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MagicCubePose, A more 
comprehensive 6D pose estimation 
network
Fudong Li 1, Dongyang Gao 1,2*, Qiang Huang 1,2, Wei Li 1,2 & Yuequan Yang 1,2

Most of the current mainstream 6D pose estimation methods use template or voting-based methods. 
Such methods are usually multi-stage or have multiple assumptions and post-correction, which 
will cause a certain degree of information redundancy and increase the computational cost, their 
real-time detection performance is poor. We point out that traditional path aggregation networks 
introduce new errors, therefore, we propose a loss function: MagicCubeLoss, a portable module: 
MagicCubeNet, and the corresponding 6D pose estimation model: MagicCubePose. MagicCubePose 
has good expansion performance and can build more efficient models for different calculation power 
and scenarios. Experiments show that our model has good real-time detection performance and the 
highest ADD(-S) accuracy.

Since its appearance in the 1960s, machine vision has made great strides in many fields. With the in-depth 
research and application of deep learning, traditional 2D object location and recognition methods have been 
unable to meet the needs of social development, so some scholars try to study 3D object detection and 6D pose 
estimation based on deep learning methods. 6D pose estimation has a wide range of application scenarios, such 
as the self-driving cars, augmented reality, robotics and other application fields which have high requirements 
of spatial positioning information and the complexity of the scene of the detected  target1,2 .

Although deep learning has certain advantages in dealing with the above problems, different models have 
different problems in dealing with different application scenarios. The method of obtaining RGB-D image data 
through a depth camera has good  robustness3, but the data processing of images with depth information is far 
more complicated and computationally expensive than ordinary RGB images. High-quality depth cameras are 
expensive and not portable, it is not friendly to real-time detection tasks in some mobile  scenarios4,5. With the 
in-depth research of deep learning, the method based on RGB images is as robust as the RGB-D method.

SSD-6D6 proposes a new  SSD7-based method to detect 3D model instances and perform 6D pose estimation 
directly from RGB data, which verifies that the model with RGB data is better than other models with RGB-D 
data. But for the most difficult detection sequences, such as “camera, milk” with serious occlusions, they still 
have the problem of missed detection and low detection effect. Poor detection performance for smaller objects, 
possibly due to the presence of blind spots or their lack of texture and uniform color, making them indistinguish-
able from the environment. Although the one-stage structure design is fast enough, the precision is not ideal. 
Through its structure design and core algorithm idea, we know that the method of 6D pose prediction with key 
points is not effective in complex scenes such as occlusion and poor target texture. It is a common situation 
especially in lower resolution video stream.

In this paper, a new 6D pose detection model is proposed, which still adopts a one-stage structure design, 
taking RGB images as input, realizing end-to-end training and directly detects the 2D projection of 3D bound-
ing box, even without post-processing of poses. It also has a good accuracy rate. Besides eliminating the post-
processing step, our method does not build a textured 3D model like other template-based methods to increase 
the pre-training workload and computational cost.

We perform validation tests on the  LINEMOD8 dataset, which has become the standard benchmark for 6D 
pose estimation. Compared with  YOLO6D4, which is 5 times faster than other methods when dealing with single 
object, our method does not lose to it, when performing multi-object detection, our method has higher accuracy.

To summarize, the main contributions of our work are: based on the  EfficientDet9 network structure, we 
design a new loss function called MagicCubeloss and the corresponding pose estimation model: MagicCubePose, 
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which can effectively reduce the deflection error introduced during data augmentation, and it does not require 
pose refinement, it can realize fast and high-precision 6D pose measurement.

Related work
We review common RGB image-based 6D pose estimation methods, ranging from template-based to voting-
based methods.

Templete-based. PoseCNN10 proposes a new pose dataset  YCB10, which estimates the 3D displacement 
by locating the center of the object in the image and estimating its distance from the camera, and obtains the 
3D rotation by regressing to the four-element11 representation, a new loss function is proposed to enable it to 
recognize symmetric objects: two loss functions are used for the object symmetry (shapematch-loss) and the 
asymmetry (pose-loss) train.  Pix2Pose12 adopts a two-stage network structure design similar to PoseCNN. First, 
mask prediction and bounding box positioning are performed, and then pixel-level 3D coordinate regression is 
performed. The 3D coordinates of each pixel of the object can be directly predicted without the need for accu-
rate texture 3D models. A new loss function is proposed to deal with the pose problem of symmetric objects. 
 HybridPose13 uses hybrid intermediate representations to express geometric information (key points, symmetric 
correspondences, edge vectors), does not use depth information, utilizes semantic edge vectors of adjacent edge 
key points, three-stage intermediate representation method: key points , edge and symmetry corresponds, the 
key point is the main, edge and symmetry are the auxiliary.

