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Deep generative model 
super‑resolves spatially correlated 
multiregional climate data
Norihiro Oyama 1*, Noriko N. Ishizaki 2, Satoshi Koide 1 & Hiroaki Yoshida 1

Super‑resolving the coarse outputs of global climate simulations, termed downscaling, is crucial in 
making political and social decisions on systems requiring long‑term climate change projections. 
Existing fast super‑resolution techniques, however, have yet to preserve the spatially correlated 
nature of climatological data, which is particularly important when we address systems with 
spatial expanse, such as the development of transportation infrastructure. Herein, we show an 
adversarial network‑based machine learning enables us to correctly reconstruct the inter‑regional 
spatial correlations in downscaling with high magnification of up to 50 while maintaining pixel‑wise 
statistical consistency. Direct comparison with the measured meteorological data of temperature and 
precipitation distributions reveals that integrating climatologically important physical information 
improves the downscaling performance, which prompts us to call this approach πSRGAN (Physics 
Informed Super‑Resolution Generative Adversarial Network). The proposed method has a potential 
application to the inter‑regionally consistent assessment of the climate change impact. Additionally, 
we present the outcomes of another variant of the deep generative model‑based downscaling 
approach in which the low‑resolution precipitation field is substituted with the pressure field, referred 
to as ψSRGAN (Precipitation Source Inaccessible SRGAN). Remarkably, this method demonstrates 
unexpectedly good downscaling performance for the precipitation field.

The increase of greenhouse gases in the air composition due to human activities is now believed to have led to 
the rise in the frequency of unusual  disasters1–4. To prevent an irreversible collapse of the current ecosystem 
and resulting impoverishment of human lives, many countries have set specific medium- and long-term goals 
for the reduction of greenhouse gas emissions, and similar paradigm shifts in decision making have occurred 
even at the private sector level.

Numerical approaches are regarded as the most powerful and reliable scientific option at the moment in 
quantitatively evaluating the efficacy of political or management plans that aim to tackle climatological issues. 
The Global Climate Model (GCM) is the prime example, which has accurately reproduced past and current 
climate changes, and its reliability of quantitative future estimates is sufficiently  high5. Such future projections 
with high accuracies rely on the overall consideration of the global atmospheric and oceanic circulation (and 
even still more complicated ingredients such as  chemical6 and  biological7 processes)8–12, and thus, the horizontal 
spatial resolution is sacrificed by the required computational costs; the typical resolution of the GCMs is only 
down to the order of 1 ◦ in longitude and latitude, corresponding to a grid size of more than a hundred kilom-
eters on the equator. Therefore, to exploit the GCM outputs to assess the impact of climate change and to make 
proper decisions, it is obviously vital to super-resolve the coarse grid spacing of simulations and to reach the 
fine resolution of interest. Here, special attention should be given to reproducing the inherent spatial correlation 
of the meteorological variables, as well as the local statistics, in decision making by integrating multiregional 
 information13–17, such as transportation infrastructure development and sustainable energy networks, future 
urbanization, and agricultural intensification.

A variety of techniques to super-resolve GCM outcomes, which are referred to as the downscaling (DS) meth-
ods in meteorology and climatology, have been  developed18–25. They are categorized roughly into two groups: 
 dynamical18–21 and statistical DS  methods22–25. The dynamical downscaling method is based on physical foot-
ings: several coupled differential equations are numerically integrated with the results of the GCM (or any other 
crude-resolution simulation results) being used as the boundary conditions. However, the computational cost 
again creates a trade-off between the accuracy and the feasibility. In contrast, in the statistical approaches, we 
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turn a blind eye to the physical laws behind the data. Instead, empirical links between the large- and local-scale 
climates are identified and applied to the crude-resolution climate model outputs. Since the systematic errors of 
the naively interpolated GCM output (referred to as the bias) are locally corrected such that the statistical proper-
ties are precisely reproduced, the spatial correlation, i.e., the information on the events occurring at distant places, 
is  discarded26–28. The statistical downscaling methods overcoming the latter problem remain to be developed.

In this paper, we propose a machine learning approach that super-resolves the GCM outputs and reproduces 
both the local statistics and the instantaneous spatial correlations between distant regions. Among several options 
for improving the resolution of geophysical or climatological  data29–32, our method is based on the generative 
adversarial network (GAN) approach, which has been proven to be a very powerful downscaling tool through 
several previous  studies33,34. To accurately reproduce the physical nature, we use auxiliary but climatologically 
important data, sea-level pressure distribution and topographic information, in addition to the target variables, 
temperature and precipitation distributions (see Fig. 1A and the next section for more details). Since this method 
falls within the criteria of the first-level physics informed super-resolution  methods35, we name our method π
SRGAN (Physics Informed Super-Resolution Generative Adversarial Network). The direct comparison with the 
measured meteorological data shows that the local statistical properties are obtained using the practical output 
from the GCM simulations as accurately as the conventional statistical downscaling method that is focused on 
matching these properties. We then highlight that the spatial correlation of variables is accurately reproduced, 
which could not be achieved with conventional downscaling methods (see Fig. 1B). The present method is 
therefore the next generation downscaling method that has a potential application in climate change assessment 
considering both local-scale and interregional events. We also considered another variant of the SRGAN that 
projects the high-resolution temperature and precipitation field from the low-resolution information about only 
temperature and pressure (we call this variant the ψSRGAN: Precipitation-Source-Inaccessible SRGAN). With 
this special variant, we demonstrate the surprisingly robust ability of the SRGAN-based methods to express 
natural results.

Figure 1.  Schematic diagram of πSRGAN and the distribution of spatial correlation coefficients. (A) 
High-resolution topography and low-resolution sea level pressure, in addition to the low resolution data 
corresponding to the output, are supplied to the generative adversarial networks. (B) The reconstructed 
distributions of spatial correlation coefficients, indicating the correlation strength from the reference site at 
Tokyo [35.735◦ N, 139.6683◦ E], obtained with πSRGAN and a conventional CDFDM are compared to the 
ground truth (GT).
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Results
Super‑Resolution Generative Adversarial Networks with various data. We employ a super-reso-
lution method based on generative adversarial networks (Super-Resolution Generative Adversarial Networks: 
SRGAN, see Methods section for details) as the basic machine learning algorithm, which was proven to have 
potential in DS with a scale factor up to  5033. Although the original SRGAN was able to restore physical con-
sistency in the turbulent wind velocity field, which was shown in terms of the well-known Kolmogorov 5/3 
power-law39, it was also reported that it showed a worse performance in reproducing the basic statistics, such 
as the pixelwise consistency like mean squared error, than a less sophisticated deep learning  approach33. In this 
work, considering two distinct variants in addition to the standard SRGAN, we show that the integration of the 
low-resolution input with auxiliary information enables to overcome the drawback of relatively poor reproduc-
ibility of simple statistical properties and that the ability of SRGAN-based methods to downscale in a “physically 
natural” manner is quite robust against the change in the input low-resolution information.

