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Persistent currents and electronic 
properties of Mandelbrot quantum 
rings
Davood Haji Taghi Tehrani 1 & M. Solaimani 2*

In this study, we investigate the persistent current, and electronic energy levels of Mandelbrot 
quantum rings. For this purpose, three types of Mandelbrot quantum rings are proposed. 
Furthermore, Mandelbrot equation is generalized by introducing parameter m, which makes 
Mandelbrot’s shape more symmetric by adding new branches to it, on the other hand, the iteration 
parameter M, controls geometrical deficiencies. We explain the procedure needed to form these 
structures, including a padding scheme, then we solve the resulting two-dimensional Schrodinger 
equation using the central finite difference method with uniform distribution of the mesh points. 
Thereafter, we obtain the persistent current in different situations including different Mandelbrot 
orders and quantum ring shapes. We show that the persistent current can have different shapes 
and intensities by changing the described geometrical parameters of Mandelbrot quantum rings. 
We explain this phenomenon by considering symmetries in the potential, and consequently the 
wavefunction.

Ring shaped quantum dots called quantum rings are an impressive category of structures because they can 
confine the electrons along a circular orbit. Due to unique physical properties of quantum rings, they have 
attracted great interest. For instance, quantum phase coherence phenomena including the Aharonov-Casher1 
and Aharonov-Bohm2 effects are considered in quantum rings. The quantum rings can be fabricated using dif-
ferent methods, including the droplet etching  process3, Stranski–Krastanov growth  mode4, nano-lithography 
with a scanning force  microscope5, etc. Quantum ring systems can be formed from different semiconducting 
materials, such as  InAs6,  GaAs7,  InSb8, etc. This leads to considerable change in the morphology and size of the 
quantum  rings9,10, probably to produce broadening and shifting of the system energy levels. The quantum rings 
geometries have many practical applications in nanoelectronics and spintronics devices, including spin  switch11, 
including spin  filters12, Tunable pure spin currents  devices13, spin beam  splitters14, solar  cells15, light emitting 
 diodes16, terahertz  detectors17,18, etc. For this purpose different shapes considered so far are multi-shells quan-
tum  rings19, triangular quantum  rings20, chiral toroidal carbon  nanotubes21, few-site Hubbard rings with up to 
second-nearest neighbor coupling embedded to a ring-shaped  lead22, ballistic cylindrical  nanostructures23, rings 
perturbed with a quantum  well24, etc.

In a pioneering work (983), Buttiker, Imry, and Landauer proposed an equilibrium persistent currents that can 
appear in an isolated one-dimensional metallic ring penetrated with a magnetic flux without any  dissipation25. 
These currents are a consequence of the quantum interference of the electronic wave functions. This phenom-
enon is also experimentally observed in mesoscopic  rings26,27. This penetrating magnetic flux may also lead to 
Aharonov-Bohm  phenomena2. So far, the effect of different parameters on the persistent currents have been 
addressed, such as edged topological  disorder28, the electron–electron  interactions29, odd–even  width30, electric 
 field31, electron–phonon  interaction32, spin–orbit  coupling33, impurity  scattering34,  torsion35, etc.

Fractals are usually defined as the "set whose Hausdorff dimension exceeds topological dimension". Some 
fractal properties include recursive self-symmetry, infinite, and fractional dimension. However, the space filling 
self-symmetry, and fractional dimension are most significant properties with empirical applications. Fractals 
can be produced in strange shapes using the "replacement rule". Therefore, a fractal keeps its geometrical details 
despite magnification (i.e., scaling). These structures are invariant under such scaling that may be identified using 
a single number (i.e., the fractal dimension). The term "Fractal" was first coined by Benoît Mandelbrot in  197536. 
Fractals have applications in animation, gaming, and science-fiction  films37, optical properties of semiconducting 
 nanosctructures38, optical filters based on the Thue-Morse photonic  multilayers39, phonon  states40, etc. It is said 
that: The Mandelbrot Set is perhaps the most complex object in mathematics, and it is undoubtedly one of the most 
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fascinating and rewarding mathematical objects to explore41. Our motivation in this way was the real experimen-
tal structures such as nano-flowers branched nanowires, and nano-trees42, which have not conventional simple 
geometries. This fact enforce us to study more complicated realistic systems such as quantum fractals.

A very special feature of fractals that doesn’t exist in other systems, is their scaling invariance. This property 
makes them very suitable for practical purposes, where the experimenters might conduct a study on the differ-
ent scales. Besides that the experiments on the different scales would lead to totally different picture of results 
even if the geometrical shape of the structures are the same. This is the case both for single and many particle 
systems. Also, the tiny features of the Mandelbrot structure which can less be seen at the borders, typically less 
affect the wave-function, energy and the current. Therefore, in practice one needs not to actually form a high-
level “Mandelbrot” accurately, which is considered hard and complex. That said, in the numerical study, the 
easiest way to simulate such symmetries is to use fractal formulas. Naturally, it is possible to form this “flower 
like” structures with simpler shapes such as circles or polygons but such pretty and smooth structures can hardly 
be fabricated experimentally, and in the real experiments, non-smooth borders will exist that may be mod-
eled in other ways such as using fractals. Also, some distribution functions can be used to model non-smooth 
borders of the structure. Besides, it is said that the uniform self-assembled QRs with ideal geometry need to be 
grown to observe quantum effects and for their practical  applications43. We have tried to test it. Also, solving 
the Schrödinger equation with a fractal potential border may link the ordinary quantum mechanics with the 
quantum chaos because of the non-integer dimension of the fractal potential  geometry44. In the meantime, this 
fractal geometry can be interesting because it can affect the electrons trajectories in the system. However, it is 
also known that the electrons spectrum can produce some fractal structures such as the Hofstadter  butterfly45 if 
they are placed in a magnetic field. Therefore, it is important to study the energy spectrum when the electrons 
are placed in a fractal structure.

In the current research we want to explore the effect of Mandelbrot fractality of the persistent current of 
 AlxGa1-xAs quantum rings. For this purposes, we have considered three types of Mandelbrot rings that have been 
illustrated in the next sections. Such studies have different applications such as the formation of a  qubit46 and 
coherent  nanoelectronics47. This research is organized as follows: in the section "Formalism", we have presented 
the background mathematical formalism of the persistent current evaluation. In the section "Numerical Man-
delbrot quantum ring generation process", we have described the numerical procedure of generating Mandelbrot 
quantum rings. We have discussed the results in the section "Results and discussions". Finally, we have presented 
some concluding remarks in the “Conclusion” section.

Formalism
We study the Mandelbrot quantum ring in the xy-plane. For this purpose, the two-dimensional effective mass 
envelop function Schrodinger equation for an electron reads,

where the first term defines the kinetic energy in the presence of the magnetic field. Also, e, c, A, and 
 m* = (0.067 + 0.083x)  m0

48 are the electron charge, speed of light, magnetic vector potential, and electron effective 
mass, respectively. Here,  m0 is the free electron mass. The spatial domain is a rectangle � = [Ax ,Bx] × [Ay ,By] . 
Then, using the definition P̂ = −i� �∇ , and following the  Ref49, we have,

where φ is the uniform magnetic flux that is usually defined versus the universal flux quanta φ0 = (hc/e) , pen-
etrates the interior quantum ring. The confining potential V(x, y) is defined as,