The template-based methods can better deal with the object pose problem with poor texture. First, the 3D 
model of the target is established to obtain its templates from different perspectives, and then the best match 
(the pose of the best template) is obtained by calculating the similarity scores of different positions. However, it 
does not perform well when dealing with occluded object poses.

Voting-based. PVNet14 regresses the pixel unit vector to obtain key points, and uses  RANSAC15 to vote 
to obtain key point positions. Although RANSAC-based voting solves discrete point prediction and gives the 
spatial probability distribution of key points, the voting method produces uncertain key points allow the pnp 
 algorithm16,17 to better predict the final pose, but the traditional two-stage approach (locating key points first, 
then solving the pose by pnp) only locates sparse key points, as for the occluded objects, they cannot fully express 
their characteristics.

A Hybrid Approach for 6DoF Pose  Estimation18 firstly segment the target instance and then restore it to 6D 
pose by point-to-point voting, automatically select the best-performing instance detector and training set, thanks 
to the CNN structure design filtering highly unstructured data and successfully used in complex scenarios.

Correspondence-based. BB819 uses a CNN network for the first time to predict the 3D pose of an object 
directly through the 2D projection of 3D bounding box, and provides an extra step to optimize the predicted 
pose. Many objects in the T-LESS data are (semi) symmetric, which means that different poses may have similar 
results, which makes CNN training more difficult, limits the range of poses used for training, and introduces a 
classifier to identify poses range during training and then perform pose estimation.

YOLO6D is a real-time single-shot 6D pose estimation model with superior performance, based on  YOLO20–23. 
YOLO6D uses the CNN structure to directly predict the 2D projection of the 3D bounding box vertices, and 
then directly returns to the 6D pose through the pnp algorithm without post-processing. It is significantly better 
than other recent CNN-based methods for post-processing. Other methods are much slower than YOLO6D, but 
YOLO6D does not involve occlusion and symmetrical object detection.

The above methods all return to the 6D pose through 2D projection: first locate the 2D target position, then 
obtain the relevant parameters of the 3D bounding box, and finally return to the 6D pose. A common data aug-
mentation method is to render the object into a randomly selected background image from the  COCO24 dataset. 
However, BB8 performs semantic segmentation on the target and predicts 8 2D corners in the second stage of the 
network, and the other two methods are direct regression. SSD-6D performs optimal screening through NMS. 
2D bounding box obtains possible viewpoints and plane rotations and establishes a 6D pose hypothesis set. 
Discrete viewpoints (combined with plane rotation) can effectively solve the problem of low pose estimation of 
symmetrical or occluded objects. BB8 introduces A classifier to solve the problem of symmetric object rotation.

Method
Before formally introducing our method, we briefly summarize the previous work. We summarize all 6D pose 
estimation methods into two categories: building a 6D pose estimation model directly and building a 6D pose 
estimation model based on the extension of the 2D object detection network.

In previous chapters, we introduce partial pose estimation networks from template-based to voting-based 
methods, Ref.10–14 build 6D pose estimation models directly, and we found that this method has a clean network 
structure and high detection accuracy, but the corresponding real-time performance is relatively poor and the 
model expansion performance is low. Ref.4,6,27 build 6D pose estimation network by extending 2D object detec-
tion model. The backbone network of this type of model is relatively simple, but they have better scalability and 
real-time detection performance.

To sum up, we finally decided to use the method of constructing a 6D pose estimation model based on the 
extension of the 2D target detection network to verify our method. Considering the needs of different scenarios 
and calculation power, we will optimize the extension network based on  EfficientDet9 design.
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Overall Model Architecture. Inspired by the structure of the MagicCube, we design a network structure 
module named MagicCubeNet, as shown in Fig. 1, using EfficientNet as the backbone network, as shown in 
Fig. 2, and we also reference  EfficientPose27 to build a network of pose estimation module and expand and opti-
mize it, finally the pose estimation network design of MagicCubePose is realized.