There are a vast variety of LR information, as seen in several similar recent  attempts34,40–42. Among them, we 
employed the sea-level pressure, one of the fundamental hydrodynamic (or aerodynamic) variables on which the 
various quantities of sub-models of GCMs are based, as a piece of key auxiliary information. Also, this variable 
is described with fewer assumptions in the models than other meteorological variables such as humidity. In the 
literature, strong links between synoptic-scale horizontal circulation and vertical motion are discussed in terms 
of the sea-level  pressure22,43–45. In the first variant, we incorporate the low-resolution pressure field as an auxiliary 
physical information (Fig. 1A), which serves as guidance for the DS of the target variables, namely temperature 
and precipitation. In this method, moreover, we introduced the topographic information as another auxiliary 
information since it can be utilized in a high-resolution format only if we assume it is identical over the time 
window of interest (order of 10 to a 100 years). The topographic information is indirectly supplied as a part of 
teacher data during the training by adding to one of the output channels. In this way, we can provide both low-
resolution and high-resolution auxiliary data in an unambiguous manner without any artificial operation (like 
resolution matching by interpolation or pooling). Since the use of supplemental physical information during 
learning is regarded as primary-level physics-informed machine  learning35, we call this method the Physics-
Informed SRGAN ( πSRGAN for short).

The second variant of SRGAN is designed to generate high-resolution temperature and precipitation fields 
using solely low-resolution data pertaining to the temperature and pressure fields. This variant is referred to as 
the Precipitation-Source-Inaccessible SRGAN ( ψSRGAN) and demonstrates the surprisingly robust capability 
of SRGAN-based methods to describe “physically natural” precipitation fields.

The performances of three variants of SRGAN (standard SRGAN, ψSRGAN, and πSRGAN) are evaluated 
via direct comparisons among them and with a non-machine learning-based method: we summarize these 
methods in Table 1. The cumulative distribution function-based downscaling method (CDFDM) is the widely 
used conventional statistical DS method (see the method section for the details), and the SRGAN refers to the 
original SRGAN-based method presented in Ref.33.

Data sets. We use the climate model simulation outputs for the low-resolution input and the real observa-
tion data for the high-resolution ground truths in the case studies. As the low-resolution data, we used the Japa-
nese 55-year reanalysis (JRA-55) data from 1980 to  201837 with data assimilation. The grid spacing is 1.25◦ . The 
daily data corresponding to the reference data (in Japanese local time) were created from 3-h simulation data. 
Specifically, data at 0Z, 3Z, 6Z, 9Z and 12Z on the target date and data at 15Z, 18Z and 21Z on the previous day 
of the target date were averaged to obtain the daily data in JST. The reference high-resolution data were the Agro-
Meteorological Grid Square Data (AMGSD)36. The 1 km-meshed daily data over Japan are constructed using the 
in-situ observation network system of the Japan Meteorological Agency, which covers the entire land area over 
Japan from 122◦ to 146◦ east and from 24◦ to 46◦ north. Upon being fed into the networks, all of the data undergo 
a process of normalization and concatenation. For further information regarding the technical aspects of these 
procedures, please refer to the SI Appendix.

We use the data from 1980 to 2018 (14,245 days in total). These data are split into training, validation, and test 
datasets in a time-series manner as summarized in Table 2 for both low-resolution (JRA-55) and high-resolution 
(AMGSD) data. We emphasize that this time-series partitioning, characterized by a substantial volume of test 
data, represents a challenging task for downscaling mid-term future projections, and consequently, necessitates 
the incorporation of the climate change trend. The AMGSD data were adjusted such that the grid spacing was 

Table 1.  Summary of protocols compared in this study. PRC precipitation, TMP temperature, SLP sea level 
pressure, TOPO topography. † In πSRGAN, TOPO is used as a hint, not targeted.

Abbr. name Explanation Low-resolution data High-resolution data

GT Ground truth (observation results offered by  AMGSD36) – –

LR Low resolution data of JRA-5537 – –

SRGAN Standard SRGAN-based  method33 PRC, TMP PRC, TMP

πSRGAN Physics-informed SRGAN PRC, TMP, SLP PRC, TMP, TOPO†

ψSRGAN Precipitation-source-inaccessible SRGAN TMP, SLP PRC, TMP

CDFDM Cumulative distribution function-based downscaling  method38 PRC, TMP PRC, TMP
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0.025◦/grid both in latitude and longitude. We extracted the data for the region from 130.625◦ to 140.625◦ east and 
from 30.625◦ to 40.625◦ north, which results in a 400× 400 pixels square. The JRA-55 data of the corresponding 
region are 8× 8 pixel squares, and thus, the scale factor for the DS tasks is 50.

Qualitative visualization. We first present typical qualitative visualizations for the temperature and the 
precipitation fields of one day in Fig. 2, which highlights the ambitious downscaling with the present large scal-
ing factor of 50. Here, the high-resolution information of 2500 pixels is extracted from one single pixel in the 
low-resolution counterpart. We compare the results of different protocols (summarized in Table 1), along with 
the visualization of the original low-resolution JRA-55 and the high-resolution AMGSD data.

The difference in the downscaled temperature from the ground truth is not very large (the upper row of 
Fig. 2), and it is difficult to find any superiority or inferiority in performance from these qualitative plots. In 
contrast, the results for precipitation demonstrate rich information on the features of DS protocols (the lower row 
of Fig. 2). The CDFDM result shows an overly smoothed profile compared to the GT: high precipitation values 
(represented by red colors) are observed in a vaster area. On the other hand, SRGAN family finely reproduce the 
localized nature of the high precipitation areas, which the CDFDM fails to describe. Remarkably, even ψSRGAN 
also succeeded in reproducing the localized heavy rain event, although, in this method, the low-resolution pre-
cipitation field is not supplied as an input. The GAN-based  methods13–17 are recognized to be advantageous in 
reproducing such fine structures. The maximum precipitation values of the DS results are all very close to that of 
the GT. Please refer to Fig. S2 in the SI Appendix for the graphical depictions of the differences between the GT 
and DS outcomes, which offer a more direct and intuitive insight into the distinctions among the performances 
of different methods. We note that although the results for πSRGAN were excluded from Fig. 2 due to their sub-
stantial similarity with those for SRGAN and space limitations, they are included in Figure S2 of the SI Appendix.

