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Deoxyribonucleic acid (DNA) has emerged as a promising building block for next‑generation ultra‑
high density storage devices. Although DNA has high durability and extremely high density in 
nature, its potential as the basis of storage devices is currently hindered by limitations such as 
expensive and complex fabrication processes and time‑consuming read–write operations. In this 
article, we propose the use of a DNA crossbar array architecture for an electrically readable read‑
only memory (DNA‑ROM). While information can be ‘written’ error‑free to a DNA‑ROM array using 
appropriate sequence encodings its read accuracy can be affected by several factors such as array size, 
interconnect resistance, and Fermi energy deviations from HOMO levels of DNA strands employed in 
the crossbar. We study the impact of array size and interconnect resistance on the bit error rate of a 
DNA‑ROM array through extensive Monte Carlo simulations. We have also analyzed the performance 
of our proposed DNA crossbar array for an image storage application, as a function of array size and 
interconnect resistance. While we expect that future advances in bioengineering and materials science 
will address some of the fabrication challenges associated with DNA crossbar arrays, we believe that 
the comprehensive body of results we present in this paper establishes the technical viability of DNA 
crossbar arrays as low power, high‑density storage devices. Finally, our analysis of array performance 
vis‑à‑vis interconnect resistance should provide valuable insights into aspects of the fabrication 
process such as proper choice of interconnects necessary for ensuring high read accuracies.

Production of digital data is increasing exponentially, driven predominantly by the adoption of artificial intel-
ligence (AI) and deep learning. According to current projections, approximately 175 zettabytes (109 terabytes) of 
new data will be generated annually by 2025. Archival storage of even a fraction of such immense data requires 
a fundamental rethink in durable, low power, accurate, and extreme high-density storage technology since 
traditional storage devices (e.g., magnetic tapes, hard disks, Blu-ray, and solid-state devices like flash) are fast 
approaching their scaling and performance limits. The key figures-of-merit of a storage technology are: (i) the 
maximum density of any storage device in terms of bits per unit volume, (ii) durability (total time for which the 
data can be stored), and (iii) energy cost. With the projected explosion of data storage requirements, it is widely 
accepted that existing technologies are inadequate with respect to the figures-of-merit. Silicon-based devices 
are fast approaching their density limits and further downscaling of such devices will result in performance 
degradation. This motivates the demand for development of alternate ultra-high-density storage technologies 
which are durable and energy-efficient.

Deoxyribonucleic acid (DNA) is one of the most promising candidates for high-density storage devices. The 
concept of using DNA for data storage dates to the mid-1960s when the idea of ‘genetic memory’ was proposed by 
Neiman and  Wiener1,2. However, technological limitations at the time regarding DNA sequencing and synthesis 
limited the practical viability of such memory devices. Around 1986, Davis et al.3 and Clelland et al.4 made the 
first experimental demonstrations of DNA storage. A breakthrough was achieved in 2012–2013 by successfully 
storing hundreds of kilobytes of  data5. 

DNA-based molecular-level data storage is an excellent choice for future high-density storage applications 
since only a few layers of atoms are required to store one bit of information. DNA storage can be significantly 
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denser than the densest storage device available at present and is also more durable. When insulated from heat, 
humidity, and light, DNA can last for centuries to millennia, compared to decades for traditional media devices. 
Table 1 provides a comparison of conventional silicon-based storage devices, resistive random-access memory 
(RRAM), and DNA-based devices with respect to (w.r.t) density, random access, read latency, and durability.

DNA based data storage involves four steps: (i) encoding (mapping of digital information to appropriate DNA 
sequences), (ii) synthesis (writing into DNA sequences), (iii) reading (accessing the data), and (iv) decoding 
(converting to digital format). Current DNA-in-solution storage systems are engineered to store data in chunks 
of  DNA6,7. Traditionally, information in DNA-in-solution systems is encoded into appropriate DNA sequences 
using a dedicated algorithm that maps digital bits to DNA  bases8. Different methodologies for DNA sequence 
synthesis exist, for instance, phosphoramidite-based synthesis or enzymatic  synthesis9. Polymerase chain reac-
tion (PCR) is a proven high-throughput method that can facilitate large-scale DNA replication. The read process 
for DNA-in-solution systems has significant time complexity since it requires an indexing system for proper 
reconstruction of the data.

Another    drawback of DNA-in-solution storage systems concerns random access. Even if a small segment 
of the stored data needs to be accessed and retrieved, the entire DNA pool must be read and sequenced, which 
is time-consuming and inefficient. However, some recent work exists that aims to address/improve random 
access, e.g., the magnetic bead extraction approach or PCR with primers discussed  in10. We note that the read 
accuracy of DNA-in-solution storage systems depends largely on the synthesis process, which, as mentioned 
previously, is susceptible to errors.

Even though DNA-based storage systems have a transformative potential for next-generation storage applica-
tions, the technology is still at a nascent stage. In this paper, we address the random access and read latency issues 
by adopting a crossbar array architecture for an electrically readable Read-Only Memory (ROM)  device11. Our 
proposed device is composed of interconnects and two different DNA sequences serving as memory cells, as illus-
trated in Fig. 1. In contrast to existing DNA-in-solution storage systems where bit strings are encoded into a DNA 
sequence, we choose an ‘appropriate’ pair of DNA sequences and exploit the difference between their conduct-
ance values to reliably store binary information. Motivated by recent advances in the field of synthetic biology, 
we propose self-assembly of crossbar nanostructures using DNA origami-inspired  approaches12. The assembly 
of DNA crossbars will consist of separately forming the memory elements and the DNA nanowires, followed by 
their integration. Finally, after the self-assembly phase, the DNA crossbar will be connected to electrodes at the 
edges of the array to enable  readout11. From a fabrication perspective, we propose leveraging synthetic biology 
approaches for fabricating and programming DNA memory cells/interconnects and conventional semiconductor 
and lithographic processes for contact formation. Challenges related to DNA crossbar array fabrication include: 
(i) High precision contact formation between DNA memory cells and DNA nanowires (interconnects). Since 
DNA crossbar formation is a self-assembly process, a suitable fabrication recipe is needed which will yield good 
contacts between the memory cells and the nanowires. (ii) Fabrication of highly conductive DNA nanowires, an 
area which is mostly unexplored. The work by Ke and Hihath is a pioneering effort that has just stared to experi-
mentally address this  issue13. As seen from our computational analysis, interconnects should be conductive to 
achieve good read-out accuracy. Since DNA nanowires are typically very resistive, enhancing their conductivity is 
a challenging part of the process. However, the relative contributions of the contacts and the intrinsic resistance 
of the DNA are unclear at this stage. Finally, as noted  in14, initialization of large DNA crossbar arrays can incur 
a large spatiotemporal overhead. Exceptional spatial control of self-assembly has been demonstrated for DNA 
 origami15,16. From a temporal perspective, self-assembly process can take up to 1–3  days17,18. We estimate that 
self-origami of a DNA array can take up to 2–4 days, but the process is extremely parallelized such that billions 
of copies can be made in parallel.

Exponential growth in data generation and the need for durable and long-term data storage have exposed 
the shortcomings of current memory technologies such as flash, RRAM, phase change memory (PCM), and 
magnetic tunnel junctions (MTJ). According to the International Roadmap for Devices and Systems (IRDS 2020), 

Table 1.  Comparison of various storage technologies (existing and proposed). ## For 3D density of DNA-in-
solution technology, bulk density is that of pure water. $$Read time is classified to be ‘High’ if it is > 1 h and 
‘Low’ if it is < 10 ns. &&2D and 3D density metrics for DNA crossbar storage are based on topological and DNA 
parameters. Italicized numbers (8 nm, 10 nm, 12 nm) refer to the half-pitch of the crossbar array.

