is captured through multi‑layer perceptrons and battery‑to‑battery aleatory 
uncertainty is modeled through variational multi‑layer perceptrons. In addition, we use a Bayesian 
approach to merge fleet‑wide data in the form of priors with battery‑specific discharge cycles, where 
the battery capacity is fully available or only partially available. We illustrate the effectiveness of our 
proposed framework using the NASA Prognostics Data Repository Battery dataset, which contains 
experimental discharge data on Li‑ion batteries obtained in a controlled environment.

Electric and hybrid-propulsion systems are key enablers of advanced air mobility transformation, in which small 
and large aircraft will rely on Li-ion batteries to source part of all power needs. As a critical component of the 
powertrain, safe operation of these batteries will require robust prognosis and health management  methods1,2. 
Current literature shows an array of methods for battery monitoring with models based on first  principles3,4, 
machine  learning5–7, and a combination of  both8–10. However, existing modeling approaches often find roadblocks 
including: (a) governing equations are complex; and when available, high-fidelity simulations are computation-
ally expensive to be executed onboard; (b) purely data-driven models do not necessarily obey the governing 
physics, nor do they generalize well to scenarios on which they have not been trained; and (c) collecting enough 
high-quality data to adequately train data-driven models for a complex system is often challenging—in fact, data 
available for adjusting reduced-order models or building machine learning models can be poor (plagued with 
noise, missing data, unbalanced observations of inputs and outputs, etc.). These challenges are commonly shared 
across many prognosis applications; creating a need for a robust modeling approach that is computationally 
efficient, while being grounded on first principles, and can account for unstructured datasets.

With this background, physics-informed neural  networks11–13 have the potential to revolutionize prognosis 
and health management. This class of machine learning methods can potentially mitigate the lack of data as 
well as other problems such as poor interpretability of purely data-driven models while offering accuracy that is 
comparable to high-fidelity simulations at a fraction of the computational cost. In fact, recent developments in 
neural  operators14,15 indicate that for problems in which the partial differential equations are known, the trained 
neural networks can be reused to make predictions even outside the boundary/initial conditions used in train-
ing. However, many complex systems cannot be described purely by partial differential equations, but rather 
by a set of governing equations and empirical laws that might not be fully characterized at the same time that 
available data are scarce. This explains the growing interest in hybrid physics-informed machine  learning16,17 
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as a promising modeling framework for complex applications such as electric and hybrid propulsion systems. 
The hybrid framework we propose uses a different paradigm when compared to physics-driven loss functions 
as  in11. It leverages existing equations of a system to build a model, and introduces small data-driven kernels 
strategically within the model. The data-driven portions of the model compensate for missing physics, model-
form uncertainty, and ignorance of model parameters.

In terms of Li-ion battery prognosis, it is difficult to build models that can predict battery end of discharge 
while accurately accounting for the effect of battery aging. Challenges include effect of random-discharge cycles, 
effect of cumulative energy drawn from the battery, inter-battery variability, temperature effects during aging, 
and availability/completeness of recorded data. In order for prognosis models to be useful, they must furnish 
uncertainty estimates used in optimization of batteries operation as well as guiding model updates.

In this paper, we propose a hybrid Bayesian physics-informed neural network approach, depicted in Fig. 1a, 
to address the following key challenges:

• Computational footprint: models used for prognosis have to be computationally efficient, both in terms of 
memory requirement and speed, as they are often used in embedded applications or to run thousands of 
“what-if ” scenarios. Our proposed hybrid model implements the numerical integration of governing time-
dependent dynamics using recurrent neural  networks18.

• Partially characterized first-principle models: in many real-world applications, degradation or failure mecha-
nisms are only partially modeled, due to computational complexity or lack of complete knowledge. In our 
approach, model-form uncertainty introduced by either unknown physics or by reduced-order models is 
compensated with data-driven nodes placed in the design of the recurrent neural  networks19,20.

• Unstructured datasets: ideally, prognosis models should be able to leverage very diverse sources of informa-
tion—from legacy systems, to design, to early operation, etc. Our framework can handle heterogeneous 
sources of data such as design and laboratory experiments (e.g., reduced-order model and constants used 
therein); while also compensating for reduced number of data points with prior information coming from 
historical data (e.g., legacy fleet data).

The hybrid graph model described in Fig. 1a is at the foundation of the work presented here. It is composed of a 
series of nodes, each one corresponding to a single or multiple sets of equations. Such equations can be derived 
from first principles, empirical or phenomenological models, or data-driven models like deep neural networks 
and variational Bayesian models. Input–output relationships among the nodes are represented by edges con-
necting those nodes, thus blending physics-derived and data-driven blocks. Physics-derived model parameters 
and neural network parameters are then trained in a single stage using off-the-shelf deep learning libraries.