Single‑site statistics. Here and in the following subsections, we discuss the statistical features of downs-
caling results, focusing on the precipitation p, which is generally considered to be difficult to downscale accu-
rately. In particular, we carefully examine the statistical consistency with the ground truth, which is crucial in 
actual usage of the DS results, e.g., in impact assessment of climate change in the future. Although the results 
presented in the main text are climatologically oriented indicators and not standard measures used in the field 
of image processing, we provide the values of pixel-wise mean squared error and corresponding peak signal-to-
noise ratio in the SI Appendix.

We first measure the probability distribution functions (PDFs) of the precipitation data at 12 representative 
sites, PS(p) . Here, the PDFs are calculated using the set {pk(l)|l ∈ S and k ∈ Dtest} , where S stands for the site 
of interest (each site includes 100 grid points: see Table S3 in the SI Appendix), Dtest is the set of dates that are 

Table 2.  Year span for each data set.

Training data Validation data Test data

1980–1997 1998–2000 2001–2018

Figure 2.  Downscaling results. Distributions of temperature (A) and precipitation (B) obtained with SRGAN, 
ψSRGAN, and CDFDM are compared with the corresponding low-resolution ( 8× 8 ) inputs (LR) and the high-
resolution ( 400× 400 ) ground truth (GT). The resolution of the downscaled images is the same as that of the 
GT. The data from January 24, 2008, are displayed.
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used for the test data (year span of 2001–2018; Table 2), and pk(l) is the value of the precipitation at the pixel l 
and for the date k (we omit the subscript unless necessary below). The results are shown in Fig. 3A–L. The 12 
sites in Fig. 3 are chosen from the seaside areas within the system boundary of this study, as depicted in Fig. 3M. 
Table S3 in the SI Appendix provides more precise information (latitude, longitude, etc.) about these sites.

Overall, Fig. 3A–L shows that all methods express the regional dependence. Regarding each method, the 
CDFDM provides results matching the GT very well, including the heavy rainfall regime where p > 50mm per 
day up to the values at which PGT(p) becomes around 10−4 . This is expected because in the CDFDM the data 
are processed such that the resulting PDFs become completely consistent with the training data. If we shift 
our attention to the results of SRGAN family, we first notice that SRGAN and πSRGAN are as accurate as the 
CDFDM for most sites and most values of p. Moreover, surprisingly, even ψSRGAN succeeded in the projec-
tion of precipitation in the range PGT(p) > 10−3 at most sites although it was not provided with any direct 
information about the precipitation. In particular, we would like to stress that an extremely high accuracy has 

Figure 3.  Statistics of precipitation. (A–L) The probability distribution functions (PDFs) P(p) as a function of 
the precipitation p at each site. 12 representative sites are chosen from all over Japan. The different ranges of the 
abscissa reflect the regional characteristics. See SI Appendix for the technical details in processing the PDFs. 
(M) The normalized topographic information and the locations of 12 sites of panels (A–L). (N) Bar plot of the 
values of the Kullback–Leibler divergence of DS methods for P(p). (O,P) The PDFs of the mean µp and standard 
deviation σp of the precipitation over all the test data at each site; here the values of µp and σp at different sites 
serve as samples of the PDFs. (Q,R) Bar plot of the values of the Kullback–Leibler divergence for P(µp) and 
P(σp).
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been successfully obtained for Shizuoka (D), a representative site on the Pacific Ocean side (south side), where 
pressure-dominated summer-type precipitation events occur frequently. This indicates that the pressure field 
effectively serves as crucial information for the precipitation projection, such as the location of the typhoons. On 
the other hand, the accuracy is significantly lower at sites on the Sea of Japan side (north side), Akita, Niigata, and 
Kanazawa (A, C, F), which are less directly affected by typhoons. These trends are interestingly consistent with 
our knowledge, and it appears as if SRGAN is extracting physical laws from the data and making predictions, 
just as humans do. Then it is natural that this success of projection of the high-resolution precipitation from the 
low-resolution pressure drove us to believe the integration of the input information employed in πSRGAN would 
further improve the downscaling performance of SRGAN. However, since all SRGAN, πSRGAN, and CDFDM 
offer highly accurate results, it is difficult to visually judge from the graphs which one is better than the others: 
we make a quantitative comparison in the next paragraph. Before moving forward to the quantitative analysis,we 
remark on the discrepancies observed for tails in the large precipitation (small probability of PGT(p) < 10−4 ) 
regime even in the cases of the CDFDM. These rare events corresponding to disaster-level torrential rains are 
very important from the perspective of disaster prevention but are beyond the limit of the current statistical DS 
methods, on which we provide an overview in Discussion section.

To investigate the difference in the performance of πSRGAN and SRGAN, we quantify the accuracy of each 
method using the Kullback–Leibler divergence DKL:

where PGT(p) is the PDF of the GT and PDS(p) is that calculated using the downscaling results ( DS ∈ {πSRGAN, 
SRGAN, ψSRGAN, CDFDM} ). Generally, the more different PGT(p) and PDS(p) are, the larger DKL becomes; DKL 
vanishes when the two PDFs are exactly identical. Since the difference between two PDFs, PGT(p) and PDS(p) , 
is weighted by the ground truth distribution, the KL divergence places more importance on the frequently 
occurring events than on rare events. Technical details such as the data preprocessing employed are provided in 
SI Appendix. The KL divergence between the GT and DS results using distinct methods are shown by bar plots 
in Fig. 3N and summarized in Table 3, where the values averaged over the 12 sites are presented. The precise 
values of DKL for each single site are provided in Table S4 in the SI Appendix. As expected from the fact that the 
CDFDM concentrates on matching these statistics for the training data, it gives the best values for most cases. 
However, it should be noted that, at Hiroshima (denoted by K), πSRGAN marks a better score than CDFDM. 
This result evidences the remarkable performance of πSRGAN concerning the basic statistical characteristics 
that the standard SRGAN can handle relatively inadequately. Indeed, among SRGAN family, πSRGAN marks 
the best performance if we compare them by the average value over 12 sites: D̄KL(P

GT||PπSRGAN) is smaller 
than D̄KL(P

GT||PSRGAN) by approximately 40% (the bars signify that the presented values represent the mean 
across 12 sites.). However, πSRGAN is not always better than SRGAN and it shows worse results than SRGAN 
at Niigata, Kanazawa, and Oita (C, F, L). It is noteworthy that these particular locations are precisely where the 
performance of ψSRGAN is significantly lacking. This observation suggests that the inclusion of low-resolution 
pressure fields may have led to undesired effects. We also note that, on the other hand, ψSRGAN exhibits a lower 
value of DKL than that of the standard SRGAN at Shizuoka (Fig. 3D) where the pressure field is expected to 
play a crucial role in the determination of rainfall events. These findings about the effects of the introduction of 
auxiliary fields should be utilized for the future refinement of the method. To give a conclusion for this section, 
remarkably, even the standard SRGAN shows the same order of values of DKL as those of CDFDM. Moreover, 
the provision of climatologically important auxiliary information can further improve the precision by 40% , 
evidenced by the results of πSRGAN.