When we study the path aggregation network and the BiFPN network, we find that their core design ideas are 
very similar, both of which obtain feature maps with richer semantic information through multiple convolutions 
of horizontal and vertical graphs of convolutional layers. If we take the top-level feature map of the complete 
BiFPN as an example (yellow feature map shown in Fig. 2), from left to right named FM_1, FM_2, FM_3, FM_4 
respectively, after multiple feature fusion, despite the same shape, the semantic information are different from 
each other, but the difference is controlled in a small range. In other words, it is not worth the model to spend 
so many resources to compose a feature map that does not directly affect the final detection accuracy. We refer 
to this behavior as cost error. In order to effectively solve this error, combining the design of MagicCubeNet and 
Smooth L1  loss24, we finally obtained MagicCubePose.

Regress 6D pose. Taking the third-order magic cube as an example, we abstract the single-layer feature 
map extracted from the BiFPN backbone structure into the middle layer of the magic cube, and then randomly 
select two features in the BiFPN extended network which are at the same level as the above middle layer. Con-
sidering that the process of model reproduction is time-consuming, and our method is not very demanding on 
the handware conditions of the device, to validate our methods quickly and efficiently, we only build, train and 
verify based on the sub-top level feature map and its extended structure in the BiFPN backbone network.

Different from the previous loss design which calculate the difference between the prediction and ground 
truth one time in each iteration. As shown in Fig. 1, after completing the most basic structure, the first layer and 
third layer of the magic cube are marked as P1 and P3 as the predict layer, the second layer as the ground truth 
layer is marked as P2. We also introduce the attention  mechanism25, after that we get P1_A and P3_A, here, we 
get two set of data: P1_A &P2, P3_A &P2, then we calculate their loss through smooth  L124 and finally get the 
whole loss.

Here we directly imitate the method  in27 to construct a sub-network from 2D object to 6D pose estimation, 
which includes: Class(C net)

Bbox(B net)
Trans(T net)
Rotation(R net)
These four parts build the final loss  of27:

Based on the structural design of MagicCubeNet, we newly added Mnet, which is the Loss in MagicCubeNet: 
MagicCubeLoss.

Compared with L1 and L2, Smooth L1 converges faster and insensitive to outliers, the gradient change is 
relatively small, and it is not easy to cause gradient explosion during training.

(1)L = �class · Lclass + �bbox · Lbbox + �trans · Ltrans

Figure 1.  The architecture of MagicCubeNet.

Figure 2.  The architecture of MagicCubePose, which is based on EfficientDet, including the EfficientNet 
backbone, the bidirectional feature pyramid network (BiFPN) and MagicCubeNet.
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So, the final MagicCubeLoss function is as follows:

Among them, trans is the combined calculation item of translation and rotation, and M is the calculation item of 
loss in MagicCubeNet. Among them, Lclass is the classification loss, Lbbox the bounding box loss, and Ltrans is the 
conversion loss. In order to balance the impact of this part of the loss in the training process, the � parameter is 
introduced for each part. In addition, we refer to the final loss  in9  and27, designed and combined with our own 
experimental results, we find that �class , �bbox = 1, �trans = 0.02 and �M = 0.01 achieve the best results. At the same 
time, inspired by the design  of10: we consider the symmetry and asymmetry of the object when designing the 
loss function, and achieve ideal results.

Eexperiments
The experiments in this paper are based on the Tensorflow2.4.0 framework, cuda11.1, 11400F CPU and RTX3070 
GPU.

We use Linemod and  Occlusion28 data. We train 500 epochs and compare our results with the SOTA methods. 
 Since9 has good scalability and extensibility, considering our current experimental conditions, we do not fully 
evaluate the hyperparameter ϕ which used for controlling the depth or width of the model range from 0 to 7, to 
verify the effectiveness of our method we only use ϕ =0 for single object and ϕ =1 for multi-object.

Dataset. The Linemod dataset is a widely used dataset for 6D pose estimation, it has 13 classes of objects. 
For different scenes, only the 6D pose of one object is annotated, although there are still several other types of 
objects in the same scene. To fully verify the superior performance of our method, we also design experiments 
on multi-object pose detection.

Occlusion data consists of part of Linemod data to annotate multiple targets in a single scene. These objects 
are mostly occluded, which also makes their pose estimation more difficult.

