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Quantum transports 
in two‑dimensions with long range 
hopping
Si‑Si Wang 1,2,3, Kangkang Li 4, Yi‑Ming Dai 1, Hui‑Hui Wang 1,3, Yi‑Cai Zhang 1 & 
Yan‑Yang Zhang 1,2,3*

We investigate the effects of disorder and shielding on quantum transports in a two dimensional 
system with all-to-all long range hopping. In the weak disorder, cooperative shielding manifests 
itself as perfect conducting channels identical to those of the short range model, as if the long range 
hopping does not exist. With increasing disorder, the average and fluctuation of conductance are 
larger than those in the short range model, since the shielding is effectively broken and therefore 
long range hopping starts to take effect. Over several orders of disorder strength (until ∼ 10

4 times 
of nearest hopping), although the wavefunctions are not fully extended, they are also robustly 
prevented from being completely localized into a single site. Each wavefunction has several 
localization centers around the whole sample, thus leading to a fractal dimension remarkably smaller 
than 2 and also remarkably larger than 0, exhibiting a hybrid feature of localization and delocalization. 
The size scaling shows that for sufficiently large size and disorder strength, the conductance tends 
to saturate to a fixed value with the scaling function β ∼ 0 , which is also a marginal phase between 
the typical metal ( β > 0 ) and insulating phase ( β < 0 ). The all-to-all coupling expels one isolated 
but extended state far out of the band, whose transport is extremely robust against disorder due to 
absence of backscattering. The bond current picture of this isolated state shows a quantum version of 
short circuit through long hopping.

Long range orders and behaviors from short range coupling are among the most important themes of condensed 
matter physics. Even theoretical models based on nearest neighbor hopping and interaction can be used to 
describe vast amounts of physical phenomena, including the energy band, magnetism, metal-insulator transi-
tion (MIT) and topological states, etc.1–5. On the other hand, systems with long range coupling have attracted 
many interests recently. For example, in the photonic lattice, controllable long range coupling can be realized by 
shaping the spectrum of the optical pump6, or by the optical gain7. Simulating long range hopping is proposed 
by periodically driven superconducting qubits8. Rydberg atomic arrays are considered as a promising platform 
for quantum information application9,10, where the ultra-long coupling between atoms plays a crucial role10–17. 
Among them, two-dimensional (2D) arrays with long range interactions have been recently fabricated and 
studied9,10,17.

The long range coupling between atoms or molecules can also be realized by the mediation of phonons18,19, 
photons20,21 or an optical cavity22–24 in different physical systems, including conventional electronic systems22,25,26. 
Another interesting realization of quantum lattice model is the electric circuit network27–30. Since wires can be 
connected in arbitrary ways, in principle this system can simulate models with arbitrary ranges of hopping in 
any spatial dimensions.

Long range coupling systems possess many special and useful properties. In a Rydberg array for quantum 
computing, the long range coupling can compensate for low fidelity and therefore enables better algorithmic 
performances10. A one-dimensional dimerized superconducting circuit lattice with long-range hopping is pro-
posed to be a phase-robust topological router31. Rich phenomena of localization from some long range coupling 
models have been recently noticed32. Some of them may be rather counterintuitive. For example, although long 
range hopping seems to greatly enhance connectivity between sites, it does not necessarily result in an enhanced 
quantum transport32,33.
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Even for one-dimensional (1D) systems, theoretical studies have shown many novel properties, for example, 
breaking of ergodicity34, cooperative shielding in many-body systems35, weakened topological bulk-boundary 
correspondence36, and subdiffusive phases in an open clean system37. The measurement-induced phase transi-
tions of long range coupling systems are theoretically investigated38–41, with practical applications in qubits. Based 
on a model with all-to-all and distance-independent hopping42, some interesting phenomena in 1D have been 
predicted recently33,43,44. The first one is a cooperative shielding in the single particle picture, i.e., absence of effects 
from the long range hopping for most of the states in the clean limit33. The second is the disorder-enhanced and 
disorder-independent transport, if a large-bias current is considered43.

In this manuscript, we generalize the above all-to-all model to a 2D version, and theoretically investigate its 
quantum transports. By presenting transport evidences, we find that the cooperative shielding persists in the 
weak disorder limit. Although a fixed boundary condition breaks the perfect shielding, this breaking will be 
negligible for a sufficiently large sample. With increasing disorder, the shielding is destroyed and the transports 
will be remarkably different from the short range counterpart. We reveal the microscopic pictures of these trans-
ports by showing the real space distributions of bond currents, so that the roles of bonds with different ranges 
can be seen vividly. Furthermore the localization property is discussed by calculating the fractal dimension of 
eigenstates, and by performing size scaling of the conductance. Over several orders of strong disorder, most 
states exhibit a hybrid feature from (or a marginal feature between) localization and delocalization. A unique 
feature of this model is the existence of a single isolated state far away from the band states33,42, with a large gap 
proportional to the size of the sample. We find it is an extended isolated state with very robust transport. The 
physical origins are also discussed.