Statistics over all sites. As another meteorologically important statistical point of view, we further meas-
ure the statistics over all sites: the PDFs of the mean µp and the standard deviation σp of the precipitation calcu-
lated over all test data on each pixel l:

where k ∈ Dtest is again the sample index, and Ntest is the number of samples in Dtest . The probability distribution 
of µp and σp , denoted by P(µp) and P(σp) , are shown in Fig. 3O,P. Note that here the values calculated on each 

(1)DKL(P
GT||PDS) ≡

∫

dpPGT(p) log
PGT(p)

PDS(p)
,

(2)µp(l) ≡
1

Ntest

Ntest
∑

k

pk(l),

(3)σp(l) ≡

√

√

√

√

1

Ntest

Ntest
∑

k

(

pk(l)− µp(l)
)2
,

Table 3.  Average KL divergence of PDFs. Significant values are in [bold].

πSRGAN SRGAN ψSRGAN CDFDM

D̄KL 3.06× 10−3 4.38× 10−3 1.28× 10−2
1.50× 10

−3
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pixel serve as samples for these PDFs. The corresponding KL divergence DKL for P(µp) and P(σp) are presented 
in Fig. 3Q,R as well.

Remarkably, regarding the statistics of pixelwise average over all dates in the test dataset P(µp) , πSRGAN 
(and moreover, SRGAN as well) achieves a better score than CDFDM. However, on the other hand, regarding 
P(σp) , CDFDM is the best and it shows almost identical results as GT. The small shifts of the whole curve of P(σp) 
to the left of SRGAN-based methods are consequences of the underestimation of the high-precipitation events 
shown in Fig. 3A–L. These results suggest that SRGAN-based methods exhibit a bias towards typical values in 
downscaling results, as opposed to presenting bold projections of extreme events, compared to CDFDM. This is 
actually an anticipated tendency considering the design of the standard training scheme employed in machine 
learning-based methods.

Spatial correlation. Next, we examine in detail the spatial correlation of the downscaled results. The 
importance of the spatial correlation of the meteorological variables, i.e., the relation between two distant sites, 
has been realized very  recently13–17, e.g., in the context of impact assessment of climate change. However, con-
ventional DS methods such as CDFDM have proven to overestimate the correlation even though the statistical 
consistency with the GT is  maintained26–28. Such a tendency is actually seen in the qualitative visualizations in 
Fig. 2, where the overly smoothed profiles are obtained. We thus systematically evaluate the accuracy in express-
ing the spatial correlation of the precipitation by measuring the Pearson’s correlation coefficients of the precipita-
tion CR

M(l, l′) between two sites, l and l′ , which is defined as:

where δpRk (l) ≡ pRk (l)− p̄RM(l) is the deviation of the k-th sample at site l from its reference average value 
p̄RM(l) . The subscript M indicates that the average is taken over the data of month M, the superscript 
R ∈ {GT,πSRGAN, SRGAN,ψSRGAN,CDFDM} distinguishes the datasets and NM represents the total num-
ber of test data samples belonging to month M. Since the distribution of the correlation coefficients is known 
to have features specific to each month, we measure the monthly values of the coefficients. Below, we focus on 
the results for M = January , for which a previous work has pointed out the existence of a distinguished spatial 
pattern of precipitation  correlation28.

Figure 4A–C show the spatial distribution of the correlation coefficients CR
Jan(l, l

′) , with Nagoya, Niigata, and 
Hiroshima being the reference points l (the locations of the reference points are marked by the star symbols). The 
correlations measured for the CDFDM are too high compared to the GT at almost all sites, as shown in Fig. 4A. 
This is mainly because the 2500 grid points extracted from the corresponding single low-resolution pixel tend 
to have similar values. In contrast, the results of the SRGAN family exhibit much sharper spatial contrast, e.g., 
the contrast between the north and south sides of the Chugoku area (around [36◦ N, 135◦ E]) is well captured. 
The differences in performance among these SRGAN-based methods are very subtle and a precise quantifica-
tion is necessary to rank them: we will get back to this issue in the next paragraph. In Fig. 4B,C, we qualitatively 
observe the same difference in the accuracy among the methods. In particular, the SRGAN family, even includ-
ing ψSRGAN, successfully reproduce the nonmonotonic nature of the correlation as a function of the distance 
from the reference site: e.g., in the results of the GT and SRGAN-based methods in Fig. 4B, along the north side 
coastline (see the arrow in the figure), the correlation decays quickly near the reference point and then grows 
again around the Noto peninsula (around [38◦ N, 137.5◦ E]). The CDFDM, on the other hand, merely exhibits 
the monotonic decay of the correlation along the same line. Please see also the SI Appendix for the difference 
plots between the GT and DS results.

To quantify the accuracy of CDS
Jan(l, l

′) for the different methods, we measure the mean square error (MSE) of 
the spatial distribution of the correlation coefficient defined as:

where l is the reference site and NOS ≡ 630 is the number of observation stations (see SI Appendix for a detailed 
explanation). The values of MSEDSJan. measured based on each reference site are compared in Fig. 4D, and the aver-
age values are listed in Table 4 (the values for each site are shown in Table S4 in the SI Appendix). All SRGAN 
family exhibit much better results than those of the CDFDM for all sites considered here and even ψSRGAN offers 
twice better results. Specifically, the best one, πSRGAN, achieves 3.6 times better accuracy than the CDFDM for 
the average value over 12 sites. This result of the SRGAN-based methods being advantageous in achieving the 
“naturalness” of the spatial pattern is consistent with the report in Ref.33. If we further compare the results of 
SRGAN-based methods, although πSRGAN offers the best performance in terms of the mean value over all 12 
sites, the standard SRGAN has the best values at the majority of locations, albeit by only small margins as shown 
in Fig. 4D (and Table S4 in the SI Appendix). We interpret this result as meaning that both πSRGAN and SRGAN 
demonstrate comparable performance in relation to the statistical characteristics of spatial correlation. Together 
with the discussion in the previous subsections, the results presented in this section enable us to conclude that in 
the present πSRGAN, the auxiliary fields enhance the reproducibility of the simple statistics (such as P(p)) while 
maintaining the expression ability of the natural spatial expanse. Such a strong downscaling ability highlights 
the applicability to local-scale and interregional assessments of climate change.