Evaluation metric. We use ADD(-s)29 and 2D  projection32 metrics to evaluate our method.
ADD(-s) metric calculate the average distance between ground truth and predict of rotation R and transla-

tion T of each point in the 3D model point set M. Considering the symmetry and asymmetry of the object, its 
evaluation method is also different. The definition of asymmetric target is as follows:

The definition of symmetric target is as follows:

The pose estimate is considered correct if the point average distance is less than 10% of the object diameter.
2D projection metric.This metric computes the mean distance between the projections of 3D model points 

given the estimated and the ground truth pose. A pose is considered as correct if the distance is less than 5 pixels.

Single object detection. Multi-object detection. Analysis. In Table 1, we compare our method with 
the results of mainstream 6D pose estimation models based on Linemod dataset (not only RGB-based but also 
RGBD-based methods), and use ADD(-S) evaluation metric. In Table 2, we use 2D projection metric, it is obvi-
ously that our method outperforms all currently known methods and requires no further refinement. Even when 
compared with the SOTA2022 method RNNPose [25], our method is better. Although the detection effect of 
some objects such as ‘Ape’ and ‘Can’ is slightly lower than it, there are still certain advantages in general. In addi-
tion, we also select 6 single targets for detection, and the results are shown in Fig. 3.

However, common object detection tasks are often multi-object, which is undoubtedly a challenging task. 
To fully verify the performance of our method, we conduct multi-object detection experiments, and the experi-
mental results are shown in Table 3. Compared to single-object detection, our method outperforms other SOTA 
methods in multi-object detection. Limited by the experimental conditions, we only set the maximum value of 
ϕ = 1 (refer to the design idea  of9  and27, combined with the experimental results, it is not difficult to find that 
the higher the value of ϕ , the better the model performance, and the higher the corresponding requirements 
for the experimental conditions), but even so, our method still exceeds the result  of27 with ϕ =3. The detection 
effect is shown in Fig. 4 (we also fuse the 2D object detection effect). Of course, whether it is 2D object detection 
or 6D pose estimation, we should not only consider the detection accuracy of the model but also its real-time 
performance. To this end, we carry out corresponding experiments.

In Table 4, considering that MagicCubePose can not only be used for 6D pose estimation but also 2D object 
detection, we compare our method with common object detection and pose estimation models, we not only 
compared with the 6D model, the 2D object detection results added too, however, considering the affect of 
experimental condition, we will not perform a strict horizontal comparison, we refer to the performance of 
some GPU and find that the performance of RTX3070 is similar to RTX2080TI, and these two methods are all 

(2)LM = smoothL1 =

{

0.5x2, | x |� 1

| x | −0.5, | x |> 1

(3)L = �class · Lclass + �bbox · Lbbox + �trans · Ltrans + �M · LM

(4)ADD =
1

m

∑

x∈M

�(Rx + T)− (R̃x + T̃)�2

(5)ADD − S =
1

m

∑

x1∈M

minx2∈M�(Rx1 + T)− (R̃x2 + T̃)�2
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based  on9. Furthermore, to visualize the training time, we reproduce  the27 with the same parameter ϕ =0 and 2, 
complete training with 500 epochs of object 1  in27 is 2.36 and 3.86 days , it is nearly 4.4% and 70% higher than 
our method(2.26 days), even so, our ADD(-S) is higher. Combined with the actual test results, we can prove that 
our method is better, truly achieved the SOTA performance.

In general, in Table 5, we use three evaluation metrics: 5cm5degree, ADD and 2D projection to make a 
comprehensive and intuitive comparison of several SOTA models in the past few years. Combined with the 
experimental data in the previous figures and tables, it is obviously that our method is superior to the existing 
6D pose estimation methods.

Conclusion
In this paper, we introduce MagicCubePose, a 6D pose estimation model based on the extension of the 2D 
object detection network EfficientDet with extremely high end-to-end detection accuracy, model expansion 
and real-time detection performance. We adopt an intuitive and effective 2D–6D extension method similar to 
EfficientPose, which combines object detection, pose estimation and achieves the state-of-the-art results with 
superior real-time performance. In addition, our proposed method can also be applied to other 2D object detec-
tion networks and 6D pose estimation networks as a portable module or a new network structure design idea. 
Similarly, in future work, we hope and will apply our method to more challenging real-time tasks such as robotic 
grasping and autonomous driving.

Figure 3.  Single object detection map (green is ground truth, blue is predict. The first column is object id: 1 2 4, 
and the second column is object id: 5 6 8).