Model and method
Our 2D model is a generalization from the 1D counterpart33,43, which is illustrated as the sample enclosed by the 
red dashed-line square in Fig. 1a. It is defined on a square lattice with the spinless Hamiltonian

where c†i  ( ci ) creates (annihilate) an electron at site i. Here HNN contains the conventional nearest neighbor hop-
ping with the magnitude t [black bonds in Fig. 1a]. The second term, HAA includes all-to-all and distance inde-
pendent long range hopping γ [red bonds in Fig. 1a], which can be realized by a cavity-assisted technology22,23,43. 
It has been argued that this distance independent long range hopping γ grasps the main physics arising from 
the coupling of the molecules with the cavity mode, since the coupling to the cavity mode is the same for all 
molecules43. Throughout this paper, t = 1 will be used as the energy unit, and γ = 1/2 is identical to previous 1D 
counterparts33,43. For simplicity, we adopt the sign convention that t, γ > 0 . In HAA , the diagonal terms γ c†i ci are 
intentionally included. This global and trivial energy shift makes the band center of HLR (referred as the “long 
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Figure 1.   (Color online) Illustration of transport setups in our simulation. (a) Two-terminal conductance 
setup, where a 4× 4 sample (encircled by the red dashed-line square) with long range hopping is connected 
to two leads with short range hopping. Black (red) bonds represent the nearest (long range) hopping t ( γ ). (b) 
and (c) illustrate the energy band configurations among the sample (red) and leads (black) used in Sections III 
and IV, respectively, where the black dashed line labels the chemical potential. Created from OriginPro 8 SR0 
(URL:http://​www.​Origi​nLab.​com).

http://www.OriginLab.com
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range model” hereafter) identical to that of HNN (referred as the “short range model” hereafter), which will be 
convenient in following calculations.

For a finite sample with N ≡ Nx × Ny lattice sites, and with periodic boundary condition for HNN in both 
directions (there is no difference of boundary conditions for HAA ), it can be easily verified that two terms of HLR 
are commutable and therefore,

As a result, HLR and HNN have common eigenfunctions33. Furthermore, the operator HAA has N − 1 degenerate 
eigenvalues 0 and one eigenvalue Nγ . Therefore similar to the 1D case33, the eigenvalues of the long range model 
HLR are also identical to those of the short range model HNN , i.e.,

except the highest one (the lowest one if γ < 0 ), which is

for HLR . Here and throughout this manuscript, we always index eigenstates of a Hamiltonian in the ascending 
order of eigenvalues. Notice from Eq. (4) that ELRN  is size dependent, and this single state is isolated from the 
energy band consisting of the rest N − 1 eigenstates. Thus it will be called the isolated state. Correspondingly, 
the rest N − 1 eigenstates [distributed within [−4t, 4t) ] will be called the band, which are simply identical to 
those of the single band of the short range model [Equation (3)]. We can define the subspace SN (the isolated 
state) as the one spanned by this isolated state |ψN � , and the subspace SN−1 (the band) as the one spanned by 
the rest N − 1 eigenstates |ψi� . Due to the large gap � ∼ NxNyγ , these two subspaces are barely mixed when the 
sample size is sufficiently large and/or the disorder strength is not strong33. These novel mathematical structures 
lead to interesting consequences. For example, because of the above mentioned commutability and unmixing 
between SN and SN−1 , the dynamics within SN−1 is shielded from long-range hopping, namely it behaves as if 
long-range hopping does not exist. This is the the cooperative shielding, a counterintuitive phenomenon found 
in the 1D counterpart33. In the following, we will see that this cooperative shielding is also manifested in 2D 
quantum transports.

One of our focus is disorder, which is simply included by adding a random onsite potential as

where Ui are independent random numbers uniformly distributed in (−1/2, 1/2) and W is the single parameter 
to characterize the disorder strength. With nonzero W, the short range part HNN + V  will not commute with 
the all-to-all part HAA again. The shielding and corresponding transport phenomena will be one of the primary 
themes of this work.