The incorporation of different data sources is possible, in part due to the hybrid nature of our model, which 
mixes principle-based and machine learning kernels. For example, the principle-based portion of the model is 
friendly to engineering and design information; while the machine learning portion can accommodate observed 

Figure 1.  Hybrid Bayesian physics-informed neural network framework and its application to prognosis of 
Li-ion batteries. (a) Our framework directly implements numerical integration of governing equations through 
a hybrid graph model that merges principle-based nodes, data-driven nodes, and variational Bayesian nodes. 
As a result, the model can accommodate information coming from design, testbed experiments, historical and 
usage data in applications ranging from diagnosis and prognosis modeling, design under uncertainty, robust 
control, etc. (b) In the Li-ion battery prognosis application, the state-of-charge dynamics is modeled through a 
recurrent neural network such that physics-derived reduced-order models are built in as nodes; and data-driven 
as well as variational Bayesian nodes quantify the different forms of uncertainty in prediction. Our model can be 
used for discharge prediction as well as battery aging forecast far ahead in the life of the battery.
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data. In addition, our Bayesian approach to data fusion makes it possible to use data that becomes available in 
different points during the battery life cycle.

In recent years, hybrid and physics-informed data-driven modeling strategies for prognostics have been 
proposed.  Some21,22 use a mixture of physics-based models or parameters derived experimentally to feed neural 
networks with the intent to predict the remaining useful life of complex systems, and potentially outperform 
pure data-driven models.  Others23 proposed a deep learning architecture where the last layer is tailored to solve 
differential equations to compute the point-solution at two time steps simultaneously, to estimate parameters of 
power electronic converters. An overview of methods that broadly apply to prognostics, reliability analysis as 
well as system safety can be found  in24. Our prognostics framework differs from other, existing frameworks as it 
blends physics-derived equations and data-driven kernels in a sole hybrid model, and can train both data-driven 
and physical parameters together using back-propagation. Other frameworks combine physics and machine 
learning sequentially, where each model is calibrated/trained independently and serves as input to the other. 
Our framework can also accommodate physics-driven error metrics in the loss function like  in11. In addition, 
model parameters can either be trained for each physical sample, e.g., train a different parameter for each battery 
in the training set separately, or shared across multiple samples of the same system type, e.g., train parameters 
to represent a fleet of similar batteries. A single model can be composed of a mix of both, parameters that are 
shared across different specimens, and parameters that needs to be tailored for each specimen.

Figure 1b details the application of our proposed framework to the prognosis of Li-ion batteries. The battery 
state of charge is approximated using discretized ordinary differential equations based on the Nerst and But-
ler–Volmer  models25,26. These are at the foundation of the principle-based nodes (blue blocks), which captures the 
major trend of the battery state-of-charge, but discrepancies between the predictions of those models and field 
data prevent them from being used alone for battery risk management. Therefore, we pair the principle-based 
nodes in the graph with (a) purely data-driven nodes to adjust for model-form uncertainty coming from model 
simplifications; and (b) variational Bayesian  nodes27–29 to account for data uncertainty coming from battery-
to-battery variability and observation uncertainty. In practical terms, our hybrid model offers the following key 
benefits to battery operators: (1) it does not rely solely on constant discharge curves, which are the standard to 
estimate the battery residual capacity; and therefore, model updating can be performed without decommission 
of the battery; (2) it can handle battery-to-battery variation; which can happen due to factors such as inherent 
variability of manufacturing, initial internal damage, etc; and (3) it models battery degradation incorporating 
fleet-wide data; and with the aid of the Bayesian formulation, it can handle model updates with full and partial 
discharge cycles as well as missing history of battery usage. The approach is demonstrated using the experimental 
data publicly available through the NASA Prognostics Center of Excellence Data  Repository30,31.

Results
We present four key results: (1) estimation of model-form inadequacy in the state-of-charge model; (2) modeling 
of battery aging with incorporation of battery-to-battery variation; (3) model update using full and partial bat-
tery discharge cycles; and (4) ability to derive battery-specific models without requiring battery usage history.

Handling model‑form uncertainty with hybrid physics‑informed neural network. The first 
result of the proposed hybrid physics-informed neural network is that the numerical integration of ordinary 
differential equations governing the state of charge is directly implemented as a recurrent neural network. This 
class of network models the one-step-ahead prediction of the response of interest and associated model states, 
given set of input values:

where the subscript t represents the time discretization; y ∈ IRny are the observable responses; h ∈ IRnh are the 
internal states; u ∈ IRnu are input variables; and f(.) defines the transition between time steps.

