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Machine‑learning predicts 
time‑series prognosis factors 
in metastatic prostate cancer 
patients treated with androgen 
deprivation therapy
Shinpei Saito 1,5, Shinichi Sakamoto 1*, Kosuke Higuchi 2, Kodai Sato 1,5, Xue Zhao 1, 
Ken Wakai 3, Manato Kanesaka 1, Shuhei Kamada 1, Nobuyoshi Takeuchi 1, Tomokazu Sazuka 1, 
Yusuke Imamura 1, Naohiko Anzai 4, Tomohiko Ichikawa 1 & Eiryo Kawakami 5,6,7

Machine learning technology is expected to support diagnosis and prognosis prediction in medicine. 
We used machine learning to construct a new prognostic prediction model for prostate cancer patients 
based on longitudinal data obtained from age at diagnosis, peripheral blood and urine tests of 340 
prostate cancer patients. Random survival forest (RSF) and survival tree were used for machine 
learning. In the time‑series prognostic prediction model for metastatic prostate cancer patients, the 
RSF model showed better prediction accuracy than the conventional Cox proportional hazards model 
for almost all time periods of progression‑free survival (PFS), overall survival (OS) and cancer‑specific 
survival (CSS). Based on the RSF model, we created a clinically applicable prognostic prediction model 
using survival trees for OS and CSS by combining the values of lactate dehydrogenase (LDH) before 
starting treatment and alkaline phosphatase (ALP) at 120 days after treatment. Machine learning 
provides useful information for predicting the prognosis of metastatic prostate cancer prior to 
treatment intervention by considering the nonlinear and combined impacts of multiple features. The 
addition of data after the start of treatment would allow for more precise prognostic risk assessment 
of patients and would be beneficial for subsequent treatment selection.

Prostate cancer is one of the most common carcinomas, with an increasing incidence  worldwide1. In Japan, 
prostate cancer was the leading cause of cancer and sixth leading cause of cancer-related deaths in  20162. Deeper 
understanding of prostate cancer and the intrinsic function of androgens has led to the development of androgen 
deprivation therapy (ADT). ADT is the mainstay treatment for locally advanced and metastatic prostate cancer. 
ADT is also a treatment option for elderly patients with non-metastatic prostate cancer or those in poor general 
condition who are not candidates for surgery or radiation therapy. Prostate-specific antigen (PSA) is used as a 
prostate cancer-specific tumor marker that acts as a first guide and plays a key role in determining treatment 
efficacy of ADT. Recent reports have demonstrated that the modified Glasgow Prognostic Score (mGPS), lactate 
dehydrogenase (LDH) and alkaline phosphatase (ALP) levels, Eastern Cooperative Oncology Group (ECOG) 
performance status, and Gleason score are associated with different  prognoses3,4.

The prognosis of prostate cancer varies considerably depending on whether the disease is non-metastatic 
or  metastatic5. Many prognostic studies on metastatic castration-resistant prostate cancer (mCRPC) have been 
reported, while less information is available on non-castrated metastatic prostate cancer (NCMPC). Among the 
few reports available, a prognostic prediction model was published by Glass et al. in  20036 that classified patients 
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into three prognostic groups according to four risk factors: bone lesion localization, performance status, PSA, 
and Gleason score. Based on the model proposed by Glass et al., Gravis et al. proposed a prediction  model7 that 
is excellent in that it only uses a single feature, ALP, which is obtained in routine clinical practice. However, the 
performance of the prognostic prediction model is insufficient, with a concordance index (C-index) of 0.64. To 
further improve prediction accuracy, it would be necessary to consider the time variation and interaction of the 
factors used for the  prediction8.

Developments in computer technology have improved analytical methods for handling large-scale data, and 
machine learning has attracted attention also in the medical field. Machine-learning techniques are commonly 
used for data-driven diagnostic and prognostic  predictions9,10. The greatest advantage of using machine learning 
is that it can be used to account for the combined, nonlinear effects of numerous variables and can make precise 
individualized predictions for heterogeneous patient populations. In recent years, machine learning-based sur-
vival analysis has been used in various carcinomas, handling many variables and enabling prognostic prediction 
with high  accuracy11–13. In addition to cancer prognostic prediction, there are many other areas where machine 
learning can contribute to biomedical research, such as drug interaction  analysis14,15.

Therefore, the purpose of this study was to develop a clinically applicable prognostic prediction model for 
prostate cancer treated with androgen deprivation therapy based on multiple features using machine learning. 
We then additionally examined the impact on prediction accuracy of incorporating features after the start of 
treatment. To ensure applicability in clinical practice, this study used features obtained routinely in medical 
practice, such as peripheral blood sampling and urinalysis.

Result
Patient background. This study included 340 patients with prostate cancer. Of these, 30 patients who 
had started treatment at other hospitals were excluded (Fig. S1). A final total of 310 patients were included in 
the study, comprising 207 and 103 patients in the training and test cohorts, respectively. The median age was 
74 years, and the median initial PSA level was 40.365. The rates of Gleason score ≥ 8 was 54.2%. The rate of 
metastasis was 41.6% (Table 1). No significant differences were observed between the training and test cohorts in 
patient backgrounds. Among the 36 features used as explanatory variables, only uric acid (UA) was significantly 
different between the training and test cohorts (Table 2).

Prognostic prediction at the start of treatment. To evaluate the usefulness of multiple variables for 
predicting prostate cancer prognosis, 36 features including age, peripheral blood tests, and urinalysis were used 
in the analysis. To maintain impartiality among models and avoid multicollinearity among features, the variables 
were first selected using RSF based on permutation importance calculated in the training cohort. Selected top 
important variables with positive permutation importance were used in subsequent RSF and Cox proportional 
hazards analyses. In addition, we created a prediction model for PSA (a tumor marker for prostate cancer) alone 
and compared its accuracy using the C-index (Fig. 1A). The C-indices for prediction in test cohort using the Cox 
proportional hazards model were 0.573, 0.488, and 0.582 for PFS, OS, and CSS, respectively. The corresponding 
C-indices for prediction using PSA alone were 0.684, 0.656, and 0.774, respectively. Finally, the corresponding 
mean C-indices (standard deviation) with RSF were 0.681 (0.002), 0.603 (0.005), and 0.832 (0.004), respectively. 
In terms of prediction at the start of treatment, the conventional prediction using PSA was almost as accurate 
as the RSF in predicting PFS, OS, and CSS, respectively. Next, we calculated the prognostic accuracy of the 
RSF model created above when applied separately to metastatic and non-metastatic prostate cancer patients. 
The results revealed improved OS prediction accuracy in metastatic prostate cancer, while, for non-metastatic 
tumors, predictive performance was poor for all predictions (Fig. 1B). We identified PSA as an important predic-
tor in RSF for predicting PFS and LDH as an important predictor of OS and CSS (Fig. 1C–E).

Prognostic predictions considering temporal changes after the start of treatment. We further 
aimed to improve the prediction of metastatic prostate cancer by considering post-treatment changes. Patients 
with metastatic prostate cancer were assigned to the same training and test cohort as in the pretreatment analy-
sis. In this analysis, the C-indices of the Cox proportional hazards model and prediction model using only 
PSA were calculated for comparison with the RSF model (Fig. 2). For predicting OS and CSS, the RSF model 
was more accurate than the other models: for the RSF model, it had the highest C-index (standard deviation) 
for predicting PFS at 150 days post-treatment at 0.766 (0.011), and at 120 days post-treatment the C-index for 

Table 1.  Clinical backgrounds of 310 patients with prostate cancer. T ≥ 3 means tumor stage 3 or greater, 
N+ means lymph node metastasis, M+ means metastasis.

Background
All patients
(N = 310)

Training cohort
(N = 207)

Test cohort
(N = 103) P value

Age, years (range) 74 (46–93) 74 (46–90) 74 (48–93) 0.2617

Initial PSA, ng/dL (range) 40.365 (0.19–13,050) 39.31 (2.05–13,050) 42.55 (0.19–6421.08) 0.6853

Gleason score ≥ 8, n (%) 168 (54.2) 116 (56) 52 (50.5) 0.3748

T ≥ 3, n (%) 193 (62.3) 128 (61.8) 65 (63.1) 0.8995

N+, n (%) 81 (26.1) 52 (25.1) 29 (28.2) 0.5848

M+, n (%) 129 (41.6) 87 (42) 42 (40.8) 0.9028
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predicting OS and CSS were 0.89 (0.006) and 0.883 (0.006), respectively. The Cox proportional hazards model 
and RSF had similar predictive performance in predicting PFS at 150 days after treatment initiation. On the 
other hand, the prediction performance of RSF was appreciably better than the other two models in predicting 
OS and CSS. Compared to the other prognostic prediction models, the RSF forecasting model tended to have 
less variation in forecast accuracy depending on the time of year. While RSF was able to predict prognosis for 
metastatic prostate cancer with relatively high accuracy, it was difficult to predict prognosis for non-metastatic 
prostate cancer with high accuracy (Fig. S2). In this prognostic analysis of metastatic prostate cancer patients, 
the addition of the Gleason score, an important pathologic factor in prostate cancer, as a predictor did not result 
in a notable improvement in prognostic accuracy (Fig. S3). The distribution of Gleason scores in patients with 
metastatic prostate cancer is shown in Table S1.

Permutation importance in RSF analysis. Feature importance can be used to explain the contribution 
of explanatory variables in machine learning  predictions16. We used permutation importance, a type of feature 
importance, to evaluate the contribution of explanatory variables in the RSF. Permutation importance at the 
time of prediction when the C-index was maximum in each of the RSF analyses described above is presented in 
Fig. 2D–F. For PFS prediction at 150 days after the start of treatment, the most important variable was PSA after 
treatment. For the prediction of OS and CSS at 120 days after the start of treatment, the most important factors 
were LDH before treatment and ALP after treatment. For both OS and CSS prediction, PSA levels before and 
after treatment were not included as an important predictor.

Table 2.  Characteristics of analysis factor. The data in the brackets indicate a range of values.

Factor
All patients
(N = 310)

Training cohort
(N = 207)

Test cohort
(N = 103) P value

Age (years) 74 (46–93) 74 (46–90) 74 (48–93) 0.2617

Initial PSA (ng/dL) 40.365 (0.19–13,050) 39.31 (2.05–13,050) 42.55 (0.19–6421.08) 0.6853

AST (U/L) 22 (11–129) 22 (12–95) 23 (11–129) 0.9234

ALT (U/L) 17 (5–102) 17 (5–102) 17 (5–80) 0.9014

LDH (U/L) 193.5 (82–4621) 197 (119–833) 192 (82–4621) 0.2807

GTP (U/L) 32 (9–358) 32.323 (10–215) 31.703 (9–358) 0.2882

TP (g/dL) 7 (5.1–8.6) 7 (5.1–8.4) 6.9 (5.1–8.6) 0.5483

Alb (g/dL) 4.1 (2.5–4.9) 4.1 (2.5–4.9) 4.1 (2.6–4.8) 0.9776

UA (mg/dL) 5.8 (2.2–12) 5.727 (2.2–9.2) 6 (3.4–12) 0.0414

UN (mg/dL) 16 (5–58) 16 (5–58) 16 (8–33) 0.4691

CRE (mg/dL) 0.84 (0.52–8.02) 0.84 (0.52–8.02) 0.84 (0.59–2.01) 0.417

Tbil (mg/dL) 0.7 (0.2–2.8) 0.7 (0.2–2.8) 0.7 (0.3–2.3) 0.4782

Dbil (mg/dL) 0.1 (0–0.3) 0.1 (0–0.3) 0.1 (0–0.3) 0.7917

TCHO (mg/dL) 186.2185 (101–303) 185 (101–275) 187.591 (119–303) 0.056

TG (mg/dL) 125.2795 (45–912) 121 (47–912) 136.711 (45–285) 0.8275

Ca (mg/dL) 9 (6.7–11.6) 9 (7.7–10.7) 8.9 (6.7–11.6) 0.6029

Na (mmol/L) 140 (130–146) 140 (130–146) 140 (132–144) 0.9252

K (mmol/L) 4.21845 (3.1–6.6) 4.2 (3.1–6.6) 4.3 (3.1–5.4) 0.2421

Cl (mmol/L) 106 (95–116) 106 (96–116) 105.693 (95–111) 0.8685

WBC (×  103/μL) 6.2 (2.4–19.7) 6.2 (2.4–12.8) 6.3 (2.5–19.7) 0.4734

RBC (×  106/μL) 4.33 (1.93–6.49) 4.35 (1.93–6.1) 4.29 (2.82–6.49) 0.9218

Hb (g/dL) 13.5 (5.5–18.3) 13.5 (5.5–17.6) 13.5 (8.1–18.3) 0.8833

HCT (%) 40 (16.5–53.8) 39.8 (16.5–51.9) 40.2 (24.3–53.8) 0.7497

MCV (fL) 92.4 (72.3–114) 92.3 (75.9–114) 92.9 (72.2–110) 0.6529

MCH (pg) 31.1 (22.5–38.1) 31.1 (24.6–37.5) 31.1 (22.5–38.1) 0.9092

MCHC (%) 33.6 (30.8–36.3) 33.6 (30.8–36.3) 33.6 (30.8–36.2) 0.4757

PLT (×  103/μL) 206 (18–466) 205 (18–466) 211 (84–433) 0.5377

ALP (U/L) 247.5 (110–9481) 248 (110–9481) 246 (123–2469) 0.6496

PT (s) 11.4541 (9.9–20.4) 11.4022 (9.9–19.6) 11.66675 (10–20.4) 0.3152

PTINR 1.00371 (0.9–1.88) 1.00321 (0.9–1.76) 1.006855 (0.9–1.88) 0.6916

BS (mg/dL) 113.178 (74–282) 115.544 (74–282) 107.5 (86–213) 0.0984

CHE (U/L) 287 (112–539) 287 (115–539) 286.5 (112–468) 0.5798

CRP (mg/dL) 0.2 (0–24.9) 0.2 (0–24.9) 0.16444 (0–8.8) 0.1746

UpH 6 (5–8) 6 (5–8) 6 (5–8) 0.7532

URBC (/HPF) 1 (0–50) 1 (0–50) 1 (0–50) 0.7784

UWBC (/HPF) 1 (0–50) 1 (0–30) 1 (0–50) 0.2623
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Construction of survival trees based on RSF. As described in the previous section, prognosis predic-
tion using RSF exhibited excellent accuracy. However, since RSF is an ensemble learning method with multiple 
survival trees and requires many explanatory variables, it is not easy to use it for prognostic prediction in real 
clinical practice. Therefore, we constructed a simplified survival tree model with a few most important vari-
ables in the RSF model. Since the contribution of post-treatment PSA was predominantly large in predicting 
PFS prognosis, and the benefit of combining multiple variables by survival tree was limited, we focused only on 
OS and CSS and constructed a survival tree model based on the top five important variables in the RSF models 
at 120 days after the start of treatment. The obtained survival trees predicting OS and CSS both consisted of 
LDH before treatment initiation and ALP 120 days after the start of treatment (Fig. 3A,C). The cut-off values 
of pre-treatment LDH and post-treatment ALP in the prediction models of OS and CSS were 248.5 IU/L and 
342.5/326.5 U/L, respectively. The C-index for prediction accuracy was 0.85 for both OS and CSS. Based on 
these survival trees, three patient populations were identified that were associated with OS and CSS prognosis: 
the first was a very poor prognosis population with high preoperative LDH (> 248.5 IU/L), in which about 70% 
of patients would die within 5 years; the population with LDH < 248.5 IU/L was further divided into two groups 
based on post-treatment ALP. The group with high ALP is at intermediate risk and has a 5-year survival rate of 
about 70%. The population with low LDH before treatment and low ALP after treatment had a very good prog-
nosis, with a 5-year survival rate exceeding 90% (Fig. 3B,D).

Discussion
Compared to conventional statistical analysis, machine learning can handle a large number and variety types of 
variables, and the machine can automatically learn and discover rules and patterns underlying the data. Various 
analyses using machine learning have been reported to improve the diagnostic rates of imaging and biopsy tests 
for prostate  cancer17,18. However, prognostic analyses using machine learning for ADT remain scarce. In this 
study, we developed an approach to predict the prognosis of metastatic prostate cancer treatment over time: at 
the start of treatment and after the start of treatment. Pre-treatment and post-treatment features were combined 
to achieve a more accurate prediction.

We attempted to predict prognosis for both non-metastatic and metastatic prostate cancer, but it was difficult 
to predict prognosis in patients with non-metastatic prostate cancer (Fig. S2). The RSF model at the start of treat-
ment showed improved predictive accuracy in metastatic prostate cancer patients, while it showed decreased 
accuracy in non-metastatic prostate cancer patients. This may be due to the fact that non-metastatic prostate 
cancer patients in this study had a smaller proportion of cancer deaths than metastatic prostate cancer patients, 
and included more senility and death from other causes, which are difficult to predict from clinical laboratory 
data. Moreover, prognostic factors for non-metastatic prostate cancer are limited, with only a few factors, such 
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as PSA doubling time, reported in the  literature19–21. Therefore, we focused on predicting the prognosis of 
metastatic prostate cancer. In this study, the RSF model was more accurate than other models in predicting OS 
and CSS in time-series metastatic prostate cancer. On the other hand, there was no significant difference in PFS 
prediction. First, the reason for the lack of significant difference in PFS prediction accuracy may be that factors 
other than PSA were less important in predicting PFS, since the definition of relapse in this study was biological 
relapse, which was defined as an increase in PSA. Second, the reason for the superior accuracy of the RSF model 
in predicting OS and CSS could be that parameters other than PSA are important as predictors in predicting OS 
and CSS, as shown by the results of Permutation Importance. Furthermore, regarding the difference between the 
RSF model and the Cox proportional hazards model, the RSF model may have been able to make more accurate 
predictions for many parameters in terms of its ability to make nonlinear predictions. However, since over-fitting 
should also be considered in this respect, we believe that validation using external data will be necessary in the 
future. Regarding the tumor marker PSA, our previous study reported no difference in OS according to initial 
PSA levels in patients with metastatic prostate  cancer22. For prognostic factors other than PSA, the modified 
Glasgow Prognostic Score (mGPS), Eastern Cooperative Oncology Group (ECOG) performance status, LDH, 
ALP, and Gleason Score have been reported as prognostic factors for metastatic prostate  cancer3,4. Among Japa-
nese patients with de novo metastatic prostate cancer, LDH and C-reactive protein (CRP) have been reported 
as independent risk factors for OS in analyses identifying true high-risk groups that meet the CHAARTED or 
LATITUDE  criteria23. Several studies support the results of this study. However, these were all prognostic analysis 
based on data at the start of treatment and did not include post-treatment changes. While prognostic predic-
tions based on data at the start of treatment are important, the course of treatment affects the prognosis, and in 
some cases the actual prognosis differs from the initial risk assessment. To identify such cases and enable a more 
accurate prognosis, it is necessary to add post-treatment data as predictors and to update the prediction. In this 
study, we could first identify the poor prognosis group based on LDH at the start of treatment for both OS and 
CSS, and further classified the remaining patients into two groups with different prognoses using ALP after the 
start of treatment. This suggests that additional risk assessment during the course of treatment, in addition to risk 
classification at the start of treatment, can provide a more accurate prognosis. From a pathological perspective, 
we used the Gleason score in the RSF analysis, which has been used in existing risk classifications, but this did 
not clearly improve the C-index. Patients with metastatic prostate cancer tend to have high Gleason scores, and 
in fact, Gleason score ≥ 8 accounted for more than 70% of the patients in this case group.
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Gravis et al. reported a prediction model for NCMPC based on the prediction model proposed by Glass 
et al.7. They claimed that ALP levels at the start of treatment (normal vs. abnormal) were the strongest predictor 
of OS. This prediction model had a C-index of 0.64, was simpler than the prediction model developed by Glass 
et al., and exhibited comparable performance. The C-index of the model reported by Gravis et al. was 0.72 in the 
analysis using the data in this study. The C-index for our RSF model in this study using the data at the start of 
treatment was 0.74. Although our RSF model was only slightly more accurate than the previously reported model, 
the C-index was improved to 0.85 in this study by creating an algorithm using a survival tree with the addition 
of time-series data. The new algorithm for metastatic prostate cancer we have created based on the survival tree 
made predictions using two variables (pre-treatment LDH and post-treatment ALP) with a C-index of 0.85, 
which was higher than the accuracy of previous prediction models. LDH and ALP values can be obtained from 
routine blood tests and can be used for time-series evaluation.

Our study had several limitations. First, it was a retrospective analysis with a limited number of cases at a 
single institution, and there may have been a selective bias. In general, machine learning methods divide datasets 
into training and test data, create a prediction model with the training data, and evaluate the model using the test 
data. If the number of cases is small, a biased prediction model (overfitting) may be created if the training data 
have extreme characteristics. We used data from 129 patients with metastatic prostate cancer for the training 
in our analysis. To increase variation in the training data and suppress overfitting, we intend to conduct further 
analysis using larger-scale data from multiple institutions in the future. In this study, we performed random 
data splitting. Although there were no significant differences between the train cohort and the test cohort, it is 
necessary to consider the use of data splitting methods such as cross validation in future analyses to create a new 
model. Second, because we defined progression as biological progression caused by elevated PSA levels, post-
treatment PSA inevitably became the most important factor for predicting progression. Future research should 
focus on clinical progression, such as disease worsening on imaging and the appearance of new metastases.

In conclusion, this study demonstrated that machine learning and combined assessment of pre- and post-
treatment variables were useful for creating an accurate prognostic prediction model for ADT in metastatic 

Figure 3.  Survival tree predicting overall survival (A) and cancer-specific survival (C). Kaplan–Meier curves 
of survival tree prognostic classification results for overall survival prediction (B) and cancer-specific survival 
prediction (D). P-values were calculated by the log-rank test.
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prostate cancer. This result may be harnessed as a new evaluation index for the treatment of metastatic prostate 
cancer.

Methods
Patient selection and analysis factors. This retrospective study included 340 patients with prostate 
cancer who received ADT as an initial treatment between 1996 and 2019 at the Department of Urology, Chiba 
University Hospital. Of these, 30 patients who had started treatment at other hospitals were excluded. The data-
set was randomly divided into training and test cohorts. In total, 207 and 103 patients were classified into the 
training and test cohorts, respectively. We first analysed 36 features before treatment including age at diag-
nosis, peripheral blood sampling, and urinalysis to examine their association with progression-free survival 
(PFS), overall survival (OS), and cancer-specific survival (CSS). An additional analysis focusing on patients 
with metastatic prostate cancer was performed, which considered data at the start of treatment as well as sub-
sequent changes. In the analysis, 35 features after the start of treatment including peripheral blood sampling 
and urinalysis were combined with the 36 pretreatment features and used for prediction. This study was con-
ducted in accordance with the ethical principles of the Declaration of Helsinki. This retrospective study of clini-
cal information was approved by the Ethics Committee of Chiba University (Institutional Review Board (IRB) 
no. M10238). The IRB waived the requirement for written consent in this study due to the retrospective nature 
of data collection.

Survival analysis. We employed random survival forests (RSF) for machine-learning survival analysis. 
The rationale for this is as follows. First, Random forests and derivatives outperform other machine learning 
methods in predictions using clinical laboratory  values24,25. Secondly, RSF is implemented within scikit-survival, 
making it easy to calculate variable importance and transfer it to the survival tree model, which is also imple-
mented in scikit-survival. Finally, like random forests, RSFs are suitable for variable selection because they selec-
tively use a small number of  variables26. RSF is a nonlinear survival model that combines ensemble learning and 
decision  tree27. In RSF, multiple sets of data termed bootstrap samples are created. At each node of the survival 
tree, feature and its threshold value were determined such that the difference in hazard function between cases 
separated by the nodes was maximized. The ensemble hazard function of each patient was estimated by averag-
ing the hazard functions of multiple trees created in this manner. In this study, RSF was used to predict PFS, 
OS, and CSS. Analysis was performed using scikit-survival Python package. We ran sksurv.ensemble.Random-
SurvivalForest with the default parameters, except for the following parameters; n_estimators = 2000, min_sam-
ples_split = 10, min_samples_leaf = 15. The reason for using nearly default parameters is that hyperparameter 
optimization under limited training data conditions may result in lower accuracy, and random forests are robust 
to hyperparameter  changes28. Since RSF uses bootstrap samples, the value of the estimated survival function 
varies slightly with each run. Therefore, we ran the RSF 10 times independently and used the average C-index 
as the prognostic performance indicator. We calculated permutation importance to evaluate the contribution 
of explanatory variables to RSF prediction performance. The permutation importance indicates the change in 
predictive performance (AUC in this case) when an explanatory variable is randomly shuffled, with a positive 
importance indicating that the variable is necessary for prediction and a negative importance indicating that 
using the variable reduces predictive  performance29. For example, if the AUC drops by 0.05 when a variable 
is randomly shuffled, the permutation importance score for that variable is 0.05. Permutation importance was 
calculated using eli5 Python package.

A Cox proportional hazards model was used as the conventional statistical survival analysis for comparison. 
To make the conditions fair across models, the variables were selected based on the permutation importance 
calculated by RSF pretraining, and the same variables were used in the Cox proportional hazards model.

Survival tree. A survival tree represents the individual tree comprising the aforementioned RSF. This 
method analyses data using a tree diagram and exhibits excellent semantic interpretability in that it visualizes 
the classification criteria, facilitating comprehension of the  results30. RSF can calculate feature importance dur-
ing classification. By integrating the results of multiple survival trees, RSF allows highly accurate predictions 
for individual patients, but make it difficult for humans to interpret the predictive results and rationale. In this 
regard, survival tree may be a better solution for clinical implementation. In this study, we developed survival 
trees for OS and CSS using the top five important features obtained in the RSF analysis. We used the Optuna 
Python package to optimize the parameters of survival tree to achieve the highest prediction rate in training 
 cohort31.

Missing value imputation. To compensate for missing values in the dataset used in this study, we used 
the missForest algorithm implemented in  R32. MissForest is a non-parametric imputation method that uses a 
random forest which can learn nonlinear relationship between variables, easily handle mixed-type data, and 
calculate out-of-bag (OOB) errors. First, the average value was used to tentatively fill the missing values, and the 
random forest was then repeatedly applied to predict the missing parts. Stekhoven et al. reported that missForest 
was superior to other widely used imputation algorithms such as KNNimpute, MICE, and MissPALasso.

Evaluation of survival model accuracy. The predictive performance of the survival models, including 
RSF, Cox proportional hazards model, and survival tree, was evaluated using the Harrell’s concordance index 
(C-index). The C-index is a generalization of the area under the ROC curve (AUC) that considers censored 
 data33. This represents an assessment of the discriminatory power of the model, which is the ability of the model 
to correctly provide a ranking of survival times for each patient based on hazard function. Time-dependent 
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ROC analysis is another method of evaluating prediction accuracy in survival analysis. However, we adopted the 
C-index to express the transition of prediction accuracy in the time-series analysis in an easily understandable 
manner, given the need for analysis at multiple time points after the start of treatment.

Statistical analysis. The Kaplan–Meier method was used to generate survival curves to evaluate survival 
probability of given groups. Statistical difference in the survival probabilities between groups was assessed using 
log-rank test. For the analysis of the training and test cohorts, Welch’s t-test and Fisher’s exact test were used 
for continuous and categorical variables, respectively. Statistical analysis was performed using  JMP® 15.2. The 
significance level for each test was set at α = 0.05.

Data availability
The datasets generated and analysed during the current study are not publicly available due to ethical regulations 
because the data contain personal information but are available from the corresponding author on reasonable 
request.
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