Nature of technology 2D Density (bits/inch2) 3D Density (bits/inch3) Random** access Read$$ time Lifetime (years)

Conventional  ~  101243  ~  10944 Yes Low  >  1045

DNA-in-solution –

##6.04 ×  10226

No High

 > 100 (at 25 °C)
##1.07 ×  102346  > 1000 (at < 10 °C)
##1.18 ×  10247 44

RRAM crossbar

4.5 ×  101247

– Yes Low  >  10454.1 ×  101248

4.2 ×  101249

DNA&& crossbar (this 
work)

3.47 ×  1012 (12 nm) 7.35 ×  1018 (12 nm)

Yes Low

 > 100 (at 25 °C)

4.72 ×  1012 (10 nm) 1 ×  1019 (10 nm)  > 1000 (at < 10 °C)

6.78 ×  1012 (8 nm) 1.44 ×  1019 (8 nm) 44
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DNA storage technologies are a promising candidate for long-term, large-scale data storage applications. The 
development of commercially viable DNA-based storage devices is now widely recognized as a critical emergent 
research area and has rightfully attracted a proliferation of research in recent times. Nevertheless, the state-of-the-
art in this area is still quite nascent and the path from ideation to commercialization is riddled with significant 
engineering and scientific challenges. Overcoming these challenges will require potentially ground-breaking 
innovations from researchers in diverse disciplines such as molecular biology, materials science, and electrical 
engineering. Some notable research challenges include making conducting DNA origami and the development 
of robust biotic-abiotic interfaces between DNA and the electrode array. Recent research trends in the domain of 
CMOS-DNA  systems19,20 may provide a solution for integrating silicon-based devices/circuits with DNA. Equally 
important are the design of peripheral circuitry and the choice of interconnect material for nanoscale devices.

Despite the advantages of a crossbar topology over DNA-in-solution systems, two factors can adversely affect 
its read accuracy. First, Fermi energy  variations21 can alter the conductance state of DNA, leading to errors during 
the read-out process. Second, sneak paths, which distort the read current distributions in memory cells, affect all 
crossbar topologies and DNA-based arrays are no exception. Existing approaches for alleviating sneak path issues 
include the use of a selector switch, coupled with an appropriate biasing scheme. While the ideal mechanism for 
mitigating sneak path effects in a DNA crossbar array is an open question, the feasibility of ‘DNA diodes’22 is an 
interesting proposition and merits further investigation. Additionally, the development of read-out circuitry for 
DNA crossbar arrays offers significant engineering challenges and is subject to further research.

The rest of the paper is structured as follows. The calculation of current–voltage characteristics is addressed 
in Section "DNA current simulation framework and results", which is followed by a discussion of architectural 
concepts of a DNA-ROM array in Section "Architecture of DNA crossbar array". In Section "Array simulation 
results", we study the performance of the array for different DNA strands and interconnect resistances. The impact 
of Fermi energy variation on array performance is addressed in Section "Impact of Fermi energy variability". 
In Section "Effect of scalability on image retrieval accuracy", we present a detailed scalability analysis in terms 
of two key metrics – bit error rate and power consumption. We conclude this paper with a brief discussion of 
ongoing and future work in Section "Conclusion".

DNA current simulation framework and results
We adopted two B-form DNA sequences 3′-CCC TCC C-5′ and 3′-TTT CTT T-5, referred to as B-CT1C and 
B-TC1T respectively in this paper, which are studied  in23. The simulation methodology involves four main 
steps: structure building, energy minimization, density functional theory calculations, and charge transport 
calculations. First, the Nucleic Acid Builder (NAB) software  package24 is used to obtain the atomic coordinates 
of double-stranded B-DNA structures. Next, we used  PACMOL25 to obtain energy minimized structures with 

Figure 1.  Illustration of a DNA based nanosystem for high-density data storage. (a) DNA crossbar components 
including memory cells and interconnects. (b) Process flow for the proposed technology. DNA origami 
principles can be invoked for nano-structure generation to form long DNA nanowires as interconnects and 
short DNA sequences as memory cells. A large number of these elements can be built through methods like 
PCR amplification. These components can then be self-assembled to create a crossbar architecture. An electrical 
read-out mechanism can be adopted for reading the information in the DNA crossbar array. (c) 3D conceptual 
schematic of a DNA crossbar array, where TE and BE denote the top and bottom electrodes respectively.
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explicit solvent (water) environment within a 60 Å × 60 Å × 60 Å cubic solvation box. We added Na counterions 
to neutralize the phosphate groups in the DNA backbone. We also added Na and Cl ions randomly into the solu-
tion to represent a homogenous mixture of 150  mM26,27. We used General Amber Force  Field28. For the water 
solvent, a truncated octahedron box of SPC/E water model was used to solvate the DNA. Amber force field with 
parmbsc1  correction29 was used to minimize the energy of the structures. Structure minimization was done in 
two stages. The first stage consists of restraining the DNA with a force of 25 kcal/mol-Å2 for the first 1000 cycles, 
while the solvent environment is minimized. The second stage involves minimizing the whole system for an 
additional 1000 cycles. Both the minimization stages apply 500 steps of the steepest descent method, followed 
by 500 steps of the conjugate gradient method.

Next, we deleted the solvent atoms and only kept the DNA atoms along with the closest Na counterions neces-
sary to neutralize the DNA molecule. We then performed density functional theory calculations and obtained 
the overlap and Fock matrices, denoted by S and F respectively. In this step, we used the B3LYP functional and 
6-31G(d,p) basis set. We used the polarizable continuum model (PCM) to include the impact of water solvent 
environment. The Fock and overlap matrices resulting from this step are used as inputs for charge transport 
calculations. The system Hamiltonian is obtained by transforming the F and S matrices to an orthogonal basis 
by applying the Lὅewdin  transformation30:

where Ha is the system Hamiltonian. The diagonal elements of Ha represent the atomic orbitals and the off-
diagonal elements represent the electronic coupling between these atomic orbitals. We chose to partition the DNA 
into nucleotides (backbone + base). We achieved this by transforming the Hamiltonian into a block-diagonal 
matrix, through the unitary transformation:

where U consists of the eigenvectors of each nucleotide. The eigenvectors in U are arranged according to the order 
of the DNA nucleotides. As a result, the diagonal elements of each diagonal block in Hb represent the molecular 
orbital energies of the nucleotide and the off-diagonal blocks in Hb represent the electronic coupling between 
the different nucleotides. Both dimensions of a diagonal block for Ha and Hb are equal to the number of orbitals 
used to represent the DNA nucleotide. We also note here that in obtaining Hb, we omitted the atomic orbital 
contributions of the counterions and focused the charge transport calculations on the DNA molecule itself. This 
is in accordance with the finding  in23 that the counterions do not impact the DNA conductance, especially in 
energy ranges within the vicinity of the highest occupied molecular orbital (HOMO) of the DNA.

After the Hb matrix is obtained, the transmission versus energy of a DNA molecule is computed using the 
Green’s function approach to account for  decoherence30. We use this method to model the system shown in 
Fig. 2a. A DNA strand is placed between two metallic contacts and a voltage bias is applied. The governing 
Green’s function equation is defined as:

(1)Ha = S−
1
2 F S−

1
2

(2)Hb = U†HaU

(3)[E − (Hb +�L +�R +�B)]G
r = I

Figure 2.  (a) A DNA strand is placed between two electrodes and a bias is applied across it. For our work, B 
conformation of two double stranded DNA sequences is considered,  CT1C and  TC1T. (b, c) Transmission versus 
energy for  CT1C and  TC1T strands as a function of Fermi energy for different bias voltages. (d, e) Current–
voltage transfer characteristics for  CT1C and  TC1T B-DNA double stranded sequences. The collection of plots in 
these panels is for different Fermi energies (δ).
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where E is the energy, ΣL(R) is the left (right) contact self-energy, ΣB is the decoherence self-energy, Gr is the 
retarded Green’s function and I is the identity matrix. In this formalism, we use the contact’s self-energy matrices 
(ΣL(R)) to account for the two electrodes shown in Fig.  2a. The self-energy of the contacts is defined as 
�L(R) = −iŴL(R)/2, i =

√
−1 and ŴL(R) = 1000 meV is the coupling value. The contact self-energies are added 

to the 3′ and 5′ nucleotide ends of the strand respectively. The decoherence probe’s self-energy is defined in a 
similar manner, �B =

∑

k

(

− iŴk
2

)

 , where the subscript k represents the kth decoherence probe, and Γk is the 
coupling strength between the decoherence probe and the system, with Γk = 10 meV. The decoherence probes 
(ΣB) are included at each nucleotide (the diagonal elements of Hb), except at the two contact locations. These are 
fictitious probes which mimic extraction of electrons from the molecule and re-injection after phase breaking. 
The current at the kth probe is:

where k = 1, 2, 3, . . . ,N , Tkl = Ŵk G
r Ŵl G

a is the transmission function between probes k and l, Ga = (Gr)† is 
the advanced Green’s function, fk(E) =

(

1+ exp
(

E−Efk
kT

))−1
 is the Fermi distribution, and Jk(E) is the current 

with respect to energy at probe k. The condition for the fictious decoherence probes is that the current Jk(E) = 0 
at every energy. These yield Nb independent equations, where Nb is the number of decoherence probes in the 
system. The following relation can then be  derived31:

where k = 1, 2, 3, . . . ,N ,W−1
kl  is the inverse of Wij = (1− Rkk)δkl − Tkl(1− δkl) , and Rkk is the reflection prob-

ability at probe k,  given by Rkk = 1−
∑N

k �= l Tkl . Since the currents at the left ( I↑L  ) and right ( I↑R ) contacts are 
governed by the conservation of electron number, I↑L + I

↑
R = 0 , this yields the equation for the current at the 

left  contact31, which is the current flowing through the DNA:

The effective transmission term is:

In Eq. (7), TLR is the coherent transmission from the left electrode to the right electrode and the second term on 
the r.h.s is the decoherence contribution to transmission via the decoherence probes.

The final step involves the calculation of current under different biases and Fermi energies. The DNA structure 
is static throughout the calculations. We apply a potential shift in the DNA Hamiltonian to represent the voltage 
drop across the DNA. In a metal–molecule-metal setup, obtaining the electrostatic potential profile across the 
molecule and finding the exact location of the Fermi energy requires using the density matrix and solving Pois-
son’s equation in a self-consistent  manner32. However, this is very difficult to achieve for large molecules such as 
the studied DNA (which consists of several hundred atoms). In addition, the details of the contacts such as the 
orientation and geometry at the metal–molecule interface are unknown, which further increases the complex-
ity of the problem. Therefore, the general approach is to treat the Fermi energy as a variable and calculate the 
current or conductance at different Fermi energies. Further, at nonzero bias, a common approach is to use a 
linear ramp potential profile across the molecule by shifting the molecular orbitals in the DNA Hamiltonian (Hb) 
prior to calculating the transmission and the current. Following prior  work32, the potential drop is taken to be:

where Vn is the voltage at base pair n. The electrostatic potential energy at base pair n, qVn, is added to the diago-
nal elements of the Hamiltonian Hb of block n. Note that block n consists of a base pair, q is the magnitude of 
electron charge (1.6 ×  10−19C), and Vbias is the bias voltage applied across the strand. Locations 1 and N represent 
the contact coupling sites. We set 40% of the voltage to drop on each end of the strand, while the remaining 20% 
of the bias drops linearly along the DNA.

The next step involves the calculation of current under different voltage biases and Fermi energies. The DNA 
structure is static in the calculations. After shifting the molecular orbitals in Hb, we calculate the effective trans-
mission and use Eq. (6) to calculate the current at a certain bias with

where EfL and EfR are the Fermi energies of the left and right contacts respectively.

(4)I
↑
k =

2q

h

N
∑

l=1

+∞
∫

−∞

Tkl(E)
[

fk(E)− fl(E)
]

dE =
+∞
∫

−∞

Jl(E)dE

(5)fk(E)− fL(E) =

(

Nb
∑

l=1

W−1
kl TlR

)

(

fR(E)− fL(E)
)

(6)IDNA = I
↑
L =

2e

h

+∞
∫

−∞

Teff (E)
[

fL(E)− fR(E)
]

dE

(7)Teff = TLR +
Nb
∑

k=1

Nb
∑

l=1

TLk W
−1
kl TlR

(8)Vn =











0, n = 1

qVbias ×
�

0.4+ 0.2(n−2)
N−3

�

, 2 ≤ n ≤ N − 1

qVbias, n = N

(9)EfR = EfL + qVbias
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Figure 2a shows the schematic for the DNA conductance calculations along with the non-linear potential 
drop, illustrating how the molecular orbitals shift along the strand. Figure 2b,c shows the transmission profiles 
of the two DNA strands (B-CT1C and B-TC1T) under different biases -1 V (yellow), 0 V (green), and 1 V (blue). 
The transmission profile carries information regarding the density of states (DOS) of the system. Since DOS is 
directly related to the energy distribution of the molecular orbitals, the effect of shifting of the orbitals’ energy 
due to the applied bias is observable in the transmission. The peaks in transmission suggest high DOS at those 
energies, which in turn yields high current conduction. From Fig. 2b,c, we can observe that the peaks shift to the 
right (higher energy) when a positive bias is applied and vice versa. Numerically, for B-CT1C DNA, the HOMO 
peak is at -5.8 eV, -5.2 eV, and -4.78 eV, corresponding to bias values of -1 V, 0 V, and 1 V respectively. Thus, we 
have a 10.38% and 8.47% shift in HOMO when the bias changes from 0 to -1 V and from 0 to 1 V respectively. 
Similarly, we get a shift of 8.6% and 9.4% in the case of B-TC1T DNA when the bias changes from 0 to -1 V and 
from 0 to 1 V respectively. The transmission profiles at different energies and biases are substituted into Eqs. (6) 
and (9) to obtain the transfer characteristics shown in Fig. 2d,e. The current–voltage curves for both DNA strands 
are shown at different Fermi energy values.

We have chosen to operate near the HOMO since the comparison between the gold work function and the 
ionization potentials of the DNA base pairs estimates the Fermi energy of gold to be close to the HOMO of the 
DNA. From Fig. 2d,e, we observe that there is a significant current difference between the two strands in the 
voltage range of 0 to 1 V. Therefore, we use these two strands to represent logic 0 and 1 memory states in our 
study of the DNA-ROM crossbar.

Architecture of DNA crossbar array
Traditional memory storage devices are fast reaching their scaling limits. Additionally, these devices suffer 
from low packing density of cells. To mitigate these problems, crossbar architectures are preferred for Resistive 
Random-Access Memory (RRAM) applications such as neuromorphic computing, in-memory computing, and 
image processing. Such an architecture is advantageous because of fast read and write operations which are 
essential for many digital and analog applications. Random access is enabled by selective application of a bias 
to appropriate wordlines and grounding of corresponding bitlines. For example, to access the memory element 
at the (1,3)th location in the array shown in Fig. 3a, a bias V1 = 1 V has to be applied to wordline 1 with bitline 3 
grounded (all other bitlines are kept floating). A high current measured in bitline 3 under this biasing scheme 
represents logic state ‘1’ and a low current represents logic state ‘0’.