where, in  Ga1−xAlxAs/GaAs  system50, we �Ec = 0.65�Eg (x) , where ∆Eg(x) = 1.247x. Here, x is the composition 
parameter. We have provided three types of schematic potential profiles V(x, y) for Mandelbrot quantum rings in 
Figs. 1, 2, 3. Figure 1 shows the schematic potential profile  V1(x, y) for some Mandelbrot quantum ring systems 
that the internal border of the ring is a circle but the external border obeys from the mth order Mandelbrot fractal. 
Panels (A–L) are plotted for m = 4–15. In Fig. 2, we have presented the schematic potential profile  V2(x, y) for 
some Mandelbrot quantum ring systems that the external border of the ring is a circle but the internal border 
obeys from the mth order Mandelbrot fractal. Panels (A–L) are plotted for m = 4–15. Also, Fig. 3 illustrates the 
schematic potential profile  V3(x, y) for some Mandelbrot quantum ring systems. In the first row (panels A to D), 
the internal and external borders of the quantum ring obey from two mth order Mandelbrot fractals (m = 6, 8, 10 
and 12). In the second row (panels E to H), the external border of the quantum ring is a 10th order Mandelbrot 
fractal, while the internal border of the quantum ring obeys from mth order Mandelbrot fractals (m = 11, 12, 13, 
and 14). In the third row (panels I–L), the internal border of the quantum ring is a 6th order Mandelbrot fractal, 
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while the external border of the quantum ring obeys from mth order Mandelbrot fractals (m = 7, 8, 9, and 10). 
The generation process is discussed in the following section.

Finally, using the diagonalization of the Hamiltonian (1), the eigenenergies and eigenfunctions are obtained. 
At zero temperature and in the absence of electron–electron interactions, the persistent current  reads51,

where E0(φ) defines the ground state energy.

Numerical Mandelbrot quantum ring generation process
Mandelbrot set can be obtained by consecutive iteration of Eq. (5) in complex plane.

where c and z are complex numbers and m is a rational number. c belongs to Mandelbrot set provided that z 
remains finite after adequate iterations of Eq. (5). Let’s assume that

where x and y are real numbers and initial value of z is zero. After discretizing x and y axes by  Nx and  Ny slices, 
M =  Nx ×  Ny pair of points will be obtained. We started from an arbitrary number for  Nx and  Ny, and then we 
increased this number until we got the consistent, unchanging results for current. Each pair can be inserted 
into Eq. (6) which gives a complex number for c. Now, we use this value of c in Eq. (5), where we iterate it for M 
times to obtain v

(

x, y
)

 as follows:

This process should be repeated for each pair of points 
(

x, y
)

 . |z| �= ∞ will be satisfied, if and only if |z| ≤ 2 , 
that is to say, z won’t escape to infinity as long as it stays equal or less than 2 during iterations. Equation (7) was 
used in “Mandelbrot in circle” (see Fig. 2). As for Figs. 1 and 3, the inverse of Eq. (7) has been utilized:
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Figure 1.  Schematic potential profile  V1(x, y) for some Mandelbrot quantum ring systems that the internal 
border of the ring is a circle but the external border obeys from the mth order Mandelbrot fractal. Panels (A–L) 
are plotted for m = 4–15.
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Figure 2.  Schematic potential profile  V2(x, y) for some Mandelbrot quantum ring systems that the external 
border of the ring is a circle but the internal border obeys from the mth order Mandelbrot fractal. Panels (A–L) 
are plotted for m = 4–15.
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To design zminzn potentials, one can utilize padding scheme. Enlarging a matrix can be done by adding 
arbitrary number of zeros at the beginning and end of each dimension. For example:

Adding two matrices P and Q with size p and q where p > q becomes viable as long as we pad Q so that q 
becomes equal to p. Now, one can apply algorithm Mandelbrot potential to obtain zn and zm with arbitrary size 
p and q where p > q. By padding zm for several times until p = q, one can add zm and zn matrices to obtain zminzn 
potentials.

To have the best potential profile, we can choose M regardless of the value of Nx*Ny as they are independent 
parameters, however, lower values of M show more geometrical deficiencies (not dark-blue or yellow regions in 
Fig. 4) whereas choosing small value for Nx and Ny will result in inaccurate results in eigenvalues of energy and 
current. We tested different values for Nx and Ny, until eigenenergies remained consistent, and we increased the 
value of M until no noticeable geometrical deficiencies was observed.

Results and discussions
By using the numerical solution of the two-dimensional Schrodinger equation we have calculated the energy 
eigenvalues and the corresponding eigenfunctions as well as the persistent current of above-mentioned types 
of quantum rings.

