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The effect of thermal photons 
on exceptional points in coupled 
resonators
Grzegorz Chimczak 1*, Anna Kowalewska‑Kudłaszyk 1, Ewelina Lange 1, 
Karol Bartkiewicz 1,2 & Jan Peřina Jr. 2

We analyse two quantum systems with hidden parity‑time ( PT ) symmetry: one is an optical device, 
whereas another is a superconducting microwave‑frequency device. To investigate their symmetry, we 
introduce a damping frame (DF), in which loss and gain terms for a given Hamiltonian are balanced. 
We show that the non‑Hermitian Hamiltonians of both systems can be tuned to reach an exceptional 
point (EP), i.e., the point in parameter space at which a transition from broken to unbroken hidden 
PT symmetry takes place. We calculate a degeneracy of a Liouvillian superoperator, which is called 
the Liouvillian exceptional point (LEP), and show that, in the optical domain, LEP is equivalent to 
EP obtained from the non‑Hermitian Hamiltonian (HEP). We also report breaking the equivalence 
between LEP and HEP by a non‑zero number of thermal photons for the microwave‑frequency system.

In recent years, there has been increasing interest in exploring non-Hermitian systems as a source of novel 
physical effects [for examples see Refs.1–4]. It has been shown that the special group of non-Hermitian Ham-
iltonians, which is parity-time ( P T ) symmetric, exhibits entirely real spectra, like Hermitian Hamiltonians, 
in the region of a parametric space where this symmetry is in unbroken  phase5–7. From both a theoretical and 
an experimental points of view, much more interesting than non-Hermitian Hamiltonians having entirely real 
spectra are degeneracies of these Hamiltonians, which are placed in points of the parameter space, where a 
phase transition occurs from an unbroken to a broken P T symmetry. Such degeneracies, known as exceptional 
points (EPs), are the points of the parametric space where the eigenvalues and the corresponding eigenvec-
tors of a Hamiltonian  coincide8. Only non-Hermitian Hamiltonians can display  EPs9, and therefore, only in 
non-Hermitian systems, all the interesting physics associated with these degeneracies can be observed. These 
nontrivial phenomena include enhancement of weak signal  sensing10, enhancement of spontaneous  emission11, 
asymmetric light  propagation12,13, single-mode  laser14, electromagnetically induced  transparency15 just to name 
the few. The EPs are usually studied in the semiclassical regime, where optical and photonic systems are driven 
with strong classical external fields. Recently, these studies have been extended to the fully quantum  regime16–18. 
These studies do not use the Schrödinger equation with a non-Hermitian Hamiltonian, but are based on two 
different fully quantum descriptions of the open system dynamics, namely the master equation with a Liouvillian 
superoperator and the Heisenberg-Langevin equations. Since the matrix form of a Liouvillian superoperator is 
a non-Hermitian matrix, it can display degeneracies just like non-Hermitian Hamiltonians in the semiclassical 
regime. These degeneracies, known as Liouvillian EPs (LEPs), and their influence on features of the quantum 
system are attracting increasing  attention19,20. The master equation approach allows investigating fully quantum 
exceptional points, i.e., LEPs. It also helps to design a quantum system associated with a given non-Hermitian 
Hamiltonian. The quantum dynamics included in the master equation can be decomposed to give quantum 
 trajectories21,22. In the quantum trajectory method, the evolution of an open quantum system during the time 
intervals without quantum jumps is governed by a non-Hermitian Hamiltonian. Therefore, it is possible to 
realise non-Hermitian Hamiltonians in the fully quantum system using postselection. In this way, EP of a non-
Hermitian Hamiltonian (HEP) has recently been observed in an experimental superconducting  system23. The 
important difference between LEP and HEP is in accounting for quantum jumps. The former includes quantum 
jumps, whereas the latter assumes their absence. Therefore, in general, LEPs are different from HEPs. Shortly 
after the first observation of HEP in a fully quantum system, several papers were published comparing LEPs with 
 HEPs24–28. These papers compared LEPs with HEPs theoretically, but it should also be possible to experimentally 
study this problem as LEP was recently experimentally observed in two different systems: in a superconducting 
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transmon circuit coupled to an engineered  environment29, and in a single trapped ion 40Ca+30. Theoretical 
investigations have shown that in some systems LEP can be equivalent to HEP in the sense that the position of 
both in the parameter space is the same. In one of the mentioned papers, Arkhipov et al.24 have investigated a 
quantum system composed of two coupled cavities, where one cavity experiences incoherent gain, while another 
only damping, and have found such equivalence of LEP and HEP.

In the present work, we study a quantum system consisting of two laser-driven coupled optical cavities, from 
which a field leaks out to the reservoir. The non-Hermitian Hamiltonian describing this system is not P T-sym-
metric, because it does not include an incoherent gain term. Nevertheless, we find the position of the HEP by 
revealing the P T symmetry hidden in this Hamiltonian and the point where a phase transition occurs. To this 
end, we introduce the idea of the damping frame (DF) — a frame, where the hidden P T symmetry is clearly 
seen. We demonstrate that in a system with coherent gain HEP is equivalent to LEP. A similar observation was 
reported for a system with incoherent gain in  Ref24. Finally, we consider a superconducting circuit realised in 
the microwave domain, which is described by the same master equation as the optical system in the case when 
the thermal photon number in a thermal environment is negligible. We report breaking the equivalence between 
LEP and HEP by a non-zero number of thermal photons.

Results
Damping frame
The main idea of the transformation to damping frame (DF) is based on a rotating frame transformation, fre-
quently used in quantum optics. We assume that the total Hamiltonian can be written as a sum of two terms 
HP T and H0 . The Schrödinger equation is thus given by ( � = 1)

Now we make the substitution |ψ� = S |ψ̃� , where S and |ψ̃� are time-dependent. If we set S = exp(−i H0 t) then 
the Schrödinger equation reduces to

where H̃ = S−1HP T S . In the case of the transformation to a rotating frame, S is unitary, because H0 is Hermi-
tian. However, in the transformation to DF the operator S is not a unitary one, because H0 is not Hermitian. In 
both cases H̃ and HP T have the same eigenvalues. In order to obtain a P T-symmetric Hamiltonian in DF, we 
restrict ourselves to the cases, where [HP T ,H0] = 0 . Using the Baker-Hausdorff lemma

one can easily prove that H̃ = HP T for these cases.
For [HP T ,H0] = 0 , both Hamiltonians have the same set of eigenstates, and then we may relate the eigen-

values of the Hamiltonian given in the initial frame (IF) to those in DF. Therefore, an i-th eigenvalue of the total 
Hamiltonian in IF

is equal to the sum of the i-th eigenvalue of H̃ and the corresponding eigenvalue of H0 . This fact is important 
when one is looking for Hamiltonians displaying EPs, i.e., points in the parameter space, where two (or more) 
eigenvalues have the same value. If HP T is PT-symmetric, then the Hamiltonian in DF, i.e., H̃ , can display EPs. 
In such a case, at least two eigenvalues of H̃ coincide ( Ẽi = Ẽj for some i and j). Therefore, one may state that the 
Hamiltonian given in IF, i.e., H = HP T +H0 , being not a PT-symmetric one, can also display EP if E(0)i = E

(0)
j  . 

The second condition for EP is also fulfilled because HP T and H have the same set of eigenstates. Therefore, 
in this point the eigenvectors of H also coincide. Thus, we can say that DF reveals the hidden symmetry of H.

The existence of degenerate eigenvalues of H0 is a necessary condition for H displaying EP. Moreover, the 
eigenvalues suggest the convenient frame. If the eigenvalues of H0 are real, then we transform to a rotating frame. 
If they are imaginary, we deal with a transformation to a frame in which the length of the eigenstates scales with 
time. In the case when a system is in an unbroken, P T-symmetric phase, i.e., HP T has a real spectrum and the 
eigenvalues of H0 are imaginary, we can associate these two parts of H with the observable energy of the system 
( HP T ) and the metric describing the geometric nature of the Hilbert space ( H0)31–33.

It should be noted that condition [HP T ,H0] = 0 does not mean that H0 is a constant of motion, since 
HP T is not Hermitian. The conserved quantities for P T-symmetric Hamiltonian are given by intertwining 
 operators34,35.

It is also worth mentioning that the damping frame can also be useful to reveal hidden pseudo-Hermiticity of 
non-Hermitian Hamiltonians. It is known that the P T symmetry is a special case of pseudo-Hermiticity36–38. 
If the total Hamiltonian can be written as a sum of commuting parts, i.e., a pseudo-Hermitian Hamiltonian and 
H0 , then one can expect that the eigenvalues of the Hamiltonian given in IF are related to those in DF.

(1)i∂t |ψ� =(HP T +H0)|ψ� .

(2)i∂t |ψ̃� =H̃|ψ̃� ,

(3)eYXe−Y =X + [Y ,X] + (1/2!)
[
Y , [Y ,X]

]
+ . . .

(4)
H|φi� =HP T |φi� +H0|φi� = H̃|φi� +H0|φi�

Ei|φi� =Ẽi|φi� + E
(0)
i |φi�
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Hidden PT symmetry of passive optical system with coherent gain
Let us apply the idea of DF to investigate the symmetry and EP of a non-Hermitian Hamiltonian of a physical 
system described by the master equation ( � = 1)

The Hamiltonian of the system is given by

and collapse operators are given by

Here, g is a coupling strength, a and b denote the annihilation operators, γa , and γb are the field damping rates of 
both modes. For simplicity, we assume that g is real and positive. The above master equation describes a quantum 
system composed of two coupled optical cavities, which are both driven by a classical field, and from both of 
them a field leaks out to the reservoir, as shown in Fig. 1.

Therefore, this system contains both incoherent loss and coherent gain. This is a necessary condition to obtain 
a steady state solution different from the vacuum state. Such a system can serve as a source of light and it should 
be possible to implement it experimentally.

The master equation  (5) can be rewritten to the form

where

According to quantum trajectory theory, HnH is a non-Hermitian effective Hamiltonian, which describes the evo-
lution of an open system over time intervals in which quantum jumps do not  occur21,22,39,40. The non-Hermitian 
Hamiltonian is given by

First, let us express Eq. (10) in terms of the new bosonic operators defined by

where α = (γb − ig)/ξ , β = −(γb − ig)/ξ , δ = (γa − ig)/ξ , θ = −(γa − ig)/ξ and ξ = g2 + γaγb . Note that 
c+(d+ ) is not Hermitian conjugation of c(d). Hence, we have used the symbol “ + ” instead of “ † ”. Nevertheless, 
the operators c and d commute with each other and satisfy [c, c+] = 1 and [d, d+] = 1 , so actually they satisfy 
commutation relations of independent oscillators. In terms of these new bosonic operators, the Hamiltonian 
takes the form

where χ = i2ε2γ /(g2 + γ 2 − κ2) and γ = (γa + γb)/2 . We have dropped the real part of χ , because it con-
tributes only an overall irrelevant phase factor. After introducing κ = (γa − γb)/2 , this Hamiltonian can be 
rewritten as a sum of two parts

(5)ρ̇ = −i[H , ρ] +
1

2

∑

i

(
2CiρC

+
i − C+

i Ciρ − ρC+
i Ci

)
.

(6)H =g(a†b+ b†a)+ iε(a− a†)+ iε(b− b†) ,

(7)C1 =
√

2γa a , C2 =
√

2γb b .

(8)ρ̇ =− i(HnHρ − ρH†
nH)+

∑

i

CiρC
†
i ,

(9)HnH = H −
i

2

∑

i

C†
i Ci .

(10)HnH =g(a†b+ b†a)+ iε(a− a†)+ iε(b− b†)− iγaa
†a− iγbb

†b .

(11)
c = a+ εα , c+ = a† + εβ ,

d = b+ εδ , d+ = b† + εθ ,

(12)HnH =g(c+d + d+c)− iγac
+c − iγbd

+d − χ ,

Figure 1.  Schematic representation of the optical setup, in which the hidden P T symmetry is present.
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It can be verified that HP T is P T-symmetric using the spatial reflection defined by

where PS is the exchange  operator41, which spatially interchanges the modes (i.e. c ↔ d ). A matrix representation 
of PS is given by a perfect  shuffle42. We define the time-reversal operator T just as the complex conjugation opera-
tor ( T iT = −i ). Note that P given by Eq. (14) is a reflection operator (i.e., P = P

−1 ) and [P ,T ] = 0 . Using 
it and formulas: exp(αc†c)c exp(−αc†c) = exp(−α)c and exp(αc†c)c† exp(−αc†c) = exp(α)c† , one can easily 
check that (P T )c(P T ) = −d , (P T )c†(P T ) = −d† , (P T )d(P T ) = −c , (P T )d†(P T ) = −c† 
and (P T )i(P T ) = −i.

To find the eigenvalues, we use bosonic algebra combined with Fock space representation of (12)43. To this 
end, we introduce the operators [e, f ]T = R [c, d]T and [e+, f +]T = R [c+, d+]T , where

sin (α/2) =
√
(�+ iκ)/(2�) , cos (α/2) =

√
(�− iκ)/(2�) and � =

√
g2 − κ2 . The new operators satisfy the 

following commutation relations [e, e+] = 1 , [f , f +] = 1 , [e, f +] = 0 , [f , e+] = 0 , [e, f ] = 0 and [f +, e+] = 0 , and 
therefore, can be considered as annihilation and creation  operators43. In terms of these operators, the Hamilto-
nian takes the form

Now, it is also easy to check that [HP T ,H0] = 0 , so we can expect that HnH has a hidden P T symmetry. The 
geometric part of the Hamiltonian corresponds to its imaginary  part31, and therefore, assuming an unbroken 
P T-symmetric phase, it is given just by H0 . This part is important because the rate at which each of the eigen-
states scales in the DF is determined by the eigenvalues of H0 . Note that the geometric part is not just the operator 
of the total number of photons in both modes.

The eigenvalues of HP T (DF) and HnH (IF) are given by

respectively. We have denoted excitation numbers in the supermodes e and f  by Ne and Nf  . From these formulas, 
it is evident that all eigenvalues have the same value for κ = g in DF. In IF all eigenvalues have the same real part 
but imaginary parts can be different.

To illustrate it, we have compared in Fig. 2 eigenvalues corresponding to the following four eigenstates: 
|ψ1� = |1�e|0�f  , |ψ2� = |0�e|1�f  , |ψ3� = |2�e|0�f  , and |ψ4� = |0�e|2�f  in both frames. As expected for P T-sym-
metric theory, it can be seen in panels (a) and (b) that in the DF all eigenvalues are real when a system is in 
unbroken, P T-symmetric phase and complex-conjugate pairs of eigenvalues appear when P T symmetry is 
broken. It is also seen that a transition from broken to unbroken PT symmetry occurs at the point κ = g . This is 
EP, in which all four eigenvalues have the same real and imaginary parts. In this case, all eigenvalues at the EP are 
equal to zero. We can conclude from panels (a) and (b) that the investigated system is P T-symmetric in DF and 
eigenvalues of the Hamiltonian describing this system behave exactly as predicted by the P T-symmetric theory.

Figure 2 in panels (c) and (d) shows real and imaginary parts of the eigenvalues of the Hamiltonian (12), 
which describes the system investigated in IF. In this frame all eigenvalues have always non-zero imaginary parts. 
Nevertheless, it is clearly seen that there is a correspondence between IF and DF. According to Eq. (18), EP is also 
present in the point κ = g . In this case, however, the same real and imaginary parts have only such eigenvalues, 
which correspond to states with the same excitation number N = Ne + Nf  . Therefore, there are two pairs of 
coalescing eigenvalues in panels (c) and (d): { �nH1  , �nH2  } and { �nH3  , �nH4  }. The first pair corresponds to N = 1 and 
the second to N = 2 . It is also seen that for κ < g eigenvalues corresponding to the same excitations number N 
have different real parts and equal imaginary parts. For κ > g , these eigenvalues have different imaginary parts 
and equal real parts. Due to the similarities between DF and IF, we can say that HnH has a hidden P T symmetry 
despite the fact that HnH is not P T-symmetric. Similarly, we can say that κ < g is the region of unbroken P T 
hidden symmetry, and κ > g is the region of broken P T hidden symmetry.

It is worth comparing the results presented in Fig. 2 with the results presented  in44. The real part of the eigen-
values  in44 diverge, whereas these seen in Fig. 2 are finite and continuous. This is because the Hamiltonian (10) 
describes a real physical system and the P T-symmetric Hamiltonian considered  in44 is just a mathematical 
model. If we chose κ > γ , i.e., if we assumed an incoherent gain, then a divergence would also appear here.

Let us discuss the effect of the laser driving ε on the eigenvalues. One can see that the laser driving changes 
only χ in the Hamiltonian. Since χ is purely imaginary, it increases equally the decay rates of all eigenstates. This 
leads to an increase in the probability of a collapse occurring during the observed time interval. Hence, driving 
the system by an external laser field increases the average rate at which photons are emitted from the system to 
the environment.

(13)
HnH = g(c+d + d+c)− iκc+c + iκd+d︸ ︷︷ ︸

=HP T

−iγ (c+c + d+d)− χ︸ ︷︷ ︸
=H0

.

(14)P =PS exp[iπ(c†c + d†d)] ,

(15)R ≡
[
cos α

2 sin α
2

− sin α
2 cos α

2

]
,

(16)
HnH =�(e+e − f +f )︸ ︷︷ ︸

=HP T

−iγ (e+e + f +f )− χ︸ ︷︷ ︸
=H0

.

(17)�
PT =�(Ne − Nf ) ,

(18)�
nH =�(Ne − Nf )− iγ (Ne + Nf )− χ ,
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It is also worth discussing the physical phenomena, which are present in the unbroken and broken symmetry 
phases and which are the effect of the shape of the curves seen in Fig. 2 near EP. These phenomena cannot be 
observed in Hermitian systems, because only in non-Hermitian systems near to EP the vector space becomes 
severely  skewed1. In the unbroken symmetry phase, i.e., for the κ/g range from 0 to 1 in panels (a) and (c) in 
Fig. 2, the topology near EP leads to huge sensitivity of the frequency splitting to perturbations, as compared to 
Hermitian systems. While the frequency splitting in the vicinity of degeneration in Hermitian systems is propor-
tional to the perturbation strength ζ , in a non-Hermitian system near Nth order EP, where N eigenfrequencies 
and eigenmodes coalesce simultaneously, it scales as ζ 1/N . In panels (a) and (c) in Fig. 2 one can see the square 
root dependence of the frequency splitting on small perturbations ζ , because in this case two eigenmodes coa-
lesce. Therefore, sensors operating close to EP for a sufficiently weak perturbation, i.e., for ζ ≪ 1 , are expected 
to be superior to those operating in Hermitian  systems10,45. Another interesting phenomenon is known as field 
localisation and appears in the broken symmetry phase, which corresponds to the range of κ/g from 1 to 2 in 
panel (d) in Fig. 2. In the unbroken phase, the two eigenmodes are evenly distributed between both cavