
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5884  | https://doi.org/10.1038/s41598-023-32903-y

www.nature.com/scientificreports

Stereology neuron counts correlate 
with deep learning estimates 
in the human hippocampal 
subregions
Jan Oltmer 1,2, Emma W. Rosenblum 1, Emily M. Williams 1, Jessica Roy 1, 
Josué Llamas‑Rodriguez 1, Valentina Perosa 3,4, Samantha N. Champion 5, 
Matthew P. Frosch 5 & Jean C. Augustinack 1,2*

Hippocampal subregions differ in specialization and vulnerability to cell death. Neuron death and 
hippocampal atrophy have been a marker for the progression of Alzheimer’s disease. Relatively 
few studies have examined neuronal loss in the human brain using stereology. We characterize an 
automated high‑throughput deep learning pipeline to segment hippocampal pyramidal neurons, 
generate pyramidal neuron estimates within the human hippocampal subfields, and relate our 
results to stereology neuron counts. Based on seven cases and 168 partitions, we vet deep learning 
parameters to segment hippocampal pyramidal neurons from the background using the open‑source 
CellPose algorithm, and show the automated removal of false‑positive segmentations. There was 
no difference in Dice scores between neurons segmented by the deep learning pipeline and manual 
segmentations (Independent Samples t-Test: t(28) = 0.33, p = 0.742). Deep‑learning neuron estimates 
strongly correlate with manual stereological counts per subregion (Spearman’s correlation (n = 9): 
r(7) = 0.97, p < 0.001), and for each partition individually (Spearman’s correlation (n = 168): r(166) = 0.90, 
p <0 .001). The high‑throughput deep‑learning pipeline provides validation to existing standards. This 
deep learning approach may benefit future studies in tracking baseline and resilient healthy aging to 
the earliest disease progression.

Abbreviations
BB  Braak & Braak stage
CA1  Cornu ammonis 1
CA2  Cornu ammonis 2
CA3  Cornu ammonis 3
CA4  Cornu ammonis 4
Sub  Subiculum
CA1u  CA1 uncal
CA2u  CA2 uncal
CA3u  CA3 uncal

The hippocampus is a major hub of cognition and receives various inputs from the entorhinal cortex. It is 
crucial for cognitive processes like  learning1,  memory2, and spatial  navigation3. Based on differences in loca-
tion, cell morphology, and cytoarchitectural organization, the hippocampus can be parcellated into several 
 subregions4–8. Subsequently, multiple studies emphasize the need for subregion-specific examinations, demon-
strating subregional differences in functional  specialization9,10, directly linking isolated subregion damages to 
distinct  pathologies11–13, and pinpointing differences in vulnerability to neurodegeneration and cell  death13,14. In 
neuroimaging, hippocampal volume is routinely used as a measure for disease progression. This is the case for 
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neurodegenerative diseases such as Alzheimer’s  disease15,16, as well as  schizophrenia17. Reduced neuronal counts 
in the hippocampus have been linked to stress, depression, schizophrenia, and Alzheimer’s  disease18–20. Stereol-
ogy is a non-biased systematic random sampling method that has been used to produce total neuron counts in 
the hippocampal subregions and serves as a gold standard for neuron  counting18,21–23. Two stereology methods 
find wide application, optical  fractionator24 and the NvVref  method21,25. Deep learning techniques have offered 
novel ways to quantify structure and have been successfully utilized in various fields, such as the diagnosis and 
classification of  cancer26,27, the quantification of  myofibers28,29, and the identification of histopathological mark-
ers in neurodegenerative  diseases30,31. It has also been applied to segment fluorescently-tagged neurons in the 
human and rat  brain32,33. Neuron segmentation in deep learning has been compared to stereology in previous 
studies; thus identifying it as a valuable and reliable method for the extraction of cell  counts34–38. Yet it has not 
been applied to segment and quantify Nissl stained pyramidal neurons in the hippocampal subfields of the human 
brain—a region needed for cognition and severely affected in Alzheimer’s disease.

In this study, we created a pipeline for an automated (deep learning-based) extraction of pyramidal neuron 
estimates of the hippocampal subregions. Utilizing a unique dataset of histologically stained and parcellated hip-
pocampal sections in the human brain, we piloted and applied a pre-trained convolutional neural network-based 
algorithm for cellular  segmentation39 to segment neurons in the hippocampal pyramidal neuron layer. Moreover, 
we compared the deep learning generated pyramidal neuron segmentations with manual segmentations. We 
developed a filtering method ideal for hippocampal pyramidal neurons and compared our deep learning neuron 
estimates with manual stereology neuron counts using the optical fractionator probe and  equation24. The goal of 
this study was twofold: (1) to develop a rigorously piloted pipeline to segment individual hippocampal neurons 
stained for Nissl, and (2) to extract the pyramidal neuron estimates of the human hippocampal subregions based 
on deep learning and relate to current standards in stereology. The aim was not to extract total neuron numbers 
of the entire hippocampus but to establish and present parameters for an automated high-throughput assessment 
of hippocampal pyramidal neuron numbers at the subregion level.

Materials and methods
Tissue samples. Seven human brain hemispheres (six left, one right) were acquired from the Massachusetts 
General Hospital Autopsy Suite (45–84 years; 68.33 ± 14.39 (mean ± sd); four males, two females, one unknown; 
postmortem intervals < 24 h). Autopsy consent was obtained from the legally empowered individual and autopsy 
tissue was collected only when allowance was made for research purposes. Excess tissue (defined as tissue not 
required for diagnostic purposes) was made available to investigators under a protocol approved by the IRB of 
MassGeneralBrigham. Samples were fixed by immersion in 10% formalin. Based on clinical reports, all cases 
were cognitive controls (cognitively healthy). All cases were screened for comorbidities based on the guidelines 
for the neuropathologic assessment of Alzheimer’s  disease40 by the Massachusetts General Hospital Autopsy 
Suite. No cases with neurological, psychiatric, or infectious disease cases were included. All cases were assessed 
with gross tissue inspection and Luxol fast blue as well as Hematoxylin & Eosin staining were applied to rule out 
vascular disease and stroke. Immunohistochemistry for phosphorylated tau was used and all cases were staged 
for Braak & Braak (MPF, JCA)41–43. Subsequently, one case was diagnosed as normal control, three as Braak and 
Braak I, and three as Braak and Braak II. Table 1 lists relevant demographic information and Supplementary 
Table T1 lists the reagents used in this study.

Histology processing. Histology processing was based on a previous  study44. First, tissue blocks were cry-
oprotected in 20% glycerol/2% dimethyl-sulfoxide-solution for a minimum of 10 days. Then, using a freezing 
sliding microtome (Leica Biosystems Inc, Buffalo Grove, IL USA), blocks were sectioned in the coronal plane at 
50 µm and collected serially. The coronal plane is the accepted convention for hippocampal anatomy and reflects 
the orientation of hippocampal pyramidal layers. All sections were hand-mounted onto glass slides, dried over-
night, and stained for Nissl substance with thionin. The staining protocol consisted of defatting (chloroform, 
100% ethanol mixture, 1:1), pretreatment (acetic acid, acetone, 100% ethanol, double distilled water mixture, 
1:1:1:1), staining in buffered thionin (8%), differentiating in 70% ethanol (addition of 5–10 drops of glacial acetic 
acid), dehydrating in an ethanol series (70%, 95%, 100%), clearing in xylene, and coverslipping with Permount.

Table 1.  Basic demographic information for cases used in study. BBI Braak & Braak stage I, BBII Braak & 
Braak stage II, cognitive control cognitively healthy, F female, M male, MTL medial temporal lobe, N/A not 
available, NC normal control, PMI postmortem interval, RH right hemisphere, LH left hemisphere.

Age Hemisphere Sex PMI in hours Braak & Braak stage
MTL amyloid 
burden Cause of death Clinical diagnosis

43 LH F 24 NC No Ischemic renal injury Cognitive control

59 LH M 20 BBI No Liver failure Cognitive control

68 RH M 24 BBI No Acute cardiac death Cognitive control

75 LH M 24 BBII Moderate Vascular disease Cognitive control

79 LH M 15 BBI High Surgery complication Cognitive control

84 LH F 24 BBII No Pneumonia Cognitive control

N/A LH N/A 24 BBII No N/A Cognitive control
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Subregion parcellation. Our parcellation protocol was based on previous publications outlining distinct 
characteristics and appearances of the hippocampal  subregions4–8. The hippocampus was parcellated into hip-
pocampal subregions on each sampled slide (JCA, EMW). When the uncus is present, some hippocampal sub-
regions occur medially as well as laterally. In our study, we refer to these additional medial subregions as CA1u 
(CA1 uncal), CA2u (CA2 uncal), CA3u (CA3 uncal), and Subu (Subiculum uncal), resembling the uncal regions 
defined by Ding and  colleagues5. Each subregion was represented in the dataset (CA1, CA2, CA3, CA4, CA1u, 
CA2u, CA3u, Sub, and Subu), which consisted of a total of 168 partitions across subfields, cases, and levels. Fig-
ure 1a shows both the medial/uncal and lateral subregions at the level of the hippocampal head, Fig. 1b displays 
distinct characteristics of the lateral hippocampal subregion at the level of the hippocampal body.

Tissue selection and digitization. The same tissue sections were selected and applied to both methods 
(deep learning and optical fractionator stereology) to quantify pyramidal neurons. The objective of this paper 

Figure 1.  Cytoarchitecture characteristics of hippocampal subregions in Nissl staining: (a) medial (uncal) 
hippocampal subregions at the level of the hippocampal head: CA3u, CA2u, CA1u, Subu. (a’) Pyramidal layers 
of the medial hippocampal subregions. (b) Lateral hippocampal subregions at the level of the hippocampal body, 
clockwise: CA4, CA3, CA2, CA1, Sub (subiculum). (b’) Pyramidal layers of the lateral hippocampal subregions. 
Magnification bars in (a, b) = 1 mm; in (a’,b’) = 200 µm.
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was not to quantify the total number of neurons in the hippocampus, but to test the deep learning pipeline by 
using a broad subset of hippocampal sections. Subsequently, stained hippocampal sections of each case were 
selected and sampled based on anatomical landmarks (five levels from anterior to posterior). The sampling 
levels were marked by millimeters from the first hippocampal slice and each level is approximate and rounded 
to the nearest whole number. The sampled levels were level 1, the anterior most sections of the hippocampus 
marked at 0 mm, level 2 is at 3.0 mm from the anterior most hippocampus, level 3 is located at 8.0 mm into 
the hippocampus, level 4 is at 11.0 mm, and lastly level 5 is at 15.0 mm. These hippocampal sampling levels (1. 
genu, 2. pes, 3. full dentate gyrus, 4. x-region, 5. body) have been further described with anatomical landmarks 
in a previous study (Williams et al. 2023)8. A total of 35 sections (seven cases x five coronal anterior–posterior 
levels) were sampled and digitized at high resolution (100× magnification) using a Keyence digital microscope 
(Keyence Corporation of America, Itasca, USA). The magnification is in line with several deep learning studies 
investigating histopathology on a cellular  level45–48, offering sub-micrometer pixel sizes (0.75 µm × 0.75 µm), 
while limiting file volumes, and enabling time efficient processing.

CellPose procedures (automated neuron estimates). The deep learning extraction of subregion-
specific pyramidal neuron estimates was conducted in four steps: (i) preprocessing, (ii) identifying deep learn-
ing parameters for hippocampal pyramidal neuron segmentation, (iii) establishing threshold-based filtering for 
false-positive segmentations, and (iv) extracting deep learning pyramidal neuron estimates based on CellPose. 
The deep learning pipeline utilized a high-performance cluster provided by the Massachusetts Life Sciences 
Center (MLSC). Figure 2 displays an overview of the complete pipeline for the CellPose-based extractions of 
pyramidal neuron estimates and related parameters.

(i) Preprocessing. Sampled slides were parcellated into subregions (Fig. 2a), and preprocessed to create optimal 
input  slides49. The preprocessing consisted of transformation into an 8-bit image, cropping out the hippocampal 
pyramidal neuron layer, image inversion, and automated contrast and brightness adjustment (Fig. 2b). Based on 
the cytoarchitectural parcellations of each sampled section, subregions were then manually separated and saved 
as individual partitions in the .tiff format (Fig. 2c). Each step was conducted using Fiji/ImageJ v1.53 (https:// 
www. imagej. nih. gov).

(ii) Determining deep learning parameters for hippocampal pyramidal neuron segmentation. Our study employed 
the neural network-based algorithm CellPose v0.639. CellPose is a generalist algorithm for cellular segmentation, 
which has been pre-trained and evaluated to accurately segment a diverse set of cellular shapes and  sizes28,39,49. 
CellPose has been previously applied for detailed histopathological analyses like the automated and unbiased 
quantification of highly uneven  myofibers28. To ensure optimal segmentation for our dataset of hippocampal 
pyramidal neurons, thorough piloting of algorithmic input parameters was conducted. To this aim, a subset of 18 
randomly selected partitions (three cases, each subregion represented twice) was processed using five different 
size input parameters (i.e., flexible pixel diameter, 23 pixel diameter, 24 pixel diameter, 26 pixel diameter, or 27 
pixel diameter). The pixel diameter parameter was used to specify the approximate diameter of the cells in pixel 
that will be segmented. It is used to scale the convolutional filters applied to the image, which affects the size of 
the objects that the algorithm is able to  detect39. The resulting segmentations per size input parameter were then 
visually inspected (JCA, EMW), and ranked for most accurate  segmentations39. Supplementary Fig. F1 displays 
the piloting of CellPose size input parameters (i.e., flexible diameter, 23 pixel diameter, 24 pixel diameter, 26 pixel 
diameter, or 27 pixel diameter). Based on our piloting, the best-performing size input parameter for hippocam-
pal pyramidal neurons was identified (24 pixel diameter), and employed for the processing of all individual 
partitions (n = 168). It reliably segmented pyramidal neurons of each subregion, minimizing false-negatives and 
false-positive segmentations, as well as over- and under-segmentation. Figure 2d shows an example vignette of 
the resulting segmented pyramidal neurons. Segmentations were visualized using Fiji/ImageJ v1.53. For a com-
plete list of the CellPose input parameters and model used for the pipeline, see Supplementary Table T2.

(iii) Establishing threshold‑based filtering parameters of segmented neurons. Based on the 168 processed parti-
tions, we encountered four possible instances of false-positive segmentations of pyramidal neurons: (1) seg-
mented extracellular space, (2) glial cells, (3) neuron profiles (partial neurons), and (4) overlapping pyramidal 
neurons (combined pyramidal neurons). The term neuron profile refers to a partial pyramidal neuron that was 
not parallel to the coronal plane or only partially displayed. Similar to glial cells, neuron profiles were smaller 
than in plane pyramidal neurons. Supplementary Fig. F2 shows a segmented pyramidal neuron and the four 
instances of false-positive segmentations. To correct each possible instance of false-positive segmentations, we 
developed an automated filtering method based on piloting and evaluation.

To exclude segmentations that were extracellular space, the mean gray value of the partition was set as a 
threshold (extracellular space and neurons). Segmentations lighter than this threshold were likely not pyramidal 
neurons and removed. To remove glial cells and neuron profiles, each segmentation was ellipsoid fitted (Fig. 2f, 
blue circle)50. Based on the geometry of pyramidal neurons, the minor axis of the ellipse (width) resembles the 
pyramidal neuron diameter (Fig. 2f, red line). Subsequently, a lower threshold for pyramidal neuron diameter for 
each partition was calculated and segmentations under this threshold were excluded. To identify an ideal filtering 
threshold a subset of 18 randomly selected partitions (three cases, each subregion represented twice) was filtered 
using a set of lower diameter thresholds (mean—1SD; mean—0.75SD, mean—0.5SD) and inspected for accuracy 
by JCA and EMW. Filtered segmentations were then ranked for best filtering performance based on the exclu-
sion of the aforementioned false-positive segmentations, whilst correctly segmented and delineated pyramidal 
neurons remained untouched. Thus, optimal filtering parameters were identified (mean diameter—0.75SD) and 

https://www.imagej.nih.gov
https://www.imagej.nih.gov
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Figure 2.  CellPose deep learning pipeline applied to hippocampal pyramidal neurons: (a) parcellated 
photomacrograph of hippocampus stained for Nissl substance (50 µm thick and coronal plane). (b) Cropped 
hippocampal pyramidal neuron layer to create partitions, transformed into inverted gray-value image. (c) 
Generating individual partitions. (d) Unfiltered segmented pyramidal neurons based on CellPose. Yellow 
outlines show neuron segmentations. (e) Filtered segmented neurons. Red X’s indicate removed items from 
segmentation (false-positives), (f) Hippocampal pyramidal neuron ellipsoid fitting and measurements 
(yellow: neuron segmentation, blue: fitted ellipse, red: neuron diameter (ellipsoid minor).
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applied to each partition (n = 168). We did not implement a similarly piloted upper threshold that would exclude 
overlapping neurons. This allowed us to count overlapping neurons as one, while excluding neuron profiles and 
glial cells. Supplementary Fig. F3 displays the piloting of different filtering parameters. Figure 2d displays the 
unfiltered pyramidal neuron segmentations generated by CellPose, and Fig. 2e shows segmented hippocampal 
pyramidal neurons post-filtering. Filtering was conducted using Fiji/ImageJ v1.53 and each individual neuron 
was numbered and trackable throughout the filtering and analyses process.

(iv) Extracting pyramidal neuron estimates. Pyramidal neuron estimates of each of the 168 partitions were 
extracted, equaling the number of segmented pyramidal neurons post-filtering. Per partition, filtered and unfil-
tered pyramidal neurons were assigned a number and partitions tallied into .tiff and .csv files to enable track-
ability.

Assessment of segmentations (masks) generated by deep learning. To test the filtered pyramidal 
neuron segmentations generated by the CellPose deep learning  pipeline39, we directly compared them to manual 
segmentations. This approach was based on a similar paper applying CellPose for the automated unbiased seg-
mentation and quantification of  myofibers28. Five vignettes containing a minimum of 75 pyramidal neurons 
were created from randomly selected partitions (750 µm × 750 µm, five cases, no subregion represented twice). 
Pyramidal neurons within these vignettes were then automatically segmented using the deep learning pipeline, 
as well as manually by three raters respectively (JR, EWR, JO). Manual segmentation was based on the filtering 
and segmentation criteria reported above, avoiding overfitting and underfitting of segmentations, and exclud-
ing the following: extracellular space, glial cells, neuron profiles, and overlapping neurons. In both methods 
pyramidal neurons touching the edge of a vignette were excluded. The creation of manual masks was conducted 
using Fiji/ImageJ v1.53. Dice scores of automated versus manual pyramidal neuron segmentations (masks) in 
five individual vignettes were calculated based on pixel wise comparison of the binarized masks using the Mor-
phoLibJ plugin for ImageJ/Fiji51.

Stereology (optical fractionator, manual neuron counts). To obtain neuron counts for validation, 
we applied a systematic random sampling protocol for manual stereology, utilizing the optical  fractionator24. 
Manual stereology counts for validation were conducted by EWR using Stereoinvestigator v2021.1.3 (Micro-
BrightField Inc, Burlington VT), a Nikon80i microscope attached to a Ludl motorized stage, and the optical 
fractionator probe. Each partition was traced as an ROI (region of interest) with the 4× objective. We used a 
100× oil objective and an average of 10 counting frames per subregion with a disector height of 10 μm. Count-
ing frame size was 50 μm × 50 μm. Two guard zones, 3 μm each, were included at the top and bottom of the 
counting frame. Counting criteria included a neuron with nucleolus, which was in focus within the disec-
tor, and does not cross the red exclusion lines of the counting frame. Section thickness was measured at each 
counting frame (mean tissue thickness across partitions = 20.39 µm). The number of neurons per partition (N) 
was calculated by the Stereoinvestigator software utilizing the optical fractionator equation provided by West 
and  Gundersen24: N =

∑
Q ∗

t
h ∗

1

asf ∗
1

ssf  . The optical fractionator equation takes into account the following 
parameters: Q = number of neurons counted (varied per counting frame), t = tissue thickness of the section, 
h = height of the counting frame, asf = area sampling fraction, and ssf = section sampling fraction. Since the aim 
of this approach was not to extract total neuron numbers of the hippocampus, but to test deep learning estimates 
of 168 individual hippocampal partitions against manual stereology neuron counts of the same partitions, the 
coefficient of Error (CE) was not applicable and ssf set to 1. The stereology pipeline for manual pyramidal neuron 
counts is illustrated in Fig. 3.

Development and availability of deep learning pipeline. Each in-house developed script was built 
as a macro/plugin for Fiji/ImageJ v1.53, and has been made available on GITHUB (https:// github. com/ Augus 
tinac kLab/ Neuro nNumb erEst imates). The set of scripts include: preprocessing, automated filtering of false-
positive segmentations, and parameter extraction as well as subsequent preparation of results for analysis and 
quality control. To facilitate application, scripts were annotated and input parameters such as filtering threshold 
can be modified. Standards and parameters required for digitization were included.

Statistical analysis. Statistical analysis and data presentation were conducted using Prism v.9.1 (Graph-
pad, https:// www. graph pad. com) and R-Studio v.1.4.1 (The RStudio Team, https:// www.r- proje ct. org). Multiple 
Shapiro–Wilk-tests were computed to screen for violations of normality. First, differences between Dice scores of 
automated versus manual pyramidal neuron segmentations and pairs of manual segmentations were quantified 
using an Independent Samples t‑Test. Second, we used a Paired Samples Wilcoxon Test to compare automated 
CellPose pyramidal neuron estimates and manual stereology counts of each partition. Third, two Kruskal–Wal-
lis-H tests were conducted to investigate subregion differences, using either manual neuron counts or automated 
neuron estimates per partition as independent variables, and subregion (CA1, CA1u, CA2, CA2u, CA3, CA3u, 
CA4, Sub, Subu) as a factor. Fourth, a Spearman’s correlation was computed to reveal correlations in automated 
pyramidal neuron estimates and manual pyramidal neuron counts per subregion. Fifth, a Spearman’s correlation 
was used to reveal associations of automated pyramidal neuron estimates and manual pyramidal neuron counts 
of individual partitions. Post-hoc testing was conducted with Dunn’s tests in combination with Holm’s correc-
tion for multiple comparisons. All statistical tests were two-sided and utilized p < 0.05 as the level of significance.

https://github.com/AugustinackLab/NeuronNumberEstimates
https://github.com/AugustinackLab/NeuronNumberEstimates
https://www.graphpad.com
https://www.r-project.org
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Results
Deep learning segments pyramidal neurons. For automated pyramidal neuron estimates, we show the 
unfiltered (Fig. 2d) as well as the finalized threshold filtered segmentations (Fig. 2e). The unfiltered segmenta-
tion of hippocampal pyramidal neurons across all cases, levels, and subregions totaled 631,494. Post filtering, 
479,873 pyramidal neurons remained (75.99% ± 0.26; mean ± S.E.M.). Approximately a quarter of the initially 
segmented neurons across partitions was therefore excluded (24.01% ± 0.26; mean ± S.E.M.). Supplementary 
Table T2 lists percentages of pyramidal layer neuron segmentations remaining post-filtering averaged per sub-
region. Supplementary Table T4 provides subregion specific descriptive statistics of unfiltered pyramidal layer 
neuron estimates.

Assessment of neuronal segmentation. To assess the automated pyramidal neuron masks cre-
ated by the deep learning pipeline, we compared them with manual pyramidal neuron segmentations (three 
raters: JR, EWR, JO). Dice scores were utilized to quantitatively investigate the similarity of CellPose masks 
with manual segmentations (automated versus rater), as well as manual segmentations with manual segmen-
tations (rater versus rater). The mean Dice score of automated masks versus manually created segmentations 
was 0.65 ± 0.03 (mean ± S.E.M.), while the mean Dice score of pairs of manually created segmentations was 
0.64 ± 0.03 (mean ± S.E.M.). Figure  4a shows the automated CellPose masks, as well as manually segmented 
pyramidal neurons of the same vignettes. There was no significant difference between Dice scores of automated 
versus rater, and rater versus rater segmentations (paired samples t test: t(28) = 0.33, p = 0.742, Fig. 4b). Supple-
mentary Table T4 lists additional automated and manual comparisons.

Manual pyramidal neuron counts correlate with deep learning estimates. The same cases, levels, 
and hippocampal subregions were represented in automated CellPose neuron estimates and manual stereology 
neuron counts. A Paired Samples Wilcoxon Test showed significantly higher manual (stereology) pyramidal 
neuron counts than automated (CellPose) pyramidal neuron estimates (n = 168, W = −12,832, p < 0.001). The 
average pyramidal neuron count across subregions was 2815.74 ± 204.31 (median = 1980.00) in automated esti-
mates and 5184.37 ± 382.07 (median = 3565.35) in manual counts (both mean ± S.E.M.) (Fig. 4c). The automated 
neuron estimates across subregions, levels, and cases totaled to 470,873, compared to 870,974 in manual counts. 
As the numbers demonstrate, automated estimates were routinely lower than manual counts. However, both 
methods show a strong and consistent relationship across subregions, as displayed in Fig.  4d. A Spearman’s 
correlation compared automated neuron estimates and manual neuron counts averaged per subregion, and 
revealed an excellent positive association (Spearman’s correlation: n = 9, r(7) = 0.97, p < 0.001) (Fig. 4e). Similarly, 
we observed an excellent correlation between automated neuron estimates and manual neuron counts of indi-
vidual partitions (Spearman’s correlation: n = 168, r(166) = 0.90, p < 0.001) (Fig. 4f). Two Kruskal–Wallis H-tests 
revealed a significant effect of subregion in automated neuron estimates as well as manual neuron counts (auto-
mated: n = 168, χ2(8) = 121.4, p < 0.001; manual: n = 168, χ2(8) = 96.65, p < 0.001). Automated pyramidal neuron 
estimates showed consistently lower variability in comparison to the manual method (Fig. 4d). Table 2 shows 
descriptive statistics of automated neuron estimates and manual neuron counts per subregion. Furthermore, 
post-hoc comparisons showed the same pattern of subregions differing significantly from each other in manual 
stereology and the CellPose deep learning pipeline (Table 3).

Figure 3.  Manual hippocampal pyramidal neuron counts using optical fractionator stereology and systematic 
random sampling: (a) Nissl stained section with inset showing CA3 (example ROI). (b) ROI was outlined 
with random sampling grid overlaid and resulting with approximately 10 counting frames per the ROI. (c) 
50 µm × 50 µm counting frame showing exclusion (red) and inclusion (green) lines. Tissue thickness taken by 
focusing from top to bottom of the section and averaged 20.3 µm across partitions. ROI region of interest.
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Figure 4.  Correlation of the CellPose deep learning pipeline: (a) Nissl stained vignette used for pyramidal 
neuron segmentation, three raters performed manual segmentations (masks 1, 2, 3; blue), and CellPose 
performed the automated segmentation (mask 4; brown). (b) No significant difference between the Dice scores 
calculated from the manual masks (manual rater versus manual rater), and automated masks (automated 
versus manual rater). Whiskers indicate min to max, + indicates mean, line indicates median. (c) Manual 
pyramidal neuron counts and automated pyramidal neuron estimates. Averaged across subregions, levels and 
cases. Whiskers indicate min to max, + indicates mean, line indicates median. (d) Subregion specific pyramidal 
layer neuron estimates, averaged across cases and levels. (e) Excellent correlation of manual (stereology) and 
automated (CellPose) pyramidal layer neuron estimates averaged per subregion (Spearman’s correlation (n = 9): 
r(7) = 0.97, p < 0.001). (f) Excellent correlation of manual (stereology) and automated (CellPose) pyramidal layer 
neuron estimates per partition (not averaged per subregion; Spearman’s correlation (n = 168): r(166) = 0.90, 
p < 0.001).
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Time allotment comparison. The automated deep learning pipeline used 27 h of manual preparation. 
This preparation time included writing scripts (20  h), determining optimal segmentation parameters (two 
hours), piloting optimal filtering parameters for the removal of false-positive segmentations (three hours), and 
preprocessing the input slides (cropping out of pyramidal layer and generation of individual partitions; two 
hours). In addition, the deep learning pipeline utilized seven hours of computing time on a high-performance 
cluster. By comparison, the manual stereology neuron counts on the same partitions required 35  h of labor 
by stereology counter (EWR). This time allowance includes set up times for the experiments. The histological 
sections processed for our study were already digitized (approximately 5–10 sections per hour). Both methods 
utilized the same tissue and parcellations. Thus, tissue processing as well as parcellation times were not included 
in time estimates.

Discussion
In this study, we present a deep learning-based pipeline to extract subregion-specific neuron estimates of the 
hippocampal pyramidal layer and relate our results to the current standards for stereology. We used the pre-
trained and successfully applied convolutional neural network algorithm for cellular segmentation “CellPose”28,39 
to delineate pyramidal neurons in 168 hippocampal samples, and developed an automated filtering method 
for false-positive segmentations. This report establishes tailored input and filtering parameters. It provides a 
pipeline for high-throughput pyramidal neuron quantifications in the human hippocampal subregions that 
can be expanded to additional datasets. To the best of our knowledge, it is the first to show that deep learning-
based estimates approximate the relative ratio of pyramidal neurons in manual stereology counts of the human 
hippocampal subregions. Our results show no difference in Dice scores of pyramidal neurons created by the 
CellPose pipeline and segmentations conducted by manual raters. While both methods resulted in different total 
pyramidal neuron counts, our data demonstrates excellent correlations of pyramidal neuron estimates extracted 
using the deep learning approach with manual stereology experiments. Notably, automated pyramidal neuron 
estimates consistently revealed lower variability. This work establishes parameters for the CellPose deep learning 
pipeline in the hippocampal pyramidal neurons and provides needed scripts, which future studies can utilize. 
The difference between time allotments suggests that the deep learning approach is time efficient, while requir-
ing minimal human intervention.

There was no significant difference when comparing Dice scores of automated versus manual segmentations 
and pairs of manual segmentations (t(28) = 0.33, p = 0.742). This finding is in line with a recent study which 
applied the same convolutional neural network (CellPose) to segment and quantify  myofibers28. Moreso, we 
observed significant and exceptionally strong associations between manual and automated pyramidal neuron 
quantifications. This was true per subregion (Fig. 4e), as well as per individual partition (Fig. 4f). Although we 
observed significant differences in the raw numbers between methods (Fig. 4d), automated neuron estimates 
adhered to the same pattern as manual neuron counts (Fig. 4c), revealing the same pattern among subregions. 
Automated neuron estimates and manual neuron counts employed vastly different approaches. Yet, the same 
relationship was observed, and direct comparisons resulted in the same differences among subregions across 
methods (e.g., CA1 and CA2 significantly different in both methods).

Table 2.  Descriptive statistics of hippocampal subregion CellPose pyramidal neuron estimates and manual 
neuron counts. 25% percentile, median, 75% percentile, mean, std. dev., S.E.M., lower 95% confidence interval 
and upper 95% confidence interval. In both methods CA1 displays the largest variability and neuron estimates.

Variable of interest Sub-region n datap 25% Perc Median 75% Perc Mean Std. dev S.E.M Lower 95% CI Upper 95% CI

Pyramidal neuron estimates, automated 
(CellPose)

CA1 35 2441 4424 6625 5014 3246.40 548.74 3898.80 6129.20

CA1u 9 1015 1382 2386 1652.70 830.28 276.76 1014.50 2290.90

CA2 21 332.50 455 583.50 478.19 152.29 33.23 408.87 547.51

CA2u 11 785 933 1148 990.27 366.81 110.60 743.84 1236.70

CA3 20 645 997 1263 1075.80 518.25 115.89 833.20 1318.30

CA3u 10 1173.30 1755 2361.30 1692.90 787.16 248.92 1129.80 2256

CA4 15 917 999 1338 1269.50 635.82 164.17 917.43 1621.60

Sub 35 2918 3655 5592 4423.10 2387.50 403.55 3603 5243.30

Subu 12 2136 4407.50 5362.30 4120.70 1971.10 569.01 2868.30 5373.10

Pyramidal neuron counts, manual (stereology)

CA1 35 3537 7173.70 13,529 8798.90 6729.30 1137.50 6487.30 11,110

CA1u 9 2073.90 2355.30 5211.50 3257 1968.90 656.31 1743.60 4770.50

CA2 21 622.26 861.08 1472.20 1068.40 573.47 125.14 807.36 1329.40

CA2u 11 1513.10 1794.80 2838.20 2015 801.69 241.72 1476.50 2553.60

CA3 20 1083.30 2478.40 3625.40 2594.60 1741 389.30 1779.80 3409.40

CA3u 10 1759 3861 4648.90 4072.70 2974.10 940.51 1945.10 6200.30

CA4 15 1421.30 2203.40 2520.30 2159 994.10 256.68 1608.50 2709.50

Sub 35 4954.60 6039 10,225.0 7619.40 4130.90 698.26 6200.40 9038.40

Subu 12 4467.40 7534.60 12,060 8118.10 4562.90 1317.20 5218.90 11,017



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5884  | https://doi.org/10.1038/s41598-023-32903-y

www.nature.com/scientificreports/

Manual neuron counts were conducted using stereology and based on the well-established optical fractionator 
 method24. The optical fractionator method employs systematic random sampling as well as other guiding param-
eters to avoid bias. It incorporates a disector, guard zones as well as counting rules to avoid neuron  profiles21,24,52. 
Yet, it is labor-intensive, and relies completely on human intervention, which can introduce subjectivity. Subjec-
tivity, differences in training, recognition biases, and fatigue might potentially influence  results34,35. Deep learn-
ing has been applied in various previous works in humans and animal  models26,27,30,31,53. It was identified as an 
effective and reliable method for cell counting by negating interrater variability and enabling  reproducibility34,35. 
The numbers generated with traditional stereology represent a small percentage of the total population. Yet they 
have human evaluation and attention which may pose a strength and a weakness. This deep learning method 
reduces human intervention to the initial delineation of subregions. It labels most neurons within the partition, 
implements strict filtering of false-positive segmentations (75.99% of neuron segmentations remained post-
filtering), and provides a quantitative number for hippocampal pyramidal neuron counts. Of course, no method 
is perfect. Yet the test of the two methods suggests the CellPose deep learning approach is on par with stereology 
when identifying relative differences in hippocampal subregions based on neuron counts. This study’s pipeline 
reduces labor, enables a fast assessment of larger datasets, and potentially minimizes biases due to human factors.

Table 3.  Direct comparison of hippocampal subregion pyramidal layer neuron counts. Compared subregions, 
number of subregions (n datapoints), as well as for both methods (automated CellPose versus manual 
stereology) q-statistic, adjusted p-value and significance. Computed using Kruskal–Wallis H-tests and 
corrected for multiple comparisons using Dunn’s tests. Significant differences are shown in bold. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.

Variable of interest Compared subregions n datapoints

Manual (stereology) Automated (CellPose)

Z p adj signif Z p adj signif

Manual pyramidal neuron counts (stereology), automated pyramidal neuron 
estimates (CellPose)