Now let us briefly describe the main methods of calculation. At zero temperature, the two-terminal conduct-
ance G of a finite sample is proportional to the transmission (Landauer formula)45, and can be expressed by 
Green’s functions as46,47

where Gr/a(E) ≡
(

E ±−H −�
r/a
L −�

r/a
R

)−1
 is the dressed retarded/advanced Green’s function of the central 

sample, and ŴL(R) = i(�r
L(R) −�a

L(R)) with �r/a
L(R) being retarded/advanced self energies due to the left (right) 

lead, respectively (The spin degeneracy factor 2 is omitted in this manuscript). The lead self energy is defined as

where g(E) is surface Green’s function of the semi-infinite lead, and τ is the coupling Hamiltonian from the 
sample to the lead46. Numerically this self energy can be conveniently calculated from a direct diagonalization 
method48. In our calculations, as illustrated in Fig. 1a, we take both leads to be semi-infinite square lattices with 
only the nearest hopping Hamiltonian HNN , since otherwise, it is numerically inaccessible to calculate the self 
energy of a semi-infinite lattice with long range hopping.

The local current from site i to j along the bond is47,49

where Hij the matrix element of the bare Hamiltonian, and Gn = GrŴLG
a is the correlation function. Since it is 

defined in the linear response regime, we simply take the voltage difference VL − VR between the left (source) 
and right (drain) leads to be unity. In this case, the net current through any transverse cross section of the sample 
is numerically equal to the conductance calculated from Eq. (6).

Notice that all Green’s functions and self energies appearing in Eqs. (6) and (8) are energy dependent. In the 
weak disorder regime, the energies in leads are adopted to vary with that of the sample as illustrated in Fig. 1 
This is the case in Figs. 2, 3 and 4a–e. Such a setup can minimize the contact resistance due to the mode mis-
match between the sample-lead interface. In the regimes of strong disorder or the isolated state, the energies in 

(2)CH ≡
[

HNN,HLR

]

= 0.

(3)ELRn = ENNn , 1 ≤ n ≤ N − 1,

(4)ELRN = 4t + Nγ

(5)V =
∑

i

W · Uic
†
i ci ,

(6)G =
e2

h
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[
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a
]

,
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leads are fixed at E = 0 to provide the maximum number of conductive channels (which is equal to Ny ). This is 
applied in Figs. 4f, 6 and 8. In these cases, the interface scattering is not an issue because the impurity scattering 
in the sample is dominating.

The band
A. Shielding at weak disorder.  Let us first investigate properties in the clean limit, W = 0 . In the follow-
ing calculations, all samples are square shaped with size N = Nx × Nx to exhibit the 2D nature. The commuta-
tor CH in Eq. (2) holds rigorously for periodic boundary conditions, for which a perfect shielding is expected. 
However, such a torus geometry is not physically applicable for a realistic 2D sheet, especially when it will be 
connected to conducting leads. Therefore in the rest of our work, we will employ fixed (hard-wall) boundary 
conditions in both directions for the HNN term (there is no boundary effects for the HAA term). In this case, the 
commutator matrix CH will not be identically zero. However, we find that nonzero matrix elements only appear 
when they are associated with boundary bonds of HNN , which only constitute an extremely small portion of the 
matrix CH . With increasing size, this portion will be even smaller due to the shrinking of boundary-bulk propor-
tion, so the perfect shielding is expected to recover.

Figure 2.   (Color online) Results for zero disorder and fixed boundary condition. (a) Difference of eigenergies 
�En ≡ ELRn − ENNn  between the long range and short range models, for a finite sample with sizes 10× 10 
(black), 20× 20 (red) and 30× 30 (green) respectively. The latter two curves are shifted vertically for visual 
clarity. (b)–(d): the two-terminal conductance G as a function of Fermi energy E, for a short range (blue curve) 
and long range model (red curve), with sample size 10× 10 (b), 20× 20 (c) and 30× 30 (d). Most of the 
blue curves have been covered by red curves due to an almost perfect match. The transport setup is shown in 
Fig. 1a,b.

Figure 3.   (Color online) The disorder averaged conductance 〈G〉 (first row) and its standard deviation �G 
(second row) as functions of Fermi energy E, for different disorder strengths W as shown. The blue (red) curve 
is for the short (long) range model. The sample size is 40× 40 and each data point is an average over 1000 
disorder samples. All energies are in units of t.
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We first check the validity of Eq. (3) for isolated samples without being attached to any leads. In Fig. 2a, we plot 
the difference of eigenvalues from the long range and short range models, without disorder and in the presence 
of fixed boundary condition, for three different sample sizes. Notice the latter two curves are shifted vertically 
for better visual clarity. One can see that remarkable differences mostly occur in the high energy region near the 
band top (and also near the isolated state), and the difference shrinks with increasing sample size. Therefore it 
is reasonable to expect a perfect shielding effect recovers for sufficiently large sample.

As an example of physical observable, the two-terminal conductance G of a sample connected with leads 
(short range model) will be calculated by using Eq. (6). Notice that all Green’s functions and self energies appear-
ing in Equation (6) are energy dependent. Here, as illustrated in Fig. 1b, we adopt a uniform Fermi energy E 
among the central sample and leads, i.e., G(E) = e2

h Tr[ŴL(E)G
r(E)ŴR(E)G

a(E)] , so that wavefunctions in these 
regions can have a best mode match, which is expected from the perfect cooperative shielding.

The resulting G of the long range model sample as a function of Fermi energy E is presented as red curves 
in Fig. 2b–d, for different sample sizes. For comparison, the result for a sample replaced by a short range model 
( γ = 0 ) with the same size is also plotted as blue curves in each panel. For the latter case, since the sample and 
leads are completely identical and perfectly matched, the transmission is therefore perfectly quantized as typical 
integer steps46. Then, it is interesting to see that the result from the former case also matches these quantization 
steps nicely. Distinguishable differences only occur occasionally in the high energy region in Fig. 2b, i.e., for the 
smallest sample.

To understand these results, we should remember that our simulation of quantum transports is based 
on a fully coherent picture, which makes the results highly sensitive to any imperfection or mismatch in the 
structure47. Even without any disorder in the sample, the mismatch between the sample and leads is sufficient to 
introduce remarkable scattering at interfaces and therefore destroy the conductance quantization remarkably. 
For example, a recent study on a low-dimensional structure with long range hopping shows that such a mismatch 
can even cause a subdiffusive transport through the whole clean sample, instead of a ballistic one37. That is to say, 
in the coherent limit, the scattering at the interface alone can be strong enough to alter the transport property 
qualitatively. Therefore here, the perfect quantization of coherent transmission through a heterostructure [as 
shown in Fig. 1a] is a nontrivial phenomenon, which implies the absence of scattering in the sample and at the 

(a) (b) (c)

(d) (e) (f)

Figure 4.   (Color online) Distribution of bond currents for a certain disorder configuration on a 20× 20 lattice, 
with the source (drain) lead connected to the left (right) boundary. (a)–(e): Fermi energy E = 1 in the band, 
with disorder strength W = 0, 3, 5, 7, 11 , respectively. (f): Sample Fermi energy E = 203.71 at the EIS, with 
W = 7 , discussed in Section IV. Each arrow connecting two sites represents the corresponding bond (thus its 
length indicating the bond length), with the size of the arrowhead alone to indicate the magnitude of its current. 
For visual clarity, only currents with J ≥ 0.4Jmax are displayed, and long (short) bonds are plotted in red (blue) 
color, while intermediately long bonds in purple color.
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lead-sample interfaces, or a perfect match of wavefunction modes between the sample (long rang model) and 
leads (short range model), despite the apparent lattice mismatch. In other words, the electron travels as if the long 
range hopping did not exist, which is a manifestation of the cooperative shielding33 in 2D quantum transport, 
when disorder is absent. This shielding is a direct result of Eqs. (2) and (3). Small deviations from perfect shield-
ing in transports [Fig. 2b] are a consequence of the boundary effect (which is not periodic), and will practically 
vanish for larger sample sizes owing to weaker boundary effects.

We have seen that in the clean limit, the quantum transport through the 2D long range model is identical to 
that in the short range model, which is a manifestation of the perfect shielding in 2D. Now we will investigate the 
effect from disorder, W  = 0 . Disorder breaks Eq. (2) and thus may also break the perfect shielding. In Fig. 3, we 
present the disorder averaged conductance 〈G〉 (first row) and its standard deviation �G (second row) as func-
tions of the Fermi energy E, for different disorder strengths W. When W = 3 [panels (a) and (e)], similar to the 
clean limit, the results for the short range (blue curves) and the long range (red curves) models are identical. This 
suggests that the perfect shielding practically survives through weak disorder, which was also observed in 1D33.

With increasing disorder, for example, W = 5 [Fig. 3b,f], the results for short and long range models start to 
deviate gradually. In the case of stronger disorder, W = 7, 11 , both the conductance and its fluctuation of the 
long range model are remarkably larger than those of the short range counterpart. The existence of long range 
hopping gives rise to better transport (i.e., larger conductance) in the strong disorder limit.

In order to have a microscopic understanding of these quantum transports, for example, contributions from 
short and long range hoppings, we present distributions of bond currents associated with some typical regimes 
in Fig. 4. Due to the all-to-all nature of the hopping, there are too many ( ∼ (NxNy)

2 ) bonds with varying lengths 
intersecting each other, and densely distributed on the lattice. This makes it difficult to present a full and visually 
distinguishable picture of all bond currents, as in conventional short range models49. Therefore for the purpose 
of displaying the dominating physics clearly, we adopt some technical tactics in plotting Fig. 4. Firstly, a small 
sample with 20× 20 sites is used. This is smaller than those used in Fig. 3, but we have checked (but not shown 
here) that the physics is identical. Secondly, only currents with magnitudes J ≥ 0.4Jmax are displayed, where Jmax 
is the maximum magnitude of bond current in this sample. Therefore the displayed currents do not obey the 
current conservation. Thirdly, the magnitude of a bond current is represented by the size of the arrowhead only, 
while the size of the arrow shaft still represents the real size of the bond connecting two sites. For a better visual 
clarity, longer (shorter) bonds are plotted in red (blue) color. We do so because, besides the current flowing on 
it, the actual position and length of each bond are also important information.

Figure 4a is the result for zero disorder, corresponding to the case shown in Fig. 2c. It can be seen that now 
the currents are almost uniformly carried by nearest bonds (blue arrows), and contributions from most long 
range bonds are small. This is a clear picture of the perfect shielding: long range coupling hardly plays a role as a 
result of a delicate quantum coherent effect. Small currents along a few long range bonds (red arrows with small 
arrowheads) can be attributed to resonant states between hard wall boundaries.

In the presence of very weak disorder, Fig. 4b, the current distribution is also disordered, and contributions 
from long range bonds start to increase. We notice that this corresponds to the transport shown in in Fig. 3a,e, 
where the conductances from the short range and long range models still match well. In other words, although 
the transports are carried by short range and long range bonds, the total current is still very close to that of the 
short range model. This is another subtle manifestation of the word, the cooperative shielding33. With larger 
disorder, as shown in Fig. 4c,d, the currents distribute in a more chaotic pattern, with long range bonds trying 
to connect localization centers of the wavefunction.

With these pictures, now we can understand more about Fig. 3. When disorder is nonzero but still weak 
( W > 3 ), although these two subspaces are still shielded from each other, long range hops start to manifest 
themselves by contributing currents and therefore enhancing the conductance. We call it a regime of unperfect 
shielding, compared to the perfect one (zero effect from long range hopping) for W = 0 as shown in Figs. 2c,d 
and 4a. In short range models of localization, it was recently found that microscopically, the dominating transport 
path can be pinned within a certain range of model parameters (e.g., Fermi energy and disorder potential)50, 
since endeavors must be made to find another continuous path composed of sequential short range bonds. How-
ever here, thanks to the all-to-all connectivity, an entirely new path can be found more easily upon parameter 
changes, so that the pinning effect is reduced. Therefore, the transport will be more mutable and sensitive with 
the change of model parameters, e.g., the disorder potential. This leads to larger fluctuations of the conductance 
at stronger disorder displayed in Fig. 3g,h.

B. Localization properties at strong disorder.  The above discussions were focused on the shielding 
effect, with rather weak disorder strength W � 10 . In the 1D case, the long range model exhibits surprisingly 
rich behaviors of transports over several orders of the disorder strength W43, where all states of short range mod-
els should have been completely localized. To have a first observation of our 2D long model with stronger disor-
der, we now turn to investigate eigenstates of an finite sample detached from any conducting leads. The localiza-
tion property of the n-th eigenstate ψn of the sample can be characterized by its fractal dimension defined as

where (IPR)n is the inverse participation ratio (IPR)n ≡
∑

i |ψn,i|
43,66,67. In a 2D system, an extended state cor-

responds to Ŵn ∼ 2 while a localized state corresponds to Ŵn ∼ 0.
In the left column of Fig. 5, the fractal dimensions Ŵn and eigenenergies En of band states of a 80× 80 sample 

are plotted, for a certain disorder configuration at W = 256 , with panels (a) and (d) corresponding to the long 

(9)Ŵn =
ln(IPR)n

lnNx
,
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range and short range models respectively. For the short range model shown in panel (b), as expected, most 
eigenstates are localized. In fact, the typical value of the fractal dimension

for data displayed in Fig. 5d is 0.00209 ∼ 0 . This vanishing dimension suggests that most eigenstates have been 
localized to a single site, which is verified from the spatial distribution of a typical wavefunction shown in 
Fig. 5e. Figure 5f shows Ŵtyp as a function of W, from which we can see that such a single-site localization has 
been realized when W � 100.

On the other hand, the behaviors of the long range model are remarkably different. In Fig. 5a, most eigenstates 
possess a significantly nonzero fractal dimension Ŵn , with a typical value Ŵtyp = 0.18588 . The spatial distribution 
of a typical eigenstate in Fig. 5b exhibits several localization centers [instead of one single peak in the short range 
model shown in panel (e)] which can be connected by long range hoppings. This is similar to that in the case 
of 1D long range model where the wavefunction has an extended tail43. In other words, although the disorder 
breaks the fully extended nature of the wavefunction, the long range hoppings prevent it from being localized 
into a single site, even at very strong disorder. From the dependence of Ŵtyp on W in Fig. 5c, one can see that 
such a robustness against a single-site localization (and even the value of Ŵtyp itself) persists over several orders 
of disorder strength W (Notice the logarithmic scale of W).

Now we discuss this question: in the presence of disorder, will the long range hopping lead to a really metal-
lic (delocalized) state in the thermodynamic limit? To answer this, one needs to perform size scaling on some 
transport quantities. A commonly used scaling quantity is the localization length normalized by the sample size, 
which can be extracted from the transfer matrix method51,52. However, a transfer matrix can only be applicable 
to a model with a very finite hopping range. Here instead, we use the numerical scaling on the intrinsic conduct-
ance GI which is defined as53

with Mc the number of active channels at Fermi energy in the lead and G is the above used Landauer conduct-
ance. The second term 1Mc

 is used to deduct the effect of contact resistance at the sample-lead interfaces, so that 
GI can manifest the intrinsic transport property of the bulk sample, which is found to be closely related to the 
conductance derived from the Kubo formula or Thouless formula53. When G is small (strong disorder) and/or 
Mc is large (large size), GI ≈ G . This intrinsic conductance ( Nx × Nx ) has been widely employed to investigate 
the occurrence, scaling and critical properties of the MIT in 2D and 3D systems53–57. For example, it can be used 
to evaluate the standard scaling function β =

d�lnGI�
d lnNx

2,3,65 of MIT, where �· · · � still stands for averaging over the 
disorder ensemble. An increase (decrease) of lnGI with increasing lnNx indicates a metal with β > 0 (insulator 

(10)Ŵtyp = exp





1

NxNy

NxNy
�

n=1

lnŴn



,

(11)
1

GI
=

1

G
−

1

Mc
,

Figure 5.   (Color online) Eigenstates of a 80× 80 sample for the long range model γ = 0.5 (upper row) and the 
short range model γ = 0 (lower row). Left column: the fractal dimension Ŵn versus eigenenergy En , with the 
disorder strength W = 256 . Middle column: the spatial distribution of the squared magnitude of an eigenstate 
|ψn|

2 with Ŵn ∼ Ŵtyp . Right column: Ŵtyp as a function of the disorder strength W (logarithm scale).



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5763  | https://doi.org/10.1038/s41598-023-32888-8

www.nature.com/scientificreports/

with β < 0 ) phase54,58. In fact experimentally, scaling of the conductance is also the standard method to distin-
guish metal and insulator phases of materials59–64.

Again let us first take a look at the short range model that has been well understood, results of which are 
displayed in the lower rows of Fig. 6. In panels (e), (f) and (g), 〈lnGI〉 as a function of the energy E is plotted 
for different disorder strengths, and panel (h) is 〈lnGI〉 versus W at a fixed energy E = 0 . In each panel, curves 
in different colors correspond to results from different sample sizes. Here, the conductance is monotonically 
decreasing with the sample size and disorder strength for all states, which means that they are trivially localized. 
Moreover, this decrease is more rapid for a larger sample size or a larger disorder strength.

On the other hand, in the upper row of Fig. 6, the results for the long range model are quite different. The first 
obvious feature is that for a definite size and disorder strength, the conductance of the long range model is several 
orders larger than that of the short range model. For W = 64 shown in Fig. 6a, lnGI is decreasing with increas-
ing the sample size, in the whole energy region. Such decreasing can also be seen for weaker disorder strengths 
shown in the Supplementary Material. These seem to indicate that all states of the long range model are localized 
in the thermodynamic limit. However, for a larger disorder W = 256 as shown in Fig. 6b, the conductance has 
a significant increase when the size is increased from Nx = 10 (black) to Nx = 20 (red) before a decrease again 
with larger sizes. For an even larger disorder W = 1024 presented in Fig. 6c, the conductance increases up to 
size Nx = 40 and then saturate there when the size is doubled as Nx = 80.

In Fig. 6d, we fix the fermi energy at E = 0 and display the development of the size scaling with increasing the 
disorder strength W. From the first glance, it seems to be a scaling pattern for the MIT, where the conductance 
is increasing ( β > 0 ) or decreasing ( β < 0 ) with Nx on two ends of the W axis, respectively53,54,56,57. However a 
careful scrutinize can reveal several distinct differences from the scaling pattern of the standard MIT. First, here 
curves associated with different sizes do not cross at a single critical value Wc . Instead, curves for larger sizes cross 
at larger W. Second, on the larger W side, although the conductance is clearly increasing with the scaling at small 
sizes, this increase eventually tends to saturate at large sizes. For example, at W = 4096 , although the conduct-
ance is still increasing when the size is doubled from 40× 40 (green) to 80× 80 (blue), it saturates when the size 
is doubled again to 160× 160 (magenta). Therefore at W = 8192 , although the conductance of size 160× 160 is 
slightly larger than that of 80× 80 , it is reasonable to imagine it will also saturate at, say, size 320× 320 (which is 
beyond our calculation capability). Third, with increasing size, on the side of increasing or saturating conductance 
(large W), the magnitude of the conductance is smaller than that on the side of decreasing conductance (small 
W). This is contrary to the case of the standard disorder induced MIT42, where the conductance of the metal 
phase (increasing conductance) is surely larger than that of the insulator phase (decreasing conductance). In 
one word, at strong disorder, the transport property of this 2D long range model is neither a typical insulating 
phase ( β > 0 ) nor a typical metal phase ( β > 0 ), but seems to be marginal phase ( β ≃ 0 ) which is a mixture of 
both. This is consistent with the physics shown in the upper row of Fig. 5, where the disorder destroys the fully 
extended nature of the wavefunction ( Ŵ ≪ 2 ), but meanwhile the long range hopping prevents the wavefunction 
from a complete localization ( Ŵ ≃ 0 ). Such a marginal state persists over several orders of W, typically with a 
constant fractal dimension Ŵ (Fig. 5c), or a slowly decreasing conductance GI (Fig. 6d).

Before closing this section, let us add some remarks on W dependencies in Figs. 5c and 6d. In the former 
figure, the typical fractal dimension of wavefunctions Ŵtyp is almost constant when the disorder strength W 
increases from 128 to 4096, which means the extent of the wavefunction’s localization is independent of the W. 

Figure 6.   (Color online) Disorder averaged 〈lnGI〉 for the long range model (upper row) and the short range 
model (lower row). Left three columns: 〈lnGI〉 versus Fermi energy E for different disorder strengths W . 
Rightmost column: 〈lnGI〉 versus disorder strength W (logarithmic scale) at Fermi energy E = 0 . Curves in 
different colors correspond to different sample sizes: 10× 10 (black), 20× 20 (red), 40× 40 (green), 80× 80 
(blue), and 160× 160 (magenta). The number of disorder configurations for averaging is 1000 for 80× 80 and 
160× 160 , and 5000 for other sizes.
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However in the latter figure, the conductance GI is clearly decreasing with W. There seems to be a discrepancy: 
is the transport independent of or decreasing with the disorder strength? To answer this, we need to remember 
that the conductance is a contribution from all states around the Fermi energy46,47. As a result, the conductance 
is determined both by the “diffusion coefficient” (which can be characterized by the localization extent in real 
space or the level curvature in momentum space) of each wavefunction, and also by the number of wavefunctions 
(i.e., the density of states) round the Fermi energy53. Although Fig. 5c states that increasing W does not change 
the localization extent of each state, it reduces the density of states by broadening the energy band. This leads to 
a reduction of the conductance with increasing W displayed in Fig. 6d.

The isolated state
One should remember that there is a single state (4) isolated far away ( ∼ N2

x γ ) from the band investigated above. 
In 1D with periodic boundary condition, it was found that the wavefunction of this isolated state is fully extended 
with a uniform magnitude and phase among all lattice sites33. In 2D and in the fixed boundary condition here, 
we have checked (but do not show here) that this uniformity is only slightly changed, and the energy value of 
this state is also slightly different from that given in Equation (4).

as a first step, we also study the fractal dimension Ŵn of eigenstates defined in Eq. 9. In Fig. 7, red symbol-
curves are Ŵn of four representative states as functions of disorder strength W: the band bottom (square), the 
band center (circle), the band top (up triangle), and the isolated state (down triangle). Panels (a) and (b) are for 
a 40× 40 and a 80× 80 sample respectively. For comparison, results from a short range model are also shown 
as blue symbol curves. We can see that for eigenstates in the band, Ŵn decays away from 2 rapidly with increas-
ing disorder.

On the contrary, the fractal dimension for the isolated state is robustly quantized as 2 until W approaches 
∼ N2

x γ , the gap from the band. We remind that it is a single state instead of a flat band consisting of a continuum 
of states. Thus for an electron in this state, there is no other state for it to be scattered onto, and therefore any 
back-scattering or skew-scattering is forbidden. The robustness of this state’s transport is protected by the large 
gap from the band, unless the impurity strength is strong enough ∼ N2

x γ to overcome this large gap. This is the 
physical origin of the robust transport of this state, which we call it the extended isolated state (EIS) hereafter.