In this article, we propose and analyze the performance of a DNA crossbar array as a storage device. Figure 1c 
shows our proposed DNA ROM architecture. In this arrangement, a double-stranded (ds) DNA is assembled 
at every junction (alternately referred to as grid points or memory cell locations in this article) of a crossbar 
array. A circuit schematic of a DNA crossbar array with interconnect resistances and two different DNA strands, 
depicted as different resistors, is shown in Fig. 3a. Since the performance of the array depends significantly on 
the difference in conductance of the two dsDNA sequences, a proper choice of the DNA pair is critical.

Unlike an RRAM crossbar technology, DNA crossbars are not associated with a WRITE process which 
requires that resistances be updated by application of an external bias. Hence, we study the applicability of DNA 
in a ROM system instead of a RAM. In DNA-based storage devices, information can be easily loaded onto the 
device using sequence encoding. We use a readout scheme proposed by Liao et al.33. In their scheme, to read 

Figure 3.  (a) Circuit schematic of a 4 × 4 array, where αi and βj are array size dependent scaling factors 
which account for the interplay between interconnect resistance and sneak paths. (b) Flow chart for crossbar 
simulation. ‘Voltage Block’ comprises of the set of equations governing the voltage distribution in the crossbar 
(see Eq. 10) while ‘Current Block’ is a look-up-table created with the DNA currents (IDNA) obtained from DNA 
current simulations (see Eq. 6).
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the ith row, an external bias voltage Vin is applied to that row (wordline) and the currents through the grounded 
columns (bitlines) are recorded. Extensive computational experiments have demonstrated that the readout 
approach outlined  in33 maintains high accuracy, while reducing the computational complexity from log(m2n2) 
to log(m2 + n2 + mn) for an m × n array. In performing our simulations, we have grounded all bitlines under the 
assumption that the information is stored in the whole crossbar.

The interconnect resistance Rint of an RRAM crossbar between adjacent memory cells is about 7–10 Ω when 
the half-pitch is 14 nm. If the cross-sectional area of the interconnects is reduced in the interest of scalability, 
Rint increases. However, large interconnect resistances (> 10 Ω) in RRAM arrays are problematic for READ and 
WRITE operations, especially the WRITE process, since the resistive state of the array cannot be set properly. 
Our proposed DNA crossbar is intended for data storage and retrieval applications. Therefore, it involves only 
a READ process. The resistance of DNA strands is typically on the order of mega-Ohms, which permits the use 
of higher interconnect resistances before sneak path issues start to adversely affect the performance of DNA 
crossbar arrays.

In this paper, we consider Rint as purely a simulation parameter which models the interconnect resistance 
between two adjacent DNA memory cells and affects the accuracy and power consumption of the array. For DNA 
crossbar-based storage technology, potential candidates for interconnects include DNA nanowires (resistance 
of which is not yet known), carbon nanotubes (1–20 KΩ)34,35, and graphene nanoribbons (10–1000 KΩ)36,37. 
Carbon nanotube interconnects can have a resistance of less than 10 kΩ depending on the number of shells. 
The resistance of DNA nanowires currently being pursued experimentally is expected to be larger than that of 
nanotubes. Conventional metal interconnects like tungsten and copper have a resistivity of 5.6 ×  10−8 Ω.m and 
1.68 ×  10−8 Ω.m respectively. Accordingly, we have considered a wide range of Rint values from 10 kΩ to 1 MΩ, 
without explicitly making a choice regarding the interconnect material or its dimensional aspects such as the 
cross-sectional area or aspect ratio. Our simulation results should provide valuable guidelines regarding the 
physical design parameters of a DNA crossbar array vis-à-vis its key performance parameters such as bit error 
rate and power dissipation.

In the subsequent sections, we analyze the performance of our proposed DNA crossbar array w.r.t bit error 
rate and power consumption due to READ operations only. We also demonstrate in detail how parameters such 
as the value of interconnect resistance and Fermi energy variations of the DNA strands from their HOMO levels 
can affect the performance of such an array.

Array simulation results
The detailed simulation methodology is shown in Fig. 3b. From DNA transport simulations at various voltage 
biases, a look-up table is constructed to calculate the DNA currents. Since the current–voltage characteristic of 
DNA strands is non-linear (see Fig. 2), we have adopted an iterative approach for computing the voltage drop 
Vij across the DNA at the (i, j)th location of the memory array, after the interconnect resistances and the resist-
ances of the other DNA memory elements in the array have been accounted for. In this paper, we compute Vij 
when a voltage of Vin = 1 V is applied to row i while other rows are left floating, and the bottom of each column 
in Fig. 3 is grounded. The iterative process commences with a small, applied voltage of 0.05 V to obtain the initial 
conductance matrix by interpolating from the look-up table. Based on the conductance values of DNA memory 
cells, the voltage distribution in the array is calculated using the following equation:

where i and j are the row and column indices, Gij is the conductance of the DNA sequence at the (i, j)th grid 
point, glw is the interconnect conductance between adjacent memory cells along wordlines, and αi is a row-specific 
sneak path parameter (see Eq. (8)  in33) which is independent of the bias voltage. After the first iteration, the 
resistance states of DNA memory cells are updated according to the node voltages and the current–voltage 
relationship. The updated resistance states are then used to refine the voltage distribution. This process continues 
until the voltage difference between two successive iterations at each node is within an acceptable tolerance. The 
voltage distribution obtained after convergence is then used to compute the final read-out current distribution. 
We refer to the set of voltages, 

{

Vij

Vin αi
: 1 ≤ j ≤ n

}

 , as normalized voltages.
All simulations in this section were performed considering homogeneous arrays, which we define as arrays 

composed of identical DNA sequences at all junction points. We have modelled the crossbar array as a resis-
tive network and each memory cell is modelled as a non-linear resistor. Capacitive effects, which are important 
in understanding the transient response, are not accounted for in our current study. While such effects can 
contribute to latency and play a critical role in matrix–vector multiplication applications, its impact on storage 
applications isn’t major. To compute the latency, we need to calculate the quantum capacitance of DNA memory 
cells and interconnects. Carbon nanotubes offer a quantum capacitance of 100–400 aF/μm38,39. Similar estimates 
for DNA origami nanowires have not been derived till date. Figure 4 shows the normalized voltages (applicable 
for all rows) for a homogeneous 64 × 64 array, composed with either B-CT1C or B-TC1T dsDNA sequences and 
Rint = 10 kΩ or 1 MΩ. We chose a value of 10 kΩ on the low end to better demonstrate the sensitivities of array 
voltages (Fig. 4) and currents (Fig. 5) to the interconnect resistance.

Figure 4 also shows the normalized voltages for two different Fermi energies, at HOMO and (HOMO + 0.2) 
eV. First, we observe that the voltage degradation is worse the farther a node is from the input, irrespective of the 
type of sequence and the value of Rint. Since the read current of a memory cell is directly proportional to the volt-
age across it, we expect this voltage degradation to be reflected in the spatial distribution of read currents, which 

(10)Vij =
1+

∑n
k=j+1

(

Gik ∗
∑k

w=j+1
1
glw

)

1+
∑n

k=1

(

Gik ∗
∑k

w=j+1
1
glw

) (Vin αi)
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in turn should affect the read accuracy. We address this issue in the subsequent paragraph. Second, we observe 
that the voltage degradation is worse for the B-CT1C sequence compared to the B-TC1T dsDNA sequence, for 
all values of interconnect resistance and Fermi energy. This is due to the presence of more low resistance cells in 
B-CT1C crossbar configurations compared to B-TC1T crossbar configurations, which leads to more sneak paths. 
From Fig. 2d,e, we see that the conductance of B-CT1C dsDNA is higher than that of B-TC1T strand, particularly 
when the applied bias is in the range of 0 to 1 V. At a particular interconnect resistance, voltage degradation is 
less at a higher value of Fermi energy for both the homogenous arrays. The reason for this can be attributed to 
the reduced conductance of the DNA strands at a higher Fermi energy (see Fig. 2d,e).