(4)CR
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Figure 4.  Spatial distribution of the correlation coefficients for precipitation. The distributions of January 
obtained with the πSRGAN, SRGAN, ψSRGAN, and CDFDM are compared against the ground truth (GT) 
in the case of the reference point of correlation at Nagoya [35.1667◦ N, 136.965◦ E] (A), Niigata [37.9133◦ N, 
139.0483◦ E] (B), and Hiroshima [34.365◦ N, 132.4333◦ E] (C). The dot color indicates the values of CR

Jan(l, l
′) 

between the location of the dots and the reference site. The reference points are represented by star symbols. (D) 
The mean square error (MSE) of the correlation coefficients of the downscaled precipitations from those of the 
ground truth. Although in panels (A–C), the longitude and latitude values are omitted for reasons of space, they 
correspond to the same values as in Fig. 3M.

Table 4.  Average MSE of the correlation coefficients. Significant values are in [bold].

πSRGAN SRGAN ψSRGAN CDFDM

MSEJan 1.20× 10
−2 1.27× 10−2 2.04× 10−2 4.35× 10−2
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Discussion
We have developed a machine learning-based statistical downscaling (DS) method with a large scale-factor of 
50, while maintaining both the basic statistical properties and the spatial correlation. We employed a physics-
informed type  approach35 on the basis of the SRGAN-based method, and specifically, we developed a framework 
to use the proper auxiliary physical information along with the low-resolution input to attain large improvements 
in the DS performance as summarized in Fig. 1 and Tables 3, 4. High accuracy comparable to the CDFDM, a 
conventional method in actual use, was demonstrated by directly comparing the climatological statistical prop-
erties with the real data. More importantly, our approach exhibited the highly accurate reconstruction given in 
Fig. 4 of the natural spatial distribution of the precipitation correlation coefficient, which was a serious issue 
for the conventional statistical DS methods, including  CDFDM26–28. Since the importance of the multiregional 
spatial correlation has recently been  recognized13–17, the present method is a promising new-generation alterna-
tive to conventional statistical DS methods, particularly in situations where the integration of the multiregional 
information is necessary.

The detection and prediction of rare events are vital issues inter alia in the context of climate change assess-
ments. The methods including the present πSRGAN indeed have yet to accurately capture the low probability 
but significant rainfalls, as shown in Fig. 3. Here, we discuss possible directions to ameliorate the problem. First, 
we could raise the level of physics-informed machine learning in terms of the classification proposed in Ref.35. 
If we succeeded in directly incorporating some part of the governing equations into the learning process while 
maintaining the computational efficiency, local phenomena such as heavy rains would be predicted with high 
reliability. Another direction is to take measures to reform the basic machine learning architecture itself. Follow-
ing the GAN-based approach, flow-based and diffusion model-based methods have attracted public attentions 
as powerful next-generation tools for general super-resolution  tasks46,47. The main feature of these approaches 
is to generate multiple image candidates from a single input. Therefore, probabilistic information is expected to 
be drawn from the multiple super-resolved images, which would enable us to tackle the rare event predictions.

Another perspective concerns the use of machine learning techniques to improve the efficiency of dynamical 
downscaling, i.e., developing a high-speed machine-learning-based solver for the governing equations of climate 
models. Here we refer to an example of a speed up of multiscale simulations; in Ref.48 the Gaussian process is 
used to reduce the computational burden of multiscale simulation for polymeric liquid to achieve a reduction 
by a factor of 30-100 without loss of accuracy. Breakthroughs driven by similar approaches are expected once 
the complexity of the governing equations for the climate models is overcome.

Finally, we refer to the generalization ability of SRGAN. Here, we have selected SRGAN instead of πSRGAN 
due to the anticipated lack of high generalization ability of the latter ( πSRGAN relies on topographic information 
that is specific to the training area). In the SI Appendix, we present the results of the generalization test, in which 
we tried to execute downscaling computations for samples derived from a different area than the one employed 
for training. Specifically, the test area encompasses the region spanning from 135.625◦ to 145.625◦ east and 
from 35.625◦ to 45.625◦ north, with a 5 ◦ shift in both the eastward and northward directions from the original 
region used for the training. The findings of the examination demonstrate considerably inferior performance 
compared to those reported in the main text, exposing the deficient generalization capability. This suboptimal 
performance of the generalization ability is a somewhat predictable attribute since the training data are all from 
a specific same region. Even though we did not explicitly provide information about the topography in SRGAN, 
it is plausible that the network learned it indirectly through the temperature field, which exhibits a strong cor-
relation with topography. We stress that we observe large errors even for Niigata and Kanazawa, which were 
part of the original computational domain. To enhance the generalization ability, we would need to incorporate 
samples from a more extensive range of areas. The exploration of such an approach is left for future research.

Methods
CDFDM. Among a variety of statistical methods, we use, as a reference, the cumulative distribution function-
based downscaling method (CDFDM) with quantile mapping that is in actual use.

If we simply map the low-resolution GCM simulation results onto the point at which the observations are 
available, we generally see a systematic difference, defined as bias, which comes from the systematic error of the 
model prediction and/or from the interpolation error. Removing this inherent bias is especially important in 
applying the downscaling results to the impact assessments. In the CDFDM, bias is corrected via an empirical 
transfer function constructed in advance using measured data of distributional variables and the corresponding 
simulation results. The detailed procedure of constructing the transfer function is described as  follows38.

The crude low-resolution data obtained from the GCM are first mapped onto a 2 km mesh using simple 
bilinear interpolation. At each mesh point, an empirical cumulative distribution function (CDF) is then con-
structed using the interpolated data of the variable of interest over a specified time window. The transfer function 
is defined as a map of a variable onto the one at which the corresponding CDF of the observation falls within 
the same quantile level. This preconstructed transfer function is applied under the assumption that the error-
percentile relation is conserved over time. In the present study, the time window of a month is employed, while 
the original time window is over a half-year38, to more sensitively capture the seasonal  trend49,50.

Note that while this CDFDM is a nonparametric method, the corrected CDF perfectly matches the corre-
sponding CDF of the observation (for the training data); the statistical properties of the downscaling results are 
expected to reproduce the observation well. The bias-corrected climate scenario obtained with this method has 
been widely used in climate change impact  studies49,51,52.

SRGAN. We employ a generative adversarial networks-based (GAN-based) method as the basic machine 
learning architecture, which is called Super-Resolution Generative Adversarial networks (SRGAN)53. The termi-



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5992  | https://doi.org/10.1038/s41598-023-32947-0

www.nature.com/scientificreports/

nology super-resolution (SR; or, in particular, single-image super-resolution) refers to a method of restoring a 
high-resolution image from the corresponding low-resolution data and is the counterpart of the downscaling in 
the realm of the general image processing. The GAN-based methods are capable of generating realistic images by 
pitting a discriminator network against a generator network that generates samples (see Fig. 1A). The discrimi-
nator network takes the real data (ground truths) and the fake data (output of the generator network) as inputs 
and identifies the authenticity of the input samples. The generator network tries to deceive the discriminator 
while the discriminator tries to judge with high accuracy. As a result, both networks spontaneously learn the 
“realistic” information. The SRGAN can reproduce fine textures that cannot be achieved by normal convolu-
tional neural network-based variants and offers substantially improved realistic super-resolution images.

Such network-based super-resolution techniques have recently been used for the DS tasks of climatological 
data. In a representative report by Stengel and coworkers, Ref.33, the authors compared the performances of 
SRGAN-based downscaling methods with previous methods (SRCNN: Super-Resolution Convolutional Neural-
Networks). Although the SRCNN-based method appeared to be superior in evaluating the performance in 
terms of the simple pixelwise MSE, the SRGAN-based method provided realistic results satisfying the important 
physical requirements, e.g., the energy spectrum of the wind velocity field satisfied the Kolmogorov 5/3 scaling 
 law39 with remarkable accuracy. The network architecture in our πSRGAN is mostly the same as the original 
SRGAN introduced in Ref.53, although the batch normalization layers are removed obeying Ref.33: the explana-
tion of the precise architecture is presented in SI Appendix. We also summarize other technical details, such as 
the precise learning protocol, hyperparameter tuning, and the normalization of the data there. We note that the 
representative method compared to the πSRGAN referred to as “SRGAN” in our implementation is a slightly 
upgraded version including the high-resolution topography, which makes possible the decomposition of ele-
ments producing the improvement.

Data availibility
The datasets used and analysed in during this study are available from the corresponding author on reasonable 
request.

Received: 12 December 2022; Accepted: 5 April 2023

References
 1. Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 

378–381. https:// doi. org/ 10. 1038/ natur e09763 (2011).
 2. Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385. 

https:// doi. org/ 10. 1038/ natur e09762 (2011).
 3. Kawase, H. et al. Contribution of historical global warming to local-scale heavy precipitation in Western Japan estimated by large 

ensemble high-resolution simulations. J. Geophys. Res. Atmos. 124, 6093–6103. https:// doi. org/ 10. 1029/ 2018J D0301 55 (2019).
 4. Imada, Y. et al. Advanced risk-based event attribution for heavy regional rainfall events. NPJ Clim. Atmos. Sci. 3, 37. https:// doi. 

org/ 10. 1038/ s41612- 020- 00141-y (2020).
 5. Masson-Delmotte, V. et al. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assess-

ment Report of the Intergovernmental Panel on Climate Change 2 (2021).
 6. Sudo, K., Takahashi, M., Kurokawa, J.-I. & Akimoto, H. CHASER: A global chemical model of the troposphere 1. Model descrip-

tion. J. Geophys. Res. Atmos. 107, ACH 7-1-ACH 7-20. https:// doi. org/ 10. 1029/ 2001J D0011 13 (2002).
 7. Sato, H., Itoh, A. & Kohyama, T. SEIB-DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based 

approach. Ecol. Modell. 200, 279–307. https:// doi. org/ 10. 1016/j. ecolm odel. 2006. 09. 006 (2007).
 8. Watanabe, M. et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 23, 6312–

6335. https:// doi. org/ 10. 1175/ 2010J CLI36 79.1 (2010).
 9. Yukimoto, S. et al. A new global climate model of the meteorological research institute: MRI-CGCM3-model description and basic 

performance. J. Meteorol. Soc. Jpn. Ser. II 90A, 23–64. https:// doi. org/ 10. 2151/ jmsj. 2012- A02 (2012).
 10. Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth 

Syst. 6, 141–184. https:// doi. org/ 10. 1002/ 2013M S0002 65 (2014).
 11. Stott, P. A. et al. External control of 20th century temperature by natural and anthropogenic forcings. Science 290, 2133–2137. 

https:// doi. org/ 10. 1126/ scien ce. 290. 5499. 2133 (2000).
 12. Scoccimarro, E. et al. Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. 

J. Clim. 24, 4368–4384. https:// doi. org/ 10. 1175/ 2011J CLI41 04.1 (2011).
 13. Onat, N. C. & Kucukvar, M. Carbon footprint of construction industry: A global review and supply chain analysis. Renew. Sustain. 

Energy Rev. 124, 109783. https:// doi. org/ 10. 1016/j. rser. 2020. 109783 (2020).
 14. Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001. 

https:// doi. org/ 10. 1088/ 1748- 9326/ ab8589 (2020).
 15. Fu, X., Lahr, M., Yaxiong, Z. & Meng, B. Actions on climate change, reducing carbon emissions in China via optimal interregional 

industry shifts. Energy Policy 102, 616–638. https:// doi. org/ 10. 1016/j. enpol. 2016. 10. 038 (2017).
 16. Zhao, X. et al. Linking agricultural GHG emissions to global trade network. Earth’s Futurehttps:// doi. org/ 10. 1029/ 2019E F0013 61 

(2020).
 17. Koks, E. E. & Thissen, M. A multiregional impact assessment model for disaster analysis. Econ. Syst. Res. 28, 429–449. https:// doi. 

org/ 10. 1080/ 09535 314. 2016. 12327 01 (2016).
 18. Giorgi, F. & Bates, G. T. The climatological skill of a regional model over complex terrain. Mon. Weather Rev. 117, 2325–2347. 

https:// doi. org/ 10. 1175/ 1520- 0493(1989) 117< 2325: TCSOA R>2. 0. CO;2 (1989).
 19. Wang, Y. et al. The climatological skill of a regional model over complex terrain. J. Meteorol. Soc. Jpn. Ser. II 82, 1599–1628. https:// 

doi. org/ 10. 2151/ jmsj. 82. 1599 (2004).
 20. Déqué, M. et al. Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence 

level from PRUDENCE results. Clim. Dyn. 25, 653–670. https:// doi. org/ 10. 1007/ s00382- 005- 0052-1 (2005).
 21. Kawase, H. et al. Downscaling of the climatic change in the Mei-yu rainband in east asia by a pseudo climate simulation method. 

SOLA 4, 73–76. https:// doi. org/ 10. 2151/ sola. 2008- 019 (2008).
 22. von Storch, H., Zorita, E. & Cubasch, U. Downscaling of global climate change estimates to regional scales: An application to iberian 

rainfall in wintertime. J. Clim. 6, 1161–1171. https:// doi. org/ 10. 1175/ 1520- 0442(1993) 006< 1161: DOGCC E>2. 0. CO;2 (1993).

https://doi.org/10.1038/nature09763
https://doi.org/10.1038/nature09762
https://doi.org/10.1029/2018JD030155
https://doi.org/10.1038/s41612-020-00141-y
https://doi.org/10.1038/s41612-020-00141-y
https://doi.org/10.1029/2001JD001113
https://doi.org/10.1016/j.ecolmodel.2006.09.006
https://doi.org/10.1175/2010JCLI3679.1
https://doi.org/10.2151/jmsj.2012-A02
https://doi.org/10.1002/2013MS000265
https://doi.org/10.1126/science.290.5499.2133
https://doi.org/10.1175/2011JCLI4104.1
https://doi.org/10.1016/j.rser.2020.109783
https://doi.org/10.1088/1748-9326/ab8589
https://doi.org/10.1016/j.enpol.2016.10.038
https://doi.org/10.1029/2019EF001361
https://doi.org/10.1080/09535314.2016.1232701
https://doi.org/10.1080/09535314.2016.1232701
https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2
https://doi.org/10.2151/jmsj.82.1599
https://doi.org/10.2151/jmsj.82.1599
https://doi.org/10.1007/s00382-005-0052-1
https://doi.org/10.2151/sola.2008-019
https://doi.org/10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5992  | https://doi.org/10.1038/s41598-023-32947-0

www.nature.com/scientificreports/

 23. Wilby, R. L. et al. Guidelines for use of climate scenarios developed from statistical downscaling methods. In Supporting Material 
of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA 27 (2004).

 24. Piani, C., Haerter, J. O. & Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. 
Theoret. Appl. Climatol. 99, 187–192. https:// doi. org/ 10. 1007/ s00704- 009- 0134-9 (2010).

 25. Iizumi, T., Nishimori, M., Dairaku, K., Adachi, S. A. & Yokozawa, M. Evaluation and intercomparison of downscaled daily pre-
cipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statistical 
downscaling methods. J. Geophys. Res. 116, D01111. https:// doi. org/ 10. 1029/ 2010J D0145 13 (2011).

 26. Maraun, D. et al. Towards process-informed bias correction of climate change simulations. Nat. Clim. Change 7, 764–773. https:// 
doi. org/ 10. 1038/ nclim ate34 18 (2017).

 27. Widmann, M. et al. Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment. Int. J. 
Climatol.https:// doi. org/ 10. 1002/ joc. 6024 (2019).

 28. Ishizaki, N., Shiogama, H., Hanasaki, N., Takahashi, K., & Nakaegawa, T. Evaluation of the spatial characteristics of climate sce-
narios based on statistical and dynamical downscaling for impact assessments in Japan. International Journal of Climatology 43(2), 
1179–1192. https:// doi. org/ 10. 1002/ joc. 7903 (2023).

 29. Kaur, H., Pham, N. & Fomel, S. Improving the resolution of migrated images by approximating the inverse Hessian using deep 
learning. Geophysics 85, WA173–WA183. https:// doi. org/ 10. 1190/ geo20 19- 0315.1 (2020).

 30. Kaur, H., Sun, J., Aharchaou, M., Baumstein, A. & Fomel, S. Deep learning framework for true amplitude imaging: Effect of con-
ditioners and initial models. Geophys. Prospect.https:// doi. org/ 10. 1111/ 1365- 2478. 13234 (2022).

 31. Sachindra, D., Ahmed, K., Rashid, M. M., Shahid, S. & Perera, B. Statistical downscaling of precipitation using machine learning 
techniques. Atmos. Res. 212, 240–258. https:// doi. org/ 10. 1016/j. atmos res. 2018. 05. 022 (2018).

 32. Baño-Medina, J., Manzanas, R. & Gutierrez, J. M. Configuration and intercomparison of deep learning neural models for statistical 
downscaling. Geosci. Model Dev. 13, 2109–2124. https:// doi. org/ 10. 5194/ gmd- 13- 2109- 2020 (2020).

 33. Stengel, K., Glaws, A., Hettinger, D. & King, R. N. Adversarial super-resolution of climatological wind and solar data. Proc. Natl. 
Acad. Sci. 117, 16805–16815. https:// doi. org/ 10. 1073/ pnas. 19189 64117 (2020).

 34. Cheng, J. et al. Deepdt: Generative adversarial network for high-resolution climate prediction. IEEE Geosci. Remote Sens. Lett. 19, 
1–5. https:// doi. org/ 10. 1109/ LGRS. 2020. 30417 60 (2022).

 35. Onishi, R., Sugiyama, D. & Matsuda, K. Super-resolution simulation for real-time prediction of urban micrometeorology. SOLA 
15, 178–182. https:// doi. org/ 10. 2151/ sola. 2019- 032 (2019).

 36. Ohno, H., Sasaki, K., Ohara, G. & Nakazono, K. Development of grid square air temperature and precipitation data compiled from 
observed, forecasted, and climatic normal data. Clim. Biosphere 16, 71–79. https:// doi. org/ 10. 2480/ cib.J- 16- 028 (2016).

 37. Harada, Y. et al. The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability. J. Meteorol. Soc. Jpn Ser. 
II 94, 269–302. https:// doi. org/ 10. 2151/ jmsj. 2016- 015 (2016).

 38. Iizumi, T., Nishimori, M., Ishigooka, Y. & Yokozawa, M. Introduction to climate change scenario derived by statistical downscaling. 
J. Agric. Meteorol. 66, 131–143. https:// doi. org/ 10. 2480/ agrmet. 66.2.5 (2010).

 39. Frisch, U. Turbulence (Cambridge University Press, 1995).
 40. Vandal, T. et al. Deepsd: Generating high resolution climate change projections through single image super-resolution. In Proceed-

ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, 1663–1672. https:// 
doi. org/ 10. 1145/ 30979 83. 30980 04 (Association for Computing Machinery, New York, NY, USA, 2017).

 41. Vandal, T. et al. Generating high resolution climate change projections through single image super-resolution: An abridged version. 
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, 5389–5393. https:// doi. org/ 
10. 24963/ ijcai. 2018/ 759 (International Joint Conferences on Artificial Intelligence Organization, 2018).

 42. Yasuda, Y., Onishi, R., Hirokawa, Y., Kolomenskiy, D. & Sugiyama, D. Super-resolution of near-surface temperature utilizing 
physical quantities for real-time prediction of urban micrometeorology. https:// doi. org/ 10. 48550/ ARXIV. 2108. 00806 (2021).

 43. Maraun, D. & Widmann, M. Statistical Downscaling and Bias Correction for Climate Research (Cambridge University Press, 2018).
 44. Huth, R. Statistical downscaling in central Europe: Evaluation of methods and potential predictors. Clim. Res. 13, 91–101. https:// 

doi. org/ 10. 3354/ cr013 091 (1999).
 45. Dayon, G., Boé, J. & Martin, E. Transferability in the future climate of a statistical downscaling method for precipitation in France. 

J. Geophys. Res. Atmos. 120, 1023–1043. https:// doi. org/ 10. 1002/ 2014J D0222 36 (2015).
 46. Lugmayr, A., Danelljan, M., Van Gool, L. & Timofte, R. SRFlow: Learning the Super-Resolution Space with Normalizing Flow. 

715–732. https:// doi. org/ 10. 1007/ 978-3- 030- 58558-7_ 42 (SRFlow, 2020).
 47. Li, H. et al. SRDiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59. https:// doi. 

org/ 10. 1016/j. neucom. 2022. 01. 029 (2022).
 48. Seryo, N., Sato, T., Molina, J. J. & Taniguchi, T. Learning the constitutive relation of polymeric flows with memory. Phys. Rev. Res. 

2, 33107. https:// doi. org/ 10. 1103/ PhysR evRes earch.2. 033107 (2020).
 49. Yokohata, T. et al. Projections of surface air temperature required to sustain permafrost and importance of adaptation to climate 

change in the Daisetsu Mountains, Japan. Sci. Rep. 11, 15518. https:// doi. org/ 10. 1038/ s41598- 021- 94222-4 (2021).
 50. Ishizaki, N. N., Shiogama, H., Hanasaki, N. & Takahashi, K. Development of cmip6-based climate scenarios for japan using statisti-

cal method and their applicability to impact studies. Earth Sp. Sci. Open Arch.https:// doi. org/ 10. 1002/ essoar. 10511 571.1 (2022).
 51. Hiruta, Y., Ishizaki, N. N., Ashina, S. & Takahashi, K. Regional and temporal variations in the impacts of future climate change 

on Japanese electricity demand: Simultaneous interactions among multiple factors considered. Energy Conversion Manage. X 14, 
100172. https:// doi. org/ 10. 1016/j. ecmx. 2021. 100172 (2022).

 52. Hiruta, Y., Ishizaki, N. N., Ashina, S. & Takahashi, K. Hourly future climate scenario datasets for impact assessment of climate 
change considering simultaneous interactions among multiple meteorological factors. Data Brief 42, 108047. https:// doi. org/ 10. 
1016/j. dib. 2022. 108047 (2022).

 53. Ledig, C. et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings—30th IEEE 
Conference on Computer Vision and Pattern Recognition, CVPR 2017 2017-Janua, 105–114. https:// doi. org/ 10. 1109/ CVPR. 2017. 
19 (2017). 1609.04802.

Acknowledgements
The authors thank N. Hanasaki and S. Koyama for fruitful discussions. This research was partially supported by 
JST Grant Number JPMJPF2013.

Author contributions
N.O. conducted numerical experiment, N.O., N.N.I., and H.Y. analyzed the data, N.O., S.K. and H.Y. invented 
the method, N.N.I., S.K., and H.Y. designed the work. All authors wrote the manuscript.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1007/s00704-009-0134-9
https://doi.org/10.1029/2010JD014513
https://doi.org/10.1038/nclimate3418
https://doi.org/10.1038/nclimate3418
https://doi.org/10.1002/joc.6024
https://doi.org/10.1002/joc.7903
https://doi.org/10.1190/geo2019-0315.1
https://doi.org/10.1111/1365-2478.13234
https://doi.org/10.1016/j.atmosres.2018.05.022
https://doi.org/10.5194/gmd-13-2109-2020
https://doi.org/10.1073/pnas.1918964117
https://doi.org/10.1109/LGRS.2020.3041760
https://doi.org/10.2151/sola.2019-032
https://doi.org/10.2480/cib.J-16-028
https://doi.org/10.2151/jmsj.2016-015
https://doi.org/10.2480/agrmet.66.2.5
https://doi.org/10.1145/3097983.3098004
https://doi.org/10.1145/3097983.3098004
https://doi.org/10.24963/ijcai.2018/759
https://doi.org/10.24963/ijcai.2018/759
https://doi.org/10.48550/ARXIV.2108.00806
https://doi.org/10.3354/cr013091
https://doi.org/10.3354/cr013091
https://doi.org/10.1002/2014JD022236
https://doi.org/10.1007/978-3-030-58558-7_42
https://doi.org/10.1016/j.neucom.2022.01.029
https://doi.org/10.1016/j.neucom.2022.01.029
https://doi.org/10.1103/PhysRevResearch.2.033107
https://doi.org/10.1038/s41598-021-94222-4
https://doi.org/10.1002/essoar.10511571.1
https://doi.org/10.1016/j.ecmx.2021.100172
https://doi.org/10.1016/j.dib.2022.108047
https://doi.org/10.1016/j.dib.2022.108047
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1109/CVPR.2017.19


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5992  | https://doi.org/10.1038/s41598-023-32947-0

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 32947-0.

Correspondence and requests for materials should be addressed to N.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-32947-0
https://doi.org/10.1038/s41598-023-32947-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep generative model super-resolves spatially correlated multiregional climate data
	Results
	Super-Resolution Generative Adversarial Networks with various data. 
	Data sets. 
	Qualitative visualization. 
	Single-site statistics. 
	Statistics over all sites. 
	Spatial correlation. 

	Discussion
	Methods
	CDFDM. 
	SRGAN. 

	References
	Acknowledgements