As detailed in Fig. 2a, we propose designing f(.) in Eq. (1) so that (i) we implement the appropriate integration 
 scheme32 (e.g., Euler, Runge-Kutta, etc.) for the set of governing equations; (ii) we use principle-based models 
with the intent to capture trends in the data; and (iii) we add data-driven and variational kernels to quantify 
model uncertainty. For the Li-ion battery model, the physics-based nodes implement the simplified electrochem-
istry given by the Butler–Volmer–Nernst models. The data-driven nodes estimate the non-ideal internal voltage 
Vni,i , i = {p.n} , while the variational Bayesian nodes model the total resistance R0 (Ohms) and the maximum 
charge qmax (Coulombs), which values are driven by the aging of the battery and may change from one speci-
men to another. Therefore, the data-driven and variational Bayesian nodes characterize epistemic and aleatory 
uncertainties in the principle-based models. The computational cost associated with our model is remarkably 
low. The principle-based models come from fast-to-compute reduced order models and the data-driven models 
are shallow Multi-Layer Perceptrons (MLPs) and variational Multi-Layer Perceptrons (vMLPs). The first-order 
ordinary differential equation that governs the time-dependent response is integrated using a state-space rep-
resentation and is ideal for onboard computing or massive uncertainty quantification offline. Details about the 
implementation of the nodes are given in the Methods section and the Supplementary Material illustrate the 
costs associated with training and prediction.

Figure 2b illustrates the use of our hybrid models. A time series with the electric current drawn from the bat-
tery is used as input. At each time step, the hybrid physics-informed neural network updates the internal states 
as well as estimates the values for the voltage drop between the battery terminals. The set of hyperparameters 
of the hybrid model for both data-driven and variational Bayesian nodes are estimated using a set of discharge 
cycles. Full discharge cycles performed with fresh batteries are used in the parameter optimization of the data-
driven model used to describe the non-ideal internal voltage (aging models utilize, instead, both full and partial 

(1)[yt ht ]
⊤ = f (ut , yt−1, ht−1),
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discharge cycles). In order to ensure diversity, the training data comes from a set of batteries exposed to different 
duty cycles.

Finally, the trained model can then be used to predict battery discharge for batteries and missions not pre-
sent in the training set. Figure 2c shows how hybrid model predictions compare against a sample of random 
discharge cycles. These results illustrate the model’s ability to track voltage throughout the cycle. This allows 
one to determine whether the battery will be able to finish a given mission; or to optimize the deployment of a 
set of batteries across multiple missions.

Accounting for battery aging with variational Bayesian models. The second result of our frame-
work is that we are able to build an aging model for a battery being monitored (“test battery”) by leveraging 
existing knowledge from a fleet of similar batteries. To achieve this goal, we resort to vMLPs. The model is then 
updated with new data coming from the test battery during operation using Bayesian update.

First, we observed very strong correlation between capacity fading in aging batteries and changes in model 
parameters qmax and R019,26, as shown in Fig. 3a and Fig. S4b of the Supplementary Material. We assumed that 
historical capacity-fading data from a fleet of older batteries can be collected and used to build aging models 

Figure 2.  Implementing a hybrid physics-informed neural network for Li-ion prognosis. (a) Recurrent neural 
network design implements numerical integration of governing equations in the state-space representation. 
The recurrent unit is composed by surrogate models describing the main phenomena driving the battery 
electrochemistry, a data-driven node that captures the non-ideal internal voltage, and a variational Bayesian 
node that models aging through degradation of battery parameters. (b) The hybrid model takes a current time 
series as input and returns battery voltage. This allows one to use the model for tracking of present discharge 
cycles as well as forecast of future missions. (c) Comparison between experimental data and predictions out of 
our hybrid physics-informed neural network. Predictions are obtained for batteries not used in the training set.

Figure 3.  Account for battery aging using variational models. (a) Correlation between qmax and C against 
cumulative energy drawn from the battery. (b) Individual aging models for the fleet C(E), which serve as fleet 
prior and are used to define the aging models qmax(E) , R0(E) . (c) Ensemble distribution of qmax from the fleet 
prior (orange lines), and posterior distribution (green line and shadowed area) computed by updating the fleet 
prior with estimates of qmax visible in black circles. (d) The model “a-posteriori” can predict the future discharge 
profile at different aging stages of the battery. The prediction from the posterior model (green) is compared 
against predictions carried out without the fleet prior model.
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for each battery in that fleet. The models aim at predicting the expected value and the confidence intervals as a 
function of the cumulative energy drawn E, C(E). Each model is composed of two vMLPs to capture epistemic 
and aleatory uncertainty as described in the Methods section. Figure 3b shows the output of the individual 
variational models on top of collected capacity data. Thanks to the strong correlation observed between C and 
parameters qmax , R0 , we built an aging model describing qmax(E) and Ro(E) , as explained in further details in 
the Methods section. The variational models of all other batteries in the fleet work as prior for the test battery, 
and they are combined in an ensemble model as follows:

where ωq
k and ωq

R are the weights of k-th model, defined later in the Methods section; and qmax
k (E) and R0,k(E) are 

the k-th vMLPs associated with batteries used to build fleet priors, as illustrated in Fig. 3b. Therefore, qmax(E) and 
R0(E) represent the estimates “a priori” as an ensemble model derived from the fleet. The orange lines in Fig. 3c 
show an example of prior for qmax . Every time new data is collected from the operation of the test battery, either 
through a reference discharge cycle test or by indirectly estimating them, we update the ensemble-model prior 
given the predictions from the fleet, and update the weights and biases of the test battery vMLP models using 
Bayes’ rule. This leads to a new a-posteriori model, as depicted in Fig. 3c, green line and shaded area.

This approach allows us to leverage the existing trends of capacity fading of older batteries to infer future 
values of qmax , R0 for the test battery. Forecast of qmax , R0 at future values of E as the one in Fig. 3c enables the 
prediction of the voltage discharge behavior of the test battery at different aging stages, as shown in Fig. 3d.

Dealing with complete and censored data through specialized loss functions and variational 
models. The third result of the proposed hybrid physics-informed neural network is the ability to use both 
complete information (constant discharge) as well as censored data (random discharge) to perform battery-spe-
cific model update, as illustrated in Fig. 4a. Full discharge data are obviously more effective in reducing model-
parameter uncertainties than partial discharge data. However, the fact that our framework can incorporate par-
tial discharge implies that the models are updated while the batteries are still in use. From our experiments, we 
observed that model behavior is consistent with the aging effects observed in the fleet of similar batteries used 
for training. Thus, if the aging of a test battery follows (in a statistical distribution sense) the aging already seen 
in the fleet describing the training set, then partial discharge cycles are sufficient to guarantee a proper model 
updating and refine model predictions of future discharge cycles. However, full discharge data are likely to be 
necessary for test batteries behaving very differently from the one seen in the training set. The number of full 

(2)qmax(E) =
∑

k

ω
q
k q

max
k (E) and R0(E) =

∑

k

ωR
k R0,k(E),

Figure 4.  Using full and partial discharge cycles to perform model updates. (a) In partial discharge cycles the 
only available information is the used capacity; which imposes uncertainty in the estimation of available Li-ions, 
xp,n . (b) Fleet information can be used to elucidate prior distributions; while both full and partial discharge 
cycles can be used for continuous model update. The top panel illustrates the update with one full discharge 
at E = 0 kWh and partial discharge cycles between E = 0 kWh and E = 1 kWh . The bottom panel shows the 
update with full discharges at E = 0 kWh and E = 2 kWh and partial discharge cycles between E = 0 kWh and 
E = 2 kWh . (c) Uncertainty in model parameters can be propagated to state-of-charge throughout a mission 
(voltage history). Integration of voltage and current is used to estimate power and energy used in each cycle. The 
estimated energy distribution can be compared against actual used energy. (d) As long as the distribution of the 
error in the energy estimation is stationary, the hybrid model can be used for the specific battery. Metrics such 
as KL-divergence can be used to indicate when new full discharge cycles are needed for model updating.
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discharge cycles necessary strongly depends on the behavior of the battery during operation. The update of the 
capacity model for a sample battery is illustrated in Fig. 4b. The available data at 1 KWh is composed of one 
constant discharge at 0 KWh and all random discharge cycles run up to 1 KWh. The posterior model can be 
used to forecast capacity as a function of cumulative energy – Updated Model in Fig. 4b. Further results on the 
reduction of uncertainty obtained by updating models with only partial discharge data is provided in the Sup-
plementary Material.

In order to evaluate whether a model produces predictions accurate enough for further use, we propose 
estimating the distribution of the error between the predicted and consumed energy and evaluate the stationar-
ity of such error using a statistical measure. To do so, we predict the voltage discharge curve and corresponding 
uncertainty coming from the model parameters. Voltage and applied (load) current profile can be integrated to 
estimate the energy distribution necessary for a specific mission. This energy distribution can then be compared 
against the actual energy consumed by the battery, as in Fig. 4c. The models can be used for prognosis for as 
long as the distribution of this energy error remains stationary. Metrics such as the KL-divergence between the 
present energy error distribution and the energy error distribution immediately after the model is updated with 
full discharge data can be used to indicate the need for new full discharge data, as illustrated in Fig. 4d. The top 
panel shows the median and the 95% confidence interval of the energy error distribution over the battery usage. 
While there is expected variation as the battery accumulates cycles, it is not until cumulative energy reaches 2 
kWh that the energy error distribution starts to diverge substantially. This is easily captured by KL-divergence, 
which becomes an index for the “health of the model,” as shown in the bottom panel of Fig. 4d. The threshold 
level for the KL-divergence that will indicate the need for new full discharge data is application dependent and 
we recommend to use a fleet of batteries to determine it. In our study, we found this value to be around 1.0 (see 
discussion in the Supplementary Material).

Quantifying uncertainty in aging due to unknown battery usage through Bayesian 
update. The fourth result of our proposed framework is the ability to perform battery-specific model update 
without requiring complete knowledge of past battery usage. This scenario is likely to occur when monitoring 
legacy fleets of battery-powered vehicles and devices. Operators, insurers, and service providers might have to 
serve batteries with unknown previous operations, route/usage structure and patterns, driver/user behavior, etc. 
Nevertheless, to control operations and maintenance costs, it is important to quantify battery degradation and 
estimate capacity fade over future usage. The hybrid physics-informed neural network models for such batter-
ies can be obtained by (1) monitoring present and future decay in capacity against the observed increment in 
cumulative energy; and (2) performing Bayesian update of fleet-wide model taken as prior information in the 
light of newly recorded data.

Figure 5a illustrates the case in which battery usage becomes available after a period. Without historical data, 
capacity decay is registered against the increment in cumulative energy from the moment the battery starts being 
monitored ( �E ). Any two observed capacity levels and the physics-informed neural network developed with data 
coming from a fleet can be used to estimate the distribution of possible cumulative energy; as shown in Fig. 5b. 

Figure 5.  Modeling battery aging without known usage history. (a) Although capacity data might be missing 
for considerable amount of operation, once it is consistently tracked, it can be used for updating aging models. 
(b) Fleet-wide information of capacity versus cumulative energy is used to estimate cumulative energy 
distributions for observed capacity levels. (c) Bayesian update is performed on the difference between observed 
cumulative energy. (d) With enough observed capacity levels, aging models move from fleet to battery-specific 
distribution.
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With these two distributions, we can convert the fleet-wide model into a battery-specific one by performing 
Bayesian update. As depicted in Fig. 5c, we use the distributions of Fig. 5b to define the prior distribution of 
the increment in cumulative energy, p0(�E0→1) and the observed �E0→1 to define the likelihood L(�E0→1|θ) ; 
where θ is the vector of parameters for the hybrid model. As illustrated in Fig. 5d, as more data becomes available, 
the fleet-wide model will converge to the battery being monitored. The battery-specific updated model is used 
to forecast capacity degradation; and therefore, perform optimization of battery usage throughout service life.

Discussion
The formulation for hybrid Bayesian physics-informed neural network presented in this paper advances the 
field of scientific machine learning by defining a computationally efficient framework for modeling of dynami-
cal systems (the computational footprint is illustrated in the Supplementary Material). The approach builds a 
directed graph model incorporating physics-based nodes that capture the trends in the data while quantifying 
and propagating uncertainty using data-driven nodes. These data-driven nodes are introduced into the graph 
in order to compensate for limitations in predictability originally found in the principle-based model as well as 
handling unstructured datasets, including partially observed and historical data. The framework is supported by 
Bayesian methods; and in the Li-ion battery prognosis application, it uses fleet-wide information to build prior 
distributions for battery-specific models while updating these models with operational data. Among the major 
advantages of the proposed framework, we can mention:

• Quantification of model inadequacy: our hybrid approach uses data-driven nodes to quantify model-form 
uncertainty. In the Li-ion battery prognosis application, the approach has showed the ability reduce the gap 
between predictions and observations with only a very reduced number of training points.

• Quantification of data uncertainty: our hybrid approach uses variational Bayesian nodes to quantify different 
forms of observation uncertainty. In our application, the approach successfully account for variability of aging 
rates of different batteries due to factors such as inherent manufacturing variability, initial internal damage, 
etc.

• Robustness to unstructured data: the Bayesian formulation allows using historical and fleet-wide data to build 
priors for model parameters. In practice, this reduced the need for controlled full discharge cycles normally 
used in precise estimation of battery residual capacity; which means that model updates can be performed 
without decommissioning the batteries. In addition, this prior estimates of aging behavior ensure that model 
update can be performed with partial discharge cycles without even requiring previous usage history of the 
battery.

• Reliable tracking of model accuracy: the approach is able to monitor the predictive capability of the model 
(i.e., the “health” of the model) by monitoring how stationary the integrated output errors are. In the battery 
application, this is done by using metrics such as KL-divergence on top of the error in energy consumption 
on a cycle-by-cycle basis. This can be used to inform when controlled full discharge cycles are needed for 
major model updates.

The proposed framework will impact onboard health monitoring systems for electric propulsion and can be 
directly applied to adjacent technologies, such predictive maintenance and digital twins of industrial equipment. 
Soft robotics is another challenging application space, in which neural networks have been used to model the 
complex  dynamics33. Approaches proposed here could reduce the computational cost associated with numerical 
integration of the highly nonlinear material models; and therefore, enabling model-based control.

In addition, our hybrid modeling framework has the potential to substantially facilitate verification and 
validation of onboard analytics due to its ability to quantify and mitigate different sources of uncertainty. This 
capability facilitates formal verification and validation and improves compliance with norms such as DO-17834 
and ARP-475435. In turn, this helps clearing the path to certification of machine learning enabled systems in 
highly regulated environments, such as civil aviation.

Among the limitations of framework presented in this paper, we can mention:

• From the modeling perspective: our framework assumes that (a) physics-based models that should approximate 
the relationship between inputs and outputs of interest exist; and (b) engineers and scientists should be able 
to pinpoint the cause of gap between predictions and observed data. Consequently, we can implement the 
hybrid model and place the data-driven nodes accordingly. We assume that physics-based equations imple-
mented in the graph will have computational cost comparable to linear algebra found in neural networks. 
These equations must be differentiable to enable back-propagation of gradients.

• From the application perspective: our approach was tested using a relatively homogeneous dataset; discharge 
curves came from Li-ion batteries similar to one another. In addition, all batteries used for testing were sub-
ject to similar loading conditions (i.e., either constant loading or piece-wise random loading). We anticipate 
that the aging behavior of batteries can change when batteries are subjected to substantially different condi-
tions. For example, if recharging batteries that were not fully or consistently depleted can introduce further 
discrepancy between predictions and observations.

As potential future research, the model could be tested under realistic loading profiles coming from electric or 
hybrid propulsion vehicles, under varying temperature profiles representative of real operations. Our hybrid 
physics-informed neural network model could also be extended to other powertrain components, or even to 
a full hybrid powertrain model. For electric vehicle operators, a hybrid powertrain model could provide not 
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only end-of-discharge predictions, but also fault detection and isolation within the powertrain system. Another 
important suggestion of future work is further quantify and improve the uncertainty prediction so that this 
feature of our hybrid approach can be used to accurately estimate model confidence (methods that can be used 
include calibration curves and metrics such as expected calibration  error36). Finally, another venue that could 
be explored is the model architecture alternatives (number of layers, number of neurons, activations functions, 
and choice of optimizers) of the data-driven nodes. Subject to application complexity, one could pursue the 
optimization of the data-driven architecture alternatives with technologies such as neural architecture  search37–39.

Methods
Implementing the hybrid physics‑informed neural network. The hybrid physics-informed neural 
network proposed here implements the integration of ordinary differential equations describing battery simpli-
fied physics in the state-space form. Here we describe the simplified eletrochemistry model based on Nernst–
Butler–Vomer  equations26,25,40 as well as the data-driven and variational Bayesian nodes of Fig 2a.

Equilibrium potential. Based on the work presented  in25, we approximate the equilibrium potential as:

where the subscript i = {n, p} indicates the negative or positive electrode, respectively; U0 is the reference poten-
tial; R is the universal gas constant (and should not be confused with the total resistance R0 ); T is the electrode 
temperature; m is the number of electrons transferred in the reaction; F is the Faraday constant; x is the mole 
fraction for the Li-intercalated host material; Vni,i is the non-ideal internal voltage and activity correction term, 
null in ideal conditions; x is the mole fraction ( xp = 0.4 and xn = 0.6 for the batteries utilized in this work); and 
qmax = qn + qp is the amount of available Li ions used to represent aging.

The total volume of the battery is split into two control volumes, bulk b and surface s, such that the diffusion 
rate from the bulk to the surface is:

where D is the diffusion coefficient and the concentration overpotential is calculated using the Nernst’s equation 
for the surface:

Voltage increment. The surface overpotential is described by the Butler–Volmer  equation26 such that

where α is a symmetry factor, Ji is the current density and Ji0 is the exchange current density, while R0 is the 
Ohmic lumped resistance used to represent aging.

Non-ideal internal voltage. The assumption of unity activity coefficients is not applicable to real batteries; as a 
result, in this paper, the non-ideal internal voltage is modeled through a multi-layer perceptron (MLP):

where wn , bn , wp , and bp are the MLP parameters; and subscripts p and n refer to positive and negative electrode, 
respectively. The set of equations (3)-(7) define the nodes implemented in the hybrid physics-informed neural 
network for battery prognostics.

Accounting for battery aging with variational models. Battery aging is modeled through capacity 
decay over the useful life, and we use parameters qmax and R0 as proxies for the aging effect on the capacity. The 
input variable to the aging models is the cumulative energy E drawn from the battery. Both parameters qmax , R0 
are strongly correlated to C; and thus, we modeled C(E) through:

where α is a scaling factor, determined with the data shown in Fig. 3a; and γ (E) is a linear model, reported in the 
Supplementary Material. The variational models for C(E), and as a consequence for the aging parameters qmax 
and R0 , are composed of one vMLP to predict the mean value of the quantity of interest (epistemic uncertainty), 
and another one to estimate the confidence interval of the prediction (aleatory uncertainty).

(3)VU ,i = U0 +
R T

mF
ln

1− xi

xi
+ Vni,i and xi = qi/q

max ,

(4)
q̇b s,i = D (cb,i − cs,i), cb,i =

qb,i

vb,i
, cs,i =

qs,i

vs,i
, qp = qs,p + qb,p, qn = qs,n + qb,n ,

q̇s,p = iapp + q̇b s,p, q̇b,p = −q̇b s,p, q̇s,n = −iapp + q̇b s,n, and q̇b,n = −q̇b s,n,

(5)xs,i =
qs,i

qmax
s,i

and qmax
s,i = qmax vs,i

vi
.

(6)V = VU ,p − VU ,n − V0 − Vη,p − Vη,n, Vη,i =
RT

Fα
arcsinh

(

Ji

2Ji0

)

, V0 = R0 iapp

(7)Vni,n = MLPn(xn; wn, bn) and Vni,p = MLPp(xp; wp, bp),

(8)
C(E) ∼ N (µC(E), σ

2
C(E)) , qmax(E) = α C(E), R0(E) =

qmax(E)

γ (E)
,

µC(E) = vMLPµC (E; wµC , bµC ) and σ 2
C(E) = vMLPσ 2

C
(E; wσ 2

C
, bσ 2

C
)
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Each weight and bias of the vMLPs are described by a normal distribution. This way, for the i-th layer of the 
µC(E) vMLP:

and similarly, for the i-th layer of the σ 2
C(E) vMLP:

The means and standard deviations of these distributions are optimized during training. The loss function is 
defined in Eq. (12).

Our observation is that aging is best modeled through battery specific qmax and R0 . When building a model 
for a newly deployed battery, such that constant reference discharge data is not enough to build accurate vMLP 
models; we suggest using an ensemble of fleet-wide models to build priors for the new battery. The ensemble 
prior and corresponding weights follow:

where: �i,j = ε⊤i εj , and εi is an error measure between model i and the observed values. In this paper, we used 
the negative log-likelihood �NLL as defined in Eq. (12) so that both observed and used capacities can be used in 
the model update. Alternatively, when observed capacity data is plentiful, the mean-squared error between the 
observed and the predicted capacities can be used.

Figure 6 shows a graphical representation of the variational models: from vMLPs to fleet prior to Bayesian 
updating.

Dealing with complete and censored data through specialized loss functions and variational 
models. Model update is performed using (i) fleet-wide information for definition of model-parameter pri-
ors; and (ii) partial discharge cycles, coming from step-wise random variations of input current, which only 
gives an estimate of used capacity. Similarly to classic variational neural networks, the loss function that drives 
the optimization of the vMLP hyperparameters is the sum of negative log-likelihood and the Kullback–Leibler 
(KL)  divergence41:

where �NLL is the negative log-likelihood contribution computed using observed capacity (constant discharge) 
and used capacity (random discharge); �DKL is the KL-divergence contribution computed across the vMLP layers, 
indicated by the subscript k; φC(.) and �C(.) are the probability density and cumulative distribution functions 
of the normal distribution; ci and cj are the observed and used capacities, respectively; L(.) is the likelihood of 

(9)wµC ,i ∼ N

(

µwµC ,i
, σ 2

wµC ,i

)

, bµC ,i ∼ N

(

µbµC ,i
, σ 2
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)

,
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(
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, σ 2
w
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)

, bσC ,i ∼ N
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, σ 2
b
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)

,

(11)CWA(E) =
∑
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log
(

1−�C,j

)
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,
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Uncertainty
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(b)
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. . .
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Bayesian Update: vMLPs weights and biases

(c) p(w, b|D) ∝ p(D|w, b) p(w, b)

Figure 6.  Ensemble models used to predict battery aging based on Bayesian update. The models for qmax , R0 are 
built using variational inference-based layers, and composed of two MLPs each; one to estimate the expectation 
as a function of cumulative energy, and one to estimate the aleatory uncertainty, (a). Each battery has its own 
set of independent models for qmax , R0 . These models are combined in an ensemble model predicting the 
distribution qmax , R0 for each level of cumulative energy draw, (b). Bayesian update is used to adjust the MLP 
parameter values as more capacity data D are collected, (c).
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the vMLP weights and biases; and p0(.) is the probability density function of the prior distribution of the vMLP 
weights and biases.

Assuming available fleet-wide information, we build priors for the vMLP capacity models using the steps 
described in the left panel of Fig. 7. These fleet-based priors are used to estimate model parameters for new bat-
teries when full discharge cycles are sparse and most data comes from regular battery usage. We assume that an 
initial constant discharge is performed prior to deploying the battery into service. For a new battery, not included 
in the set used to generate fleet priors, partial discharge cycles provide used capacity and feed the continuous 
update of battery-specific models. The center panel of Fig. 7 describe the algorithm we propose to perform this 
task. The quantified uncertainty affecting model-parameters is propagated through the hybrid physics-informed 
neural network and can be used guide acquisition of new constant discharge data. The proposed algorithm, 
detailed in the right panel of Fig. 7, calculates the need for new constant discharge cycle. Batteries submitted 
to constant discharge cycles are depleted completely; and therefore, the observed battery capacity has a much 
stronger contribution to the loss function, Eq. (12), when compared to used capacity found in regular partial 
discharge data.

Quantifying uncertainty in aging due to unknown battery usage through Bayesian update. For 
many fielded batteries, the usage history might not be known, as depicted in Fig. 5a. Assuming that (1) there is 
no practical way to assess what is the battery initial capacity and cumulative energy; and (2) we can track battery 
capacity versus the cumulative energy differential with respect to an arbitrary point; we can write:

where C is the battery capacity, �e is the increment in cumulative energy from the moment the battery starts 
being monitored; and µC(.) and σC(.) are the parameters that define the map between cumulative energy incre-
ment into battery capacity.

We propose using a Bayesian approach to update the uncertainty about battery capacity as a function of 
battery usage:

where �E(.) is the random variable that defines the increment in cumulative energy as a function of C and θ ; C 
is the battery capacity; θ = [wµC , bµC ,wσ 2

C
, bσ 2

C
] is the vector of parameters for vMLP models that define C(E). 

D is the set of observed data; which in this case is the set of observed capacity and cumulative energy increment 

(13)C(�e) ∼ N

(

µC(�e), σ 2
C(�e)

)

,

(14)p(�E(C; θ) | D) =
L(D | θ) p0(�E)

∫

L(D | θ) p0(�E) dθ
;

Figure 7.  Set of algorithms used for updating battery-specific models using both full and partial discharge 
cycles. Left panel describes the steps for elucidation of prior distribution of the vMLP model parameters. In 
most practical applications, reference discharge data can be assumed to be previously available (either through 
battery manufacturer testing data; or by collecting historical data). Center panel details the steps for model 
updating. Battery-specific data is used to drive Bayesian update. However, in our study, we found that a heuristic 
to balance the fleet information using a weighted average  ensemble42 might be needed when data is still poor 
and formed mostly by partial discharge cycles. The right panel describes the algorithm for monitoring the 
“health of the model.” Significant reduction in model-parameter uncertainty is expected after adding new 
constant discharge data. However, the cost associated with this information justify the effort in tracking model 
performance and only take the battery out of commission to obtain constant discharge cycles when needed.
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pairs observed since the battery started being monitored; p(.) and p0(.) are the posterior and prior distributions 
for �E(.) ; and L(.) is the likelihood model.

Equation (14) is known to be hard to solve due to the integral in the denominator. In order to sample the 
posterior distribution, here, we use numerical integration through particle  filtering43,44. For convenience, here, 
we assume the likelihood to be Gaussian. Our Bayesian update strategy is illustrated in Figs. 5c, d.

Data availability
The data set related to this article is open source, and can be found at the NASA Prognostics Center of Excel-
lence Data Repository, under set number 5, “Battery Data Set” and number 11, “Randomized Battery Usage 
Data Set”30,31.

Code availability
Our implementation is all done in  TensorFlow45 using the Python application programming interface. The code 
needed for replication of results is publicly available on GitHub: https:// github. com/ nasa/ Li- ion- Batte ry- Progn 
osis- Based- on- Hybrid- Bayes ian- PINN.
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