From the preceding discussion, we conclude that the B-CT1C dsDNA sequence is more susceptible to changes 
in the interconnect resistance due to its high conductivity. This is manifested in Fig. 5 which shows the current 
distribution heatmaps for a 64 × 64 homogeneous array composed of either the B-CT1C dsDNA sequence or 
the B-TC1T dsDNA sequence, with Rint = 10 kΩ and 1 MΩ and two different Fermi energies. The current Iij used 
to generate the 2-D heatmaps is the current that can be measured experimentally, i.e., it represents the current 
flowing out at the bottom of column j when a voltage of Vin = 1 V is applied to row i while other rows are left 
floating. The expression for this current is:

where IDNA
(

Vij

)

 is the current flowing through the DNA at the (i, j)th location of the memory array calculated 
using Eq. (6), Vij is the voltage drop across this DNA strand calculated using Eq. 10, and βj is a column-specific 
sneak path parameter (see Eq. (9)  in 33 and Fig. 3). Like αi, βj is also independent of the bias voltage. Figure 6 
shows the dependence of αi and βj on row and column indices respectively. Sequential application of the bias 
voltage to the rows of a crossbar array yields an output current matrix which is depicted as a heatmap in Fig. 5.

Comparing the rows in Fig. 5, we first observe that for both values of interconnect resistance, the spatial 
distortion of the read current distribution is lower for the B-TC1T array compared to the B-CT1C array. Second, 
we note that the distortion is greatest in the northeast corner of the array. This is due to the combined effect of 
the sneak path parameters, 

{

αi , βj: 1 ≤ i ≤ m, 1 ≤ j ≤ n
}

 , which are plotted in Fig. 6. It follows from Fig. 6 that 
the largest distortion should occur when i = 1 (row) and j = n (column). As shown  in33,40, these parameters are 

(11)Iij = βj ∗ IDNA
(

Vij

)

Figure 4.  Normalized voltage distribution for homogenous arrays composed of B-CT1C DNA (a, c) and 
B-TC1T DNA (b, d). Array size is 64 × 64 for (a, b) and 128 × 128 for (c, d). The pink lines correspond to 
Rint = 10 kΩ and the purple lines correspond to Rint = 1 MΩ. Moreover, the solid lines represent Fermi energy at 
corresponding HOMO level while the dotted lines represent Fermi energy at (HOMO + 0.2) eV.

Figure 5.  Read-out current distributions (see Eq. (11) for homogenous arrays composed of B-CT1C DNA (a-d) 
and B-TC1T DNA (e–h). The interconnect resistance is 10 kΩ for (a, b, e, f) and 1 MΩ for (c, d, g, h). Array size 
is kept fixed at 64 × 64. For panels (a, c, e, g), the Fermi energy is at corresponding HOMO level while for panels 
(b, d, f, h), Fermi energy is at (HOMO + 0.2) eV.
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estimated from an approximation of Kirchhoff ’s laws (KCL and KVL) and is based on an average conductance 
of the memory cells. The results obtained from this parametric model with α and β are in good agreement with 
the solution of Kirchhoff ’s equations, particularly for array sizes in the range 64 × 64 to 128 × 128 (see Fig. 5c 
 in33). By estimating the output current with α and β parameters, this method provides remarkable improvement 
over a Kirchhoff ’s laws-based solution procedure in terms of time complexity, while maintaining almost similar 
accuracy. Finally, for both sequence types, we notice that the distortion in Fig. 5 is significantly higher when 
Rint = 1 MΩ. This can be attributed to an increase in the number of sneak paths and a higher voltage drop across 
the crossbar when the interconnect resistance is within one or two orders of magnitude of the resistance of the 
memory cell. Consequently, if binary information is stored in a crossbar that uses a B-CT1C sequence to repre-
sent logic 0 and a B-TC1T sequence to represent logic 1, we can expect some overlap between the current values 
recorded at the logic 1 locations and the logic 0 locations, leading to bit errors during the read process. Finally, 
we observe that the distortion is small when the Fermi energy of DNA strands is deep inside the bandgap. The 
reduced conductance at higher Fermi energy causes a smaller voltage drop, which results in a smaller distortion.

Impact of Fermi energy variability
Conductance dispersion in single-molecule systems can be attributed to several factors, including the geometry 
of atoms, the orientation of atoms at the interface, the bonding energy between molecule and contact, and sto-
chastic  rupture21. When a molecule touches a contact, partial charge transfer occurs due to hybridization which 
partially charges the  molecule41. This in turn induces a change in the potential of the molecule. As a result, the 
molecular orbitals shift with respect to the Fermi energy of the contact, which we assume is fixed. We relate 
this orbital shift to the energy separation between the contact’s Fermi energy and the HOMO level of the DNA. 
Ultimately, this translates to a Fermi energy variation of the DNA sequence. Since each dsDNA memory cell 
can be viewed as a single molecule system, the performance of the crossbar array depends on the Fermi energy 
variation of each DNA sequence as well as the spatial voltage/current distortion across the crossbar, as discussed 
in the previous section. In this section, we explore the extent to which Fermi energy variations can affect the 
performance of a DNA crossbar array. As before, we will use B-CT1C and B-TC1T dsDNA sequences to represent 
logic 0 and logic 1 respectively.

For a better understanding of the sensitivity of DNA currents to Fermi energy variations and their impact on 
crossbar performance, we have conducted 1000 simulations with a bias of 1 V, choosing a small random deviation 
of Fermi energy from the HOMO level in the range [0, δ] for each simulation, where δ = 0.1 eV and 0.2 eV. The 
array size is 64 × 64 and the interconnect resistance, Rint, is chosen to be 100 kΩ or 1 MΩ.

The first row of Fig. 7 shows the average voltage distribution for low (δ = 0.1 eV) and high (δ = 0.2 eV) Fermi 
energy variability. We observe that the mean voltage of the crossbar increases with an increase in Fermi energy 
variability δ. Specifically, for Rint = 100 kΩ and 1 MΩ, the mean crossbar voltage increases by 13.33% and 30.76% 
respectively when δ changes from 0.1 eV to 0.2 eV. From Fig. 2d,e, we observe that the conductance of both DNA 
strands decreases with an increase in δ. This leads to a reduction in sneak paths in the crossbar architecture which 
translates to higher node voltages. For a fixed δ, the mean crossbar voltage is higher for Rint = 100 kΩ compared to 
1 MΩ. This can be attributed to fewer sneak paths in the crossbar caused by lower interconnect resistance w.r.t. 
DNA resistance. Higher mean voltages are desirable since they translate to improved readout current distribu-
tions (reduced overlap) and enhanced read accuracy.

The second row in Fig. 7 shows the distributions of read currents for a 64 × 64 array with different values of δ 
and Rint. For clarity, logic ‘1’ currents are shown in blue, and logic ‘0’ currents are shown in red (the probability 
of ‘1 cell’ in the array is equal to the probability of ‘0 cells’). With Rint = 100 kΩ, the overlap between bit 1 and 
bit 0 currents is very small for both low and high δ. However, as the interconnect resistance increases to 1 MΩ, 
the current distributions overlap due to spatial distortion of current and sneak path effects, which implies that 
error-free reconstruction is not possible. Lower conductance of DNA strands with an increase in δ (see Fig. 2d,e) 
and larger sneak path currents which are associated with higher interconnect resistance are the two main reasons 
for the overlap between the two class distributions.

In terms of bit-error rates (see the third row in Fig. 7), we can see a small mean BER of 0.23% for δ = 0.1 eV 
and 1.48% for δ = 0.2 eV, when Rint = 100 kΩ. The mean errors increase to 20.3% for δ = 0.1 eV and 25.8% for 
δ = 0.2 eV when Rint = 1 MΩ. Thus, we see that Fermi energy variation plays a crucial role in determining the 

Figure 6.  (a) Plot of sneak path parameter α as a function of row index. (b) Plot of sneak path parameter β as a 
function of column index.
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accuracy of the DNA crossbar as it causes an increase in mean BER by 1.25% and 5.2% at Rint = 100 kΩ and 1 MΩ 
respectively. Even though we have not shown results for Rint = 10 kΩ, we note that the distributions for ‘bit 1’ and 
‘bit 0’ currents do not overlap, implying 0% BER (perfect readout), for both δ = 0.1 eV and 0.2 eV.

The preceding discussion leads to important observations. Since the optimal threshold level changes with δ, 
ideally, one should determine it after fabrication of the array, based on the distribution of read currents. However, 
since the optimal threshold levels are in the order of nano-Amperes, the threshold detector must be accurate and 
precise enough to read and distinguish between current values of a similar or smaller order. This is the practical 
limitation which can affect the accuracies that may be achievable in practice.

Effect of scalability on image retrieval accuracy
In this section, we evaluate the performance of a DNA crossbar by loading 1000 randomly chosen images from 
the  Linnaeus42 dataset. Our evaluation criteria are BER and power consumption as a function of the bit load 
(in %), defined as the percentage of bits in an image that are represented by B-CT1C DNA (logic ‘1’). Figure 8a 
shows the histogram of the bit load of all images in our dataset.

Figure 8b–g show the bit error rate distributions as a function of bit load for different array sizes and inter-
connect resistances. The spatial bit distribution in a crossbar can be different for a particular bit load, leading to 
different bit errors. Therefore, we have presented box plots of BER for each bit load. As discussed in the previous 
sections, the bit error rate increases with an increase in array size and interconnect resistance. We observe that 
the BER is higher when the bit load is in the range of 50–70% (the critical range), and highest when it is approxi-
mately 60%. For reference, the BER is nearly 0% (in other words, the distributions of bit 1 and bit 0 currents do 
not overlap) for all interconnect resistances below 100 kΩ and 50 kΩ in cases of 64 × 64 and 128 × 128 arrays 
respectively, while at 10 kΩ, the BER is exactly 0% for both  array sizes (see Fig. 8b,e) resulting in perfect readout. 
Note that in Figs. 4 and 5, we chose the interconnect resistance to be 10 kΩ and 1 MΩ in order to demonstrate 
the sensitivity of voltage and current distribution across the crossbar to extreme values of Rint. However, in Figs. 7 
and 8, we have chosen Rint to be 100 kΩ and 1 MΩ since there are no bit errors when Rint = 10 kΩ.

Figure 8h,i show the average power consumed in the crossbar (memory cells and interconnects), as a function 
of Rint and array size. With an increase in interconnect resistance, the mean voltage of the crossbar decreases, 
as seen from the trends in Figs. 4 and 7a. This leads to lower read currents of the DNA strands. Both these fac-
tors collectively lead to lower power consumption, as can be observed in Fig. 8h,i. For an array size of 64 × 64, 
the power consumed is 42.8 µW for Rint = 10 kΩ, which reduces to 2.84 µW for Rint = 1 MΩ. For an array size of 
128 × 128, the power consumption is 60 µW for Rint = 10 kΩ and 11.3 µW for Rint = 1 MΩ. It follows therefore 
that a DNA array formed with a large interconnect resistance will scale better in terms of power consumption, 
but at the cost of an enhanced bit error rate.

Conclusion
To the best of our knowledge, this is the first paper of its kind to propose an electrically readable DNA storage 
device based on crossbar architecture. Our study leverages an idea that blends molecules created by synthetic 
biology with traditional semiconductor processes for contact formation, to yield a novel DNA storage technology. 

Figure 7.  Monte Carlo simulation results for a 64 × 64 array: (a) voltage distributions, (b) current distributions, 
(c) bit error rate (BER) distributions for low (δ = 0.1 eV) and high (δ = 0.2 eV) Fermi energy variations. All 
results (including the means) are computed from 1000 Monte Carlo simulations.
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We have characterized the performance of DNA crossbar arrays as read-only memory devices in terms of readout 
accuracy and array power consumption. Since these performance metrics depend on the interconnect resistance, 
array size, and Fermi energy deviations of DNA strands, each of these parameters has been studied in detail. 
Our quantitative results provide a comprehensive benchmark for evaluating such (and competing) devices and 
shed important insights into how array size affects the trade-off between accuracy and power consumption. One 
important result from our analysis pertains to the role of interconnect resistance. We find that if the interconnect 
resistance is less than 10 kΩ on average, read errors are minimal for a 128 × 128 array. Second, the performance 
of a DNA-based crossbar array may be impacted by Fermi energy variations, which may be impossible to avoid 
completely in a single molecule system like DNA. Our study includes a comprehensive analysis of the impact 
of such variations on array performance. In our current analysis, we have studied the impact of different inter-
connect resistances and typical non-idealities in nanodevices which result in Fermi energy variability. Other 
parameters which should be considered in the future include contact engineering, non-uniformity of intercon-
nects, and variability due to the self-assembly process.

Data availability
All data are provided in this manuscript.

Received: 4 January 2023; Accepted: 5 April 2023

References
 1. Neiman, M. S. On the molecular memory systems and the directed mutations. Radiotekhnika 1, 8 (1965).
 2. Machines Smarter Than Men? Interview with Dr. Norbert Wiener, Noted Scientist - Joshua Lederberg - Profiles in Science. https:// 

profi les. nlm. nih. gov/ spotl ight/ bb/ catal og/ nlm: nlmuid- 10158 4906X 7699- doc. Accessed Sep. 04, 2021.
 3. Davis, J. Microvenus. Art J. 55(1), 70–74. https:// doi. org/ 10. 1080/ 00043 249. 1996. 10791 743 (1996).
 4. Clelland, C. T., Risca, V. & Bancroft, C. Hiding messages in DNA microdots. Nature 399(6736), 533–534. https:// doi. org/ 10. 1038/ 

21092 (1999).

Figure 8.  Storage application results for a simulation setup where 1000 images from the Linnaeus dataset 
are loaded onto 64 × 64 and 128 × 128 crossbar arrays. (a) distribution of bit load (%) in the dataset, (b–g) 
distributions of bit error rates for each bit load (%) vs. array size and interconnect resistance, (h, i) average 
power consumed as a function of Rint for 64 × 64 and 128 × 128 arrays. Note that the read-out accuracy is ~ 100% 
for interconnect resistances below 100 kΩ and 50 kΩ for 64 × 64 and 128 × 128 arrays respectively.

https://profiles.nlm.nih.gov/spotlight/bb/catalog/nlm:nlmuid-101584906X7699-doc
https://profiles.nlm.nih.gov/spotlight/bb/catalog/nlm:nlmuid-101584906X7699-doc
https://doi.org/10.1080/00043249.1996.10791743
https://doi.org/10.1038/21092
https://doi.org/10.1038/21092


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6650  | https://doi.org/10.1038/s41598-023-33004-6

www.nature.com/scientificreports/

 5. Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science (80) 337(6102), 1628. https:// 
doi. org/ 10. 1126/ SCIEN CE. 12263 55 (2012).

 6. Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Natutre 494(7435), 
77–80. https:// doi. org/ 10. 1038/ natur e11875 (2013).

 7. Lin, K. N., Volkel, K., Tuck, J. M. & Keung, A. J. Dynamic and scalable DNA-based information storage. Nat. Commun. 11(1), 
1–12. https:// doi. org/ 10. 1038/ s41467- 020- 16797-2 (2020).