The above results are from a sample decoupling from the environment. Now we still simulate the quantum 
transports of the EIS by attaching leads to both ends of the sample. Here, since the condition Eq. (2) for perfect 
shielding is partially destroyed by the fixed boundary condition, we have checked that this EIS is not an eigenstate 
of the short range model (played as leads). In other words, no state in the lead can actually match the EIS in the 
central sample. Therefore in this section, when calculating transports by using Eqs. (6) and (8), as illustrated in 
Fig. 1c, we simply treat the leads as electron reservoirs with a fixed Fermi energy EL at the band center and vary 
the Fermi energy of the sample E around the EIS, e.g., G(E) = e2

h Tr[ŴL(EL)G
r(E)ŴR(EL)G

a(E)].
In Fig. 8a, conductances of two disorder configurations [C1 (black curve) and C2 (red curve)] as functions 

of E are presented as solid curves, with size 40× 40 and disorder strength W = 16 . The corresponding density 
of states (DOS)

are also plotted as dots. Due to the coupling with leads, both the conductance and DOS profiles are broadened as 
smooth peaks. The first obvious observation is the perfect coincidence between profiles of G(E) and ρ(E) , after 
appropriate scaling in the vertical direction. This can be understood as follows. The zero-temperature conduct-
ance of a 2D crystal can also be expressed in the Thouless form53,68,

(12)ρ(E) = −
1

πN2
x

ImGr(E),

Figure 7.   (Color online) The fractal dimension Ŵn of the n-th eigenstate as a function of disorder strength W, 
for a certain sample with size 40× 40 (a), and size 80× 80 (b). Blue (red) color is for the short (long) range 
model. Notice horizontal scales in two panels are different.
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where kx is the wavevector along the transport direction. Notice the last factor ∂
2E
∂k2x

 is a curvature of the band E(k) . 
However here, there is only a single state for which no curvature can be defined, so this factor plays no role and 
thus has no energy dependence. As a result for a concrete sample, the energy dependence of the conductance is 
simply proportional to that of the DOS, both with the same spectrum width determined by the imaginary part 
of the N-th eigenvalue of the dressed (non-Hermitian) Hamiltonian H +�L +�R.

The second observation from Fig. 8a is more important. The peak value of the conductance is always quantized 
as unity, which means the EIS carries a perfectly conducting channel. This reflects the absence of backscattering 
for the EIS, as predicted from Fig. 7 above. Conductance peaks with other W are shown in Fig. 8b. The robust 
transport of EIS persists at least to W = 44 = 256 for the sample size 40× 40 , consistent with Fig. 7a. To reveal 
the microscopic origin of this robust transport, we again turn to the real space distribution of bond currents at 
the conductance peak, for a smaller sample as shown in Fig. 4f. The picture is simple and clear: the dominating 
currents are flowing through very long bonds connecting the left and right boundaries directly. This configura-
tion helps the electron to circumvent any impurities in the sample bulk, leading to a remarkably robust transport 
independent of disorder.

The size dependence of the conductance peak is presented in Fig. 8c, where larger samples result in sharper 
conductance peaks. This is not surprising because a larger size leads to a finer resolution of energy and thus a 
smaller broadening. Figure 8d are conductance peaks with different lead energies EL (respect to its band center). 
It is interesting to notice that sharpest peaks correspond to injecting electrons from the band edge ( E = 3.95 ) 
or the band center ( E ∼ 0 ) of the leads.

Summary
We numerically investigate the quantum transports of a 2D system with long range hopping. In the band, the 
transport is almost identical to that in the corresponding short range system for a large sample size and weak dis-
order, as a manifestation of the cooperative shielding. This shielding is broken at strong disorder, and the average 
and fluctuation of the conductance are larger than those in the short range mode. These can be understood as a 
better connectivity and the destruction of path pinning from long range coupling. Over several orders of strong 
disorder, the band states exhibit a marginal feature between metallic and insulating states, which is neither fully 

(13)G = πρ(E)
∂2E

∂k2x

∣

∣

∣

kx=0
,

Figure 8.   (Color online) Two-terminal conductance G as a function of the Fermi energy in the sample, for 
the extended isolated state. (a) For two disorder configurations, C1 (black curve) and C2 (red curve). The 
corresponding DOS ρ (referenced to the right axis) are also plotted as dots. (b) For different disorder strengths 
W. (c) For different sample sizes. (d) With different energies EL in leads. If not otherwise stated in the panel, 
parameters are as follows: W = 16 , EL = 0 and size 40× 40 . In panels (b), (c) and (d), all curves have been 
horizontally shifted to the same peak center.
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extended nor completely localized. As for the isolated state, its transport of a unit conducting channel is highly 
robust against disorder, which can be depicted as an extended state protected by the large gap from scattering.
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