First we consider the type 1 Mandelbrot quantum ring potential profile  V1(x, y) that has an internal circular 
ring border and an external border with mth order Mandelbrot shape (see Fig. 1). Panels (A–L) of this figure are 
depicted for m = 4–15. Panel (A) of Fig. 5 presents eight lowest eigenenergies with iteration number m = 4. Also, 
panels (B–F) present the same quantities but for m = 6, 8, 10, 12, and 14, respectively. In this figure, one can see 
the well-known Aharonov-Bohm oscillations. The interesting characteristic in these panels is the Non-continuous 
straight horizontal variation of the energy levels as a function of the external magnetic flux in some flux ranges 
(these are the Non-continuous flux-invariant energy levels). We note that the continuous flux-invariant energy 
levels are reported  elsewhere52, in panel (A) of Figs. 7 or 11. In addition, we see that these straight lines can meet 
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Figure 3.  Schematic potential profile  V3(x, y) for some Mandelbrot quantum ring systems. In the first row 
(panels A–D), the internal and external borders of the quantum ring obey from two mth order Mandelbrot 
fractals (m = 6, 8, 10 and 12). In the second row (panels E–H), the external border of the quantum ring is a 10th 
order Mandelbrot fractal, while the internal border of the quantum ring obeys from mth order Mandelbrot 
fractals (m = 11, 12, 13, and 14). In the third row (panels I–L), the internal border of the quantum ring is a 6th 
order Mandelbrot fractal, while the external border of the quantum ring obeys from mth order Mandelbrot 
fractals (m = 7, 8, 9, and 10).
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other energy levels too. The position of these horizontal lines, the spacing between them, and number of these 
levels vary with the Mandelbrot iteration number m. In Panel (A) of Fig. 6, we have presented the variation of 
the persistent current (due to Fig. 5 energy spectrum) as a function of the magnetic flux φ for some Mandelbrot 
quantum ring systems with Mandelbrot order m = 4, 6, and 8 in Fig. 1. Panel (B) is the same as the panel (A) but 
for m = 10, 12, and 14. As this figure shows, the current amplitude decreases by increasing the Mandelbrot order 
m. Another fact is that the maximum current amplitude reduces by increasing the magnetic flux φ.

Panel (A) of Fig. 7 depicts eight lowest eigenenergies for a Mandelbrot quantum ring system with iteration 
numbers m = 2 in Fig. 2. Panels (B–D) are the same as panel (A) but for m = 3, 4, and 5, respectively. As this figure 
shows, by increasing m (compare different panels of this figure), the number of energy levels that try to become 
bunched is proportional to m = 1. For example, the numbers of collecting energy levels in panels (A–D) for m = 2, 
3, 4, and 5 are 1, 2, 3, and 4, respectively. These collected energy levels are specified by some ovals. Another fact 
is that, the energy spectrum enhances (shift up along energy axis) as Mandelbrot order m increases. Also, panel 
(A) of Fig. 8 presents eight lowest eigenenergies for a Mandelbrot quantum ring system with iteration numbers 
m = 6 in Fig. 2. Panels (B–D) are the same as panel (A) but for m = 8, 10, and 12, respectively. In this figure, as 
Mandelbrot order m increases, the bunched energy levels specified by an oval in the panel (A) expand to larger 
intervals in the following panels. In panel (A) of Fig. 9, we have shown the variation of the persistent current 
as a function of the magnetic flux φ for some Mandelbrot quantum ring systems with iteration numbers m = 2, 
3, and 4 in Fig. 2. Panel (B) is the same as the panel (A) but for m = 5, 6, and 7. Also, panel (C) is similar to the 
panel (A) but for m = 8, 9, and 10. Finally, panel (D) is the same as the panel (A) but for m = 11, 12, and 13. In 
panel (A), by increasing m, the persistent current starts to be produced. This is because, the wave function start 
to distribute more uniformly along the ring circumstance and therefore the probability of finding the electrons 
at more locations along the ring radius become considerable. By further increasing m in the panel (B), the 
persistent current will have the saw-tooth shape. Panels (C) and (D) also shows that, much increasing m, lead 
to approximately the same persistent currents. This is also because, if we see the Figs. 1 or 2, it is clear that for 
large values of m, increasing the m have smaller effects of the ring shape. Therefore, we readily conclude that the 
persistent current may not change as m changes. Also, comparing the panels in this figures shows that, the rings 
with larger m lead to persistent current with larger amplitudes. This is also because, the rings with larger m, are 
more round and the current can flow more easily through them.