 8. Jl, B. et al. Random access DNA memory using Boolean search in an archival file storage system. Nat. Mater. 20(9), 66. https:// doi. 
org/ 10. 1038/ S41563- 021- 01021-3 (2021).

 9. Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Terminator-free template-independent enzymatic DNA synthesis for 
digital information storage. Nat. Commun. 10(1), 1–12. https:// doi. org/ 10. 1038/ s41467- 019- 10258-1 (2019).

 10. Bornholt, J. et al. A DNA-based archival storage system. ACM SIGPLAN Not. 51(4), 637–649. https:// doi. org/ 10. 1145/ 28723 62. 
28723 97 (2016).

 11. J. Hihath, M. P. Anantram, Y. Ke, Nucleic Acid-Based Electrically Readable, Read-Only Memory, Patent application # US17/253,008, 
filed on 07/11/2019.”

 12. Wang, D. et al. Programmable transformations of DNA origami made of small modular dynamic units. J. Am. Chem. Soc. 143(5), 
2256–2263. https:// doi. org/ 10. 1021/ JACS. 0C105 76/ SUPPL_ FILE/ JA0C1 0576_ SI_ 002. PDF (2021).

 13. Marrs, J., Lu, Q., Pan, V., Ke, Y. & Hihath, J. Structure-dependent electrical conductance of DNA origami nanowires. ChemBioChem 
24(2), e202200454. https:// doi. org/ 10. 1002/ CBIC. 20220 0454 (2023).

 14. Gartner, F. M., Graf, I. R. & Frey, E. The time complexity of self-assembly. Proc. Natl. Acad. Sci. USA 119(4), 1e2116373119. https:// 
doi. org/ 10. 1073/ PNAS. 21163 73119/ SUPPL_ FILE/ PNAS. 21163 73119. SAPP. PDF (2022).

 15. Green, L. N. et al. Autonomous dynamic control of DNA nanostructure self-assembly. Nat. Chem. 11(6), 510–520. https:// doi. org/ 
10. 1038/ s41557- 019- 0251-8 (2019).

 16. Paulson, J. A., Mesbah, A., Zhu, X., Molaro, M. C. & Braatz, R. D. Control of self-assembly in micro- and nano-scale systems. J. 
Process Control 27, 38–49. https:// doi. org/ 10. 1016/J. JPROC ONT. 2014. 10. 005 (2015).

 17. Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology: State of the art and future perspective. J. Am. Chem. 
Soc. 136(32), 11198–11211. https:// doi. org/ 10. 1021/ JA505 101A/ ASSET/ IMAGES/ LARGE/ JA- 2014- 05101A_ 0009. JPEG (2014).

 18. Mathur, D. & Medintz, I. L. The growing development of DNA nanostructures for potential healthcare-related applications. Adv. 
Healthc. Mater. 8(9), 1801546. https:// doi. org/ 10. 1002/ ADHM. 20180 1546 (2019).

 19. Hsu, C. L., Jiang, H., Venkatesh, A. G. & Hall, D. A. A hybrid semi-digital transimpedance amplifier with noise cancellation tech-
nique for nanopore-based DNA sequencing. IEEE Trans. Biomed. Circuits Syst. 9(5), 652–661. https:// doi. org/ 10. 1109/ TBCAS. 
2015. 24962 32 (2015).

 20. Ghadami, O. et al. Helix: An electrochemical CMOS DNA synthesizer. Dig. Tech. Pap. Symp. VLSI Technol. https:// doi. org/ 10. 
1109/ VLSIT ECHNO LOGYA NDCIR 46769. 2022. 98304 46 (2022).

 21. Li, Z. et al. Understanding the conductance dispersion of single-molecule junctions. J. Phys. Chem. C 125(6), 3406–3414. https:// 
doi. org/ 10. 1021/ ACS. JPCC. 0C084 28 (2020).

 22. Periasamy, V. et al. Measuring the electronic properties of DNA-specific schottky diodes towards detecting and identifying basidi-
omycetes DNA. Sci. Rep. 6(1), 1–9. https:// doi. org/ 10. 1038/ srep2 9879 (2016).

 23. Patil, S. R. et al. Quantum transport in DNA heterostructures: Implications for nanoelectronics. ACS Appl. Nano Mater. 4(10), 
10029–10037. https:// doi. org/ 10. 1021/ ACSANM. 1C010 87/ SUPPL_ FILE/ AN1C0 1087_ SI_ 001. PDF (2021).

 24. Kim, K., Yoon, M., Koo, J. & Roh, Y. Electrical characteristics of oxygen doped DNA molecules. Thin Solid Films 519(20), 7057–
7059. https:// doi. org/ 10. 1016/J. TSF. 2011. 04. 085 (2011).

 25. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: A package for building initial configurations for molecular 
dynamics simulations. J. Comput. Chem. 30(13), 2157–2164. https:// doi. org/ 10. 1002/ JCC. 21224 (2009).

 26. Owczarzy, R. et al. Effects of sodium ions on DNA duplex oligomers: Improved predictions of melting temperatures. Biochemistry 
43(12), 3537–3554. https:// doi. org/ 10. 1021/ BI034 621R (2004).

 27. Galindo-Murillo, R., Roe, D. R. & Cheatham, T. E. Convergence and reproducibility in molecular dynamics simulations of the 
DNA duplex d(GCA CGA ACG AAC GAA CGC ). Biochim. Biophys. Acta Gen. Subj. 1850(5), 1041–1058. https:// doi. org/ 10. 1016/J. 
BBAGEN. 2014. 09. 007 (2015).

 28. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. 
Comput. Chem. 25(9), 1157–1174. https:// doi. org/ 10. 1002/ JCC. 20035 (2004).

 29. Ivani, I. et al. Parmbsc1: a refined force field for DNA simulations. Nat. Methods 13(1), 55–58. https:// doi. org/ 10. 1038/ nmeth. 3658 
(2015).

 30. Qi, J., Edirisinghe, N., Rabbani, M. G. & Anantram, M. P. Unified model for conductance through DNA with the Landauer–Büt-
tiker formalism. Phys. Rev. B Condens. Matter Mater. Phys. 87(8), 1–10. https:// doi. org/ 10. 1103/ PhysR evB. 87. 085404 (2013).

 31. Buttiker, M. Coherent and sequential tunneling in series barriers. IBM J. Res. Dev. 32(1), 63–75. https:// doi. org/ 10. 1147/ RD. 321. 
0063 (1988).

 32. Liang, G. C., Ghosh, A. W., Paulsson, M. & Datta, S. Electrostatic potential profiles of molecular conductors. Phys. Rev. B 69(11), 
115302. https:// doi. org/ 10. 1103/ PhysR evB. 69. 115302 (2004).

 33. Liao, Y. et al. A compact model of analog RRAM with device and array nonideal effects for neuromorphic systems. IEEE Trans. 
Electron Devices 67(4), 1593–1599. https:// doi. org/ 10. 1109/ TED. 2020. 29753 14 (2020).

 34. Nieuwoudt, A. & Massoud, Y. Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using 
diameter-dependent modeling techniques. IEEE Trans. Electron Devices 53(10), 2460–2466. https:// doi. org/ 10. 1109/ TED. 2006. 
882035 (2006).

 35. Naeemi, A. & Meindl, J. D. Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube 
interconnects. IEEE Electron Device Lett. 28(2), 135–138. https:// doi. org/ 10. 1109/ LED. 2006. 889240 (2007).

 36. T. Ragheb and Y. Massoud, On the modeling of resistance in graphene nanoribbon (GNR) for future interconnect applications. 
In IEEE/ACM International Conference on Computer Design Digital Technical Papers ICCAD, 593–598 (2008). https:// doi. org/ 10. 
1109/ ICCAD. 2008. 46816 37.

 37. Murali, R., Brenner, K., Yang, Y., Beck, T. & Meindl, J. D. Resistivity of graphene nanoribbon interconnects. IEEE Electron Device 
Lett. 30(6), 611–613. https:// doi. org/ 10. 1109/ LED. 2009. 20201 82 (2009).

 38. Li, J. & Burke, P. J. Measurement of the combined quantum and electrochemical capacitance of a carbon nanotube. Nat. Commun. 
10(1), 1–9. https:// doi. org/ 10. 1038/ s41467- 019- 11589-9 (2019).

 39. Anantram, M. P. & Léonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69(3), 507. https:// doi. org/ 10. 1088/ 
0034- 4885/ 69/3/ R01 (2006).

 40. Liao, Y. et al. Diagonal matrix regression layer: training neural networks on resistive crossbars with interconnect resistance effect. 
IEEE Trans. Comput. Des. Integr. Circuits Syst. 40(8), 1662–1671. https:// doi. org/ 10. 1109/ TCAD. 2020. 30213 09 (2021).

 41. Mohammad, H. et al. Role of intercalation in the electrical properties of nucleic acids for use in molecular electronics. Nanoscale 
Horizons 6(8), 651–660. https:// doi. org/ 10. 1039/ D1NH0 0211B (2021).

 42. Linnaeus 5 dataset. http:// chala dze. com/ l5/. Accessed Aug 18, 2022.
 43. Mallary, M., Torabi, A. & Benakli, M. One terabit per square inch perpendicular recording conceptual design. IEEE Trans. Magn. 

38(4I), 1719–1724. https:// doi. org/ 10. 1109/ TMAG. 2002. 10177 62 (2002).

https://doi.org/10.1126/SCIENCE.1226355
https://doi.org/10.1126/SCIENCE.1226355
https://doi.org/10.1038/nature11875
https://doi.org/10.1038/s41467-020-16797-2
https://doi.org/10.1038/S41563-021-01021-3
https://doi.org/10.1038/S41563-021-01021-3
https://doi.org/10.1038/s41467-019-10258-1
https://doi.org/10.1145/2872362.2872397
https://doi.org/10.1145/2872362.2872397
https://doi.org/10.1021/JACS.0C10576/SUPPL_FILE/JA0C10576_SI_002.PDF
https://doi.org/10.1002/CBIC.202200454
https://doi.org/10.1073/PNAS.2116373119/SUPPL_FILE/PNAS.2116373119.SAPP.PDF
https://doi.org/10.1073/PNAS.2116373119/SUPPL_FILE/PNAS.2116373119.SAPP.PDF
https://doi.org/10.1038/s41557-019-0251-8
https://doi.org/10.1038/s41557-019-0251-8
https://doi.org/10.1016/J.JPROCONT.2014.10.005
https://doi.org/10.1021/JA505101A/ASSET/IMAGES/LARGE/JA-2014-05101A_0009.JPEG
https://doi.org/10.1002/ADHM.201801546
https://doi.org/10.1109/TBCAS.2015.2496232
https://doi.org/10.1109/TBCAS.2015.2496232
https://doi.org/10.1109/VLSITECHNOLOGYANDCIR46769.2022.9830446
https://doi.org/10.1109/VLSITECHNOLOGYANDCIR46769.2022.9830446
https://doi.org/10.1021/ACS.JPCC.0C08428
https://doi.org/10.1021/ACS.JPCC.0C08428
https://doi.org/10.1038/srep29879
https://doi.org/10.1021/ACSANM.1C01087/SUPPL_FILE/AN1C01087_SI_001.PDF
https://doi.org/10.1016/J.TSF.2011.04.085
https://doi.org/10.1002/JCC.21224
https://doi.org/10.1021/BI034621R
https://doi.org/10.1016/J.BBAGEN.2014.09.007
https://doi.org/10.1016/J.BBAGEN.2014.09.007
https://doi.org/10.1002/JCC.20035
https://doi.org/10.1038/nmeth.3658
https://doi.org/10.1103/PhysRevB.87.085404
https://doi.org/10.1147/RD.321.0063
https://doi.org/10.1147/RD.321.0063
https://doi.org/10.1103/PhysRevB.69.115302
https://doi.org/10.1109/TED.2020.2975314
https://doi.org/10.1109/TED.2006.882035
https://doi.org/10.1109/TED.2006.882035
https://doi.org/10.1109/LED.2006.889240
https://doi.org/10.1109/ICCAD.2008.4681637
https://doi.org/10.1109/ICCAD.2008.4681637
https://doi.org/10.1109/LED.2009.2020182
https://doi.org/10.1038/s41467-019-11589-9
https://doi.org/10.1088/0034-4885/69/3/R01
https://doi.org/10.1088/0034-4885/69/3/R01
https://doi.org/10.1109/TCAD.2020.3021309
https://doi.org/10.1039/D1NH00211B
http://chaladze.com/l5/
https://doi.org/10.1109/TMAG.2002.1017762


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6650  | https://doi.org/10.1038/s41598-023-33004-6

www.nature.com/scientificreports/

 44. Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. & Stark, W. J. Robust chemical preservation of digital information on DNA in 
silica with error-correcting codes. Angew. Chem. Int. Ed. Engl. 54(8), 2552–2555. https:// doi. org/ 10. 1002/ ANIE. 20141 1378 (2015).

 45. Zahoor, F., Azni Zulkifli, T. Z. & Khanday, F. A. Resistive random access memory (RRAM): An overview of materials, switching 
mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 15(1), 1–26. https:// doi. 
org/ 10. 1186/ S11671- 020- 03299-9 (2020).

 46. Rutten, M. G. T. A., Vaandrager, F. W., Elemans, J. A. A. W. & Nolte, R. J. M. Encoding information into polymers. Nat. Rev. Chem. 
2(11), 365–381. https:// doi. org/ 10. 1038/ s41570- 018- 0051-5 (2018).

 47. Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14(1), 35–39. https:// 
doi. org/ 10. 1038/ s41565- 018- 0302-0 (2019).

 48. Vontobel, P. O. et al. Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology 20(42), 
425204. https:// doi. org/ 10. 1088/ 0957- 4484/ 20/ 42/ 425204 (2009).

 49. Zidan, M. A. et al. Single-readout high-density memristor crossbar. Sci. Rep. 6(1), 1–9. https:// doi. org/ 10. 1038/ srep1 8863 (2016).

Acknowledgements
We acknowledge NSF Grant Numbers 1807391 (SemiSynBio Program), MCB 2027165 (SemiSynBio-II), and 
2036865 (Future of Manufacturing) for support. HM acknowledges Kuwait University Fellowship.

Author contributions
M.P.A. who works on DNA Nanotechnology defined the DNA memory framework. The transport calculation 
code was written by H.M. who also performed the calculations. The circuit modeling and image analysis were 
performed by A.D. R.K. advised on circuit modeling and read technology. Y.W. contributed to circuit-level data 
collection. The first draft of the manuscript was written by A.D. and supervised by A.K.D. All authors contributed 
to the subsequent draft of the paper and edited the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.P.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1002/ANIE.201411378
https://doi.org/10.1186/S11671-020-03299-9
https://doi.org/10.1186/S11671-020-03299-9
https://doi.org/10.1038/s41570-018-0051-5
https://doi.org/10.1038/s41565-018-0302-0
https://doi.org/10.1038/s41565-018-0302-0
https://doi.org/10.1088/0957-4484/20/42/425204
https://doi.org/10.1038/srep18863
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Performance analysis of DNA crossbar arrays for high-density memory storage applications
	DNA current simulation framework and results
	Architecture of DNA crossbar array
	Array simulation results
	Impact of Fermi energy variability
	Effect of scalability on image retrieval accuracy
	Conclusion
	References
	Acknowledgements