Table 1.  Evaluation and comparison on the Linemod dataset in terms of the ADD(-S) metric. Symmetric 
objects are marked with * ).

Method YOLO6D Pix2Pose PVNet DPOD HybridPose EfficientPose(ϕ=0) RNNPose31 Our

Ape 21.62 58.1 43.62 53.28 63.1 87.71 88.19 87.71

Benchvise 81.80 91.0 99.90 95.34 99.9 99.71 100 100

Cam 36.57 60.9 86.86 90.36 90.4 97.94 98.04 98.24

Can 68.80 84.4 95.47 94.10 98.5 98.52 99.31 99.02

Cat 41.82 65.0 79.34 60.38 89.4 98.00 96.41 98.20

Driller 63.51 76.3 96.43 97.72 98.5 99.90 99.70 99.80

Duck 27.23 43,8 52.58 66.01 65.0 90.99 89.30 90.70

Eggbox * 69.58 96.8 99.15 99.72 100 100 99.53 100

Glue * 80.02 79.4 95.66 93.83 98.8 100 99.71 99.90

Holepuncher 42.63 74.8 81.92 65.83 89.7 95.15 97.43 95.62

Iron 74.97 83.4 98.88 99.80 100 99.69 100 99.69

Lamp 71.11 82.0 99.33 88.11 99.5 100 99.81 100

phone 47.74 45.0 92.41 74.24 94.9 97.98 98.39 98.56

Average 55.95 72.4 86.27 82.98 91.3 97.35 97.37 97.50
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We uploaded the data used in this paper to the cloud so that it could be more convenient for researchers to 
use. The raw data is available at the following link, it includes the train data and test results. https:// drive. google. 
com/ drive/ folde rs/ 1Ah43 p1yRM i2cdR fbc38 1a0nL UwRfM JBa? usp= share_ link2.

Table 2.  Evaluation and comparison on the Linemod dataset in terms of the 2D projection metric. With 
refinement methods are marked with *.

Method BB8* BB8 34 Tekin33 Our

Ape 96.6 95.3 85.2 92.10 98.76

Benchvise 90.1 80.0 67.9 95.06 97.48

Cam 86.0 80.9 58.7 93.24 98.82

Can 91.2 84.1 70.8 97.44 96.75

Cat 98.8 97.0 84.2 97.41 99.20

Driller 80.9 74.1 73.9 79.41 96.63

Duck 92.2 81.2 73.1 94.65 98.40

Eggbox * 91.0 87.9 83.1 90.33 100

Glue * 92.3 89.0 74.2 96.53 94.20

Holepuncher 95.3 90.5 78.9 92.86 98.29

Iron 84.8 78.9 83.6 82.94 97.65

Lamp 75.8 74.4 64.0 76.87 94.72

phone 85.3 77.7 60.6 86.07 94.81

Average 89.3 83.9 73.7 90.37 97.36

Figure 4.  Multi-object(8 objects) detection map (the left picture is 6D pose results, the right picture not only 
has 6D but also has 2D detection results).

Table 3.  ADD(-S) metric of multi object 6D pose estimation using a single model on the Occlusion dataset. 
Symmetric objects are marked with *.

Method PoseCNN PVNet RNNPose EfficientPose27(ϕ=0) 27(ϕ=3) Our(ϕ=0) Our(ϕ=1)

Ape 9.60 15.8 37.18 56.57 59.39 56.73 59.34

Can 45.2 63,3 88.07 91.12 93.27 92.21 94.44

Cat 0.93 16.7 29.15 68.58 79.78 68.59 80.13

Driller 41.4 65.7 88.14 95.64 97.77 95.67 97.77

Duck 19.6 25.2 49.17 65.31 72.71 66.54 73.32

Eggbox * 22.0 50.2 66.98 93.46 96.18 95.33 96.34

Glue * 38.5 49.6 63.79 85.15 90.80 85.45 90.81

Holepuncher 22.1 39.7 62.76 76.53 81.95 76.61 81.97

Average 24.9 40.8 60.65 79.04 83.98 79.64 84.27

https://drive.google.com/drive/folders/1Ah43p1yRMi2cdRfbc381a0nLUwRfMJBa?usp=share_link2
https://drive.google.com/drive/folders/1Ah43p1yRMi2cdRfbc381a0nLUwRfMJBa?usp=share_link2
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