Figure 4.  Mandelbrot potential as the values Nx, Ny, and M changes.
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In panel (A) of Fig. 10, we have presented eight lowest eigenenergies for a Mandelbrot quantum ring system 
with iteration numbers m = 6 in Fig. 3 of type of  zm in  zm (similar to the first row of Fig. 3). Panels (B–D) are 
the same as panel (A) but for m = 7, 8, and 9, respectively. Similar to panel (A) of Fig. 8, as Mandelbrot order m 
increases, the bunched energy levels specified by an oval in the panel (A) expand to larger intervals in the fol-
lowing panels (B–D). Panel (A), Fig. 11 shows eight lowest eigenenergies for a Mandelbrot quantum ring system 
with iteration numbers m = 7 in Fig. 3 of type of  z6 in  zm (similar to the second row of Fig. 3). Panels (B–D) are the 
same as panel (A) but for m = 8, 9, and 10, respectively. In this figure, we see that, roughly speaking, the energy 
levels in this type of Mandelbrot geometry are flux invariant. Here, by increasing m, the energy levels show an 

Figure 5.  Panel (A) Eight lowest eigenenergies (meV) for a Mandelbrot quantum ring system with iteration 
number m = 4 in Fig. 1. Panels (B–F) are the same as panel (A) but for m = 6, 8, 10, 12, and 14, respectively.

Figure 6.  Panel (A): Variation of the persistent current as a function of the magnetic flux φ for some 
Mandelbrot quantum ring systems with iteration numbers m = 4, 6, and 8 in Fig. 1. Panel (B): The same as the 
panel (A) but for m = 10, 12, and 14.
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Figure 7.  Panel (A): Eight lowest eigenenergies (meV) for a Mandelbrot quantum ring system with iteration 
numbers m = 2 in Fig. 2. Panels (B–D) are the same as panel (A) but for m = 3, 4, and 5, respectively.

Figure 8.  Panel (A): Eight lowest eigenenergies (meV) for a Mandelbrot quantum ring system with iteration 
numbers m = 6 in Fig. 2. Panels (B–D) are the same as panel (A) but for m = 8, 10, and 12, respectively.
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Figure 9.  Panel (A): variation of the persistent current as a function of the magnetic flux φ for some 
Mandelbrot quantum ring systems with iteration numbers m = 2, 3, and 4 in Fig. 2. Panel (B): the same as the 
panel (A) but for m = 5, 6, and 7. Panel (C): The same as the panel (A) but for m = 8, 9, and 10. Panel (D): The 
same as the panel (A) but for m = 11, 12, and 13.

Figure 10.  Panel (A): Eight lowest eigenenergies (meV) for a Mandelbrot quantum ring system with iteration 
numbers m = 6 in Fig. 3 of type of  zm in  zm (similar to the first row). Panels (B–D) are the same as panel (A) but 
for m = 7, 8, and 9, respectively.
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Figure 11.  Panel (A): Eight lowest eigenenergies (meV) for a Mandelbrot quantum ring system with iteration 
numbers m = 7 in Fig. 3 of type of  z6 in  zm (similar to the second row). Panels (B–D) are the same as panel (A) 
but for m = 8, 9, and 10, respectively.

Figure 12.  Panel (A): Eight lowest eigenenergies (meV) for a Mandelbrot quantum ring system with iteration 
numbers m = 11 in Fig. 3 of type of  zm in  z10 (similar to the third row). Panels (B–D) are the same as panel (A) 
but for m = 12, 13, and 14, respectively.
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overall decrease. Also, the energy level bunching is seen in this figure. Furthermore, panel (A) of Fig. 12 presents 
eight lowest eigenenergies for a Mandelbrot quantum ring system with iteration numbers m = 11 in Fig. 3 of type 
of  zm in  z10 (similar to the third row of Fig. 3). Panels (B–D) are the same as panel (A) but for m = 12, 13, and 14, 
respectively. In this type of Mandelbrot rings, as m increases, some energy gaps that exist in panel (A) will be 
closed. These energy gaps are shown by black rectangular bars in panel (A). However, the general shape of the 
electronic spectrum configuration does not change by increasing m. Panel (A) of Fig. 13 presents the variation 
of the persistent current as a function of the magnetic flux φ for some Mandelbrot quantum ring systems with 
iteration numbers m = 6, 8, 10, and 12 in Fig. 3 (similar to the first-row structures). Panel (B) is the same as the 
panel (A) but for m = 11, 12, 13, and 14 for some Mandelbrot quantum ring systems of type of the second row 
structures in Fig. 3. Finally, panel (C) is the same as the panel (A) but for m = 7, 8, 9, and 10 for some Mandelbrot 
quantum ring systems of type of the third row structures of Fig. 3. Comparing different panels of Fig. 13 reveals 
that, the  zm in  zm has the greatest current among the studied systems, while  z6 in  zm structures possess the least 
current. In panel (c), by increasing m the ac current starts to be produced. However due to the non-homogenous 
wave function along the quantum ring circumstance, the current is weak and has less ac character. See the panel 
(A) of Fig. 14. Panels (A–I) of Fig. 14 shows the nine lowest-energy eigenfunctions for a Mandelbrot quantum 
ring system with  z6 in  z10 structure. The persistent currents in panel (B) of Fig. 13 have sinusoidal character. As 
one may see the Fig. 15, the electronic wave functions inside the ring regions are more homogeneous than Fig. 14. 
Panels (A–I) of Fig. 15 show the nine lowest-energy eigenfunctions for a Mandelbrot quantum ring system with 
 z10 in  z12 structure. Finally, the  zm in  zm ring structures in panel (A) of Fig. 13 has semi-saw-tooth persistent 
current configurations. As one may see the Fig. 16, due to the symmetry of this structure type, the wave func-
tions are more uniformly distributed throughout the ring areas than other  z6 in  zm of  zm in  z10 Mandelbrot ring 
structures. Panels (A–I) of Fig. 16 presents the nine lowest-energy eigenfunctions for a Mandelbrot quantum 
ring system with  z12 in  z12 structure.

Figure 13.  Panel (A): Variation of the persistent current as a function of the magnetic flux φ for some 
Mandelbrot quantum ring systems with iteration numbers m = 6, 8, 10, and 12 in Fig. 3 of type of the first row 
structures. Panel (B): The same as the panel (A) but for m = 11, 12, 13, and 14 for some Mandelbrot quantum 
ring systems of type of the second row structures. Panel (C): The same as the panel (A) but for m = 7, 8, 9, and 10 
for some Mandelbrot quantum ring systems of type of the third row structures.
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Conclusion
In this work, we studied the electronic spectrum and persistent current of a three variants of Mandelbrot quantum 
ring systems. We observed some Non-continuous flux-invariant energy levels for the type 1 Mandelbrot quantum 
rings in some external flux ranges. Their position, the spacing between them, and number of them could be 
tuned using the Mandelbrot iteration level m. In this type of Mandelbrot ring, the current amplitude decreased 

Figure 14.  Panels (A–I): Nine lowest-energy eigenfunctions for a Mandelbrot quantum ring system with  z6 in 
 z10 structure.



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5710  | https://doi.org/10.1038/s41598-023-32905-w

www.nature.com/scientificreports/

by increasing the Mandelbrot order m. using the type 2 Mandelbrot rings, we could bunch the energy levels or 
expand them in a larger energy interval. The shape of the persistent current (sinusoidal or saw-tooth) could be 
tuned using the Mandelbrot order m. in  z6 in  zm Mandelbrot rings, flux invariant energy levels observed. The  zm 
in  zm  (z6 in  zm) has the greatest (smallest) current intensity among the studied systems.

Figure 15.  Panels (A–I): Nine lowest-energy eigenfunctions for a Mandelbrot quantum ring system with  z10 in 
 z12 structure.
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