CA1 vs. CA1u 35 vs. 9 2.50 0.444 ns 3.03 0.09 ns

CA1 vs. CA2 35 vs. 21 7.13  < 0.001 **** 8.26  < 0.001 ****

CA1 vs. CA2u 35 vs. 11 4.18  < 0.001 ** 4.72  < 0.001 ****

CA1 vs. CA3 35 vs. 20 4.41  < 0.001 *** 5.64  < 0.001 ****

CA1 vs. CA3u 35 vs. 10 2.16  > 0.999 ns 3.14 0.06 ns

CA1 vs. CA4 35 vs. 15 4.39  < 0.001 *** 4.54  < 0.001 ***

CA1 vs. Sub 35 vs. 35 0.32  > 0.999 ns 0.16  > 0.999 ns

CA1 vs. SubU 35 vs. 12 0.17  > 0.999 ns 0.32  > 0.999 ns

CA1u vs. CA2 9 vs. 21 2.59 0.346 ns 2.89 0.141 ns

CA1u vs. CA2u 9 vs. 11 1.13  > 0.999 ns 1.12  > 0.999 ns

CA1u vs. CA3 9 vs. 20 0.75  > 0.999 ns 1.12  > 0.999 ns

CA1u vs. CA3u 9 vs. 10 0.35  > 0.999 ns 0.01  > 0.999 ns

CA1u vs. CA4 9 vs. 15 1.00  > 0.999 ns 0.64  > 0.999 ns

CA1u vs. Sub 9 vs. 35 2.71 0.246 ns 2.92 0.124 ns

CA1u vs. SubU 9 vs. 12 2.25 0.881 ns 2.32 0.736 ns

CA2 vs. CA2u 21 vs. 11 1.40  > 0.999 ns 1.74  > 0.999 ns

CA2 vs. CA3 21 vs. 20 2.34 0.701 ns 2.24 0.915 ns

CA2 vs. CA3u 21 vs. 10 3.11 0.068 ns 3.00 0.097 ns

CA2 vs. CA4 21 vs. 15 1.81  > 0.999 ns 2.6 0.332 ns

CA2 vs. Sub 21 vs. 35 7.40  < 0.001 **** 8.13  < 0.001 ****

CA2 vs. SubU 21 vs. 12 5.59  < 0.001 **** 6.00  < 0.001 ****

CA2u vs. CA3 11 vs. 20 0.55  > 0.999 ns 0.13  > 0.999 ns

CA2u vs. CA3u 11 vs. 10 1.54  > 0.999 ns 1.16  > 0.999 ns

CA2u vs. CA4 11 vs. 15 0.22  > 0.999 ns 0.59  > 0.999 ns

CA2u vs. Sub 11 vs. 35 4.40  < 0.001 *** 4.61  < 0.001 ***

CA2u vs. SubU 11 vs. 12 3.60 0.012 * 3.65 0.009 **

CA3 vs. CA3u 20 vs. 10 1.20  > 0.999 ns 1.17  > 0.999 ns

CA3 vs. CA4 20 vs. 15 0.35  > 0.999 ns 0.53  > 0.999 ns

CA3 vs. Sub 20 vs. 35 4.68  < 0.001 *** 5.51  < 0.001 ****

CA3 vs. SubU 20 vs. 12 3.54 0.014 * 4.04 0.002 **

CA3u vs. CA4 10 vs. 15 1.43  > 0.999 ns 0.67  > 0.999 ns

CA3u vs. Sub 10 vs. 35 2.37 0.643 ns 3.04 0.086 ns

CA3u vs. SubU 10 vs. 12 1.94  > 0.999 ns 2.38 0.625 ns

CA4 vs. Sub 15 vs. 35 4.64  < 0.001 *** 4.42  < 0.001 ***

CA4 vs. SubU 15 vs. 12 3.65 0.010 ** 3.34 0.031 *

Sub vs. SubU 35 vs. 12 0.06  > 0.999 ns 0.21  > 0.999 ns
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Previous works quantifying neuron counts in the human hippocampus usually did not assess the uncal 
subregions, or differentiate CA2 and  CA318,21–23,54. Our study reports deep learning-based neuron estimates for 
the lateral and medial subregions of the human hippocampus. Also, it analyzes CA2 and CA3 separately and 
individually. Both methods (deep learning and manual stereology) resulted in CA1, Sub, and Subu as having 
the largest number of hippocampal pyramidal neurons, while CA2 and CA2u had the lowest. Given that CA1, 
Sub, and Subu were the largest subregions, while the size of CA2 and CA2u was small, the outcome of neuronal 
number is fitting. Our observed pattern of pyramidal neuron estimates between subregions is in line with previ-
ous works on older normal controls and preclinical Alzheimer’s disease  patients18,21–23,54. For example, West and 
Gundersen (1990) and Simić (1997) reported that CA1 contained the most neurons, followed by subiculum, 
and CA3 and CA2 together (Supplementary Table T5). Our study provides correlated neuron estimates using 
deep learning, establishing a measure in the human hippocampus utilizing a novel approach. Though it does not 
report total neuron counts of the human hippocampus (more sections would be needed), it demonstrates the 
same pattern of neurons (manual counts versus CellPose estimates) between respective subregions. Our work 
serves as a correlation study for the deep learning approach for the human hippocampus.

Estimating neuron counts in the human brain using a high yield method is an extremely attractive method 
to better understand neuronal death in aging and disease. That is, neuronal death may occur with a pathological 
marker (neurofibrillary tangle), or without one. Tau severity has been well documented in numerous staging 
 studies41,42,55–59. Studies documenting neuronal loss in Alzheimer’s disease on the other hand have been far less 
 common25,60,61. This can be attributed to the fact that stereology has numerous requirements to achieve unbiased 
protocol. Using high-throughput deep learning methods may allow for a better understanding of the relation-
ship among neurofibrillary tau tangles, amyloid-beta, and neuronal death. Future work will have to further 
investigate this.

This study has some limitations and technical notes. First, the CellPose  algorithm39 was successfully applied 
in previous  studies28,29, yet it yielded some false-positive segmentations. This limitation was however minimized 
by vetting ideal input parameters for segmentation and automated filtering for false-positive segmentations. 
Second, the CellPose algorithm in some instances did not segment pyramidal neurons in highly dense areas. 
Given that hippocampal subregions differ in pyramidal neuron density, the CellPose deep learning method may 
undercount in high density subregions such as CA3. Third, the deep learning method works in 2D and counts 
overlapping neurons as one neuron, rather than the actual number in the neuron grouping. Clustered neurons 
being counted as one was implemented to remove glial cells and neuronal profiles from the segmentations, which 
were generally smaller than pyramidal neurons. On the other hand, stereology utilizes the ability to assess multi-
ple focal planes; it counts in 3D and overlapping cells were not an exclusion criterion. Future approaches might 
investigate the application of deep learning to quantify pyramidal neurons in 3D. Fourth, our study adhered to 
common practice and assessed the hippocampus at the coronal plane, which is in plane with the orientation of 
human hippocampal pyramidal  neurons7,8,62–64. A small fraction of neurons may be oriented nonparallel to the 
plane and might consequently be excluded as neuron profiles. This is minimized in the coronal plane. Automated 
neuron estimates and manual neuron counts employed vastly different approaches, nonetheless, the same rela-
tionship between subfields was observed. Taken together, the aforementioned limitations might be a reason for 
the difference in pyramidal neuron numbers between the two methods. The quality of staining and digitization 
of histologic sections varies due to technological  factors30,34,35. Convolutional neural networks like CellPose are 
however based on the detection of patterns and shapes from image data. Thus, they do not rely on predefined 
ranges of pixel color and intensity, nor on human  interaction65, and potentially add a level of resilience against 
biasing factors reported above.

Our study provides a pipeline for automated pyramidal neuron quantifications of the human hippocampal 
subregions. While the CellPose deep learning pipeline does not generate the same total numbers, it shows the 
same relative ratios as performed by manual stereology. The deep learning pipeline is made available as open-
source. Parameters were rigorously piloted and are applicable to future works quantifying pyramidal neurons 
in the hippocampal subregions. Thus, this study may enable the analysis of much larger datasets and potentially 
facilitate the harmonization of histopathological analysis across multiple cohorts. This pipeline has the ability to 
crunch and produce “big data” numbers, which is an attractive approach for the investigation of neuronal death 
and its relation to tau pathology. Our work creates a baseline for more specificity in tracking resilient healthy 
aging in the human hippocampus. Investigating subregion-specific vulnerability to neuronal loss will not only 
benefit early diagnosis, but also help understand pathological mechanisms and progression of neurodegenera-
tive diseases on a cellular level.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request. The scripts generated for this study are available on GITHUB (https:// github. com/ 
Augus tinac kLab/ Neuro nNumb erEst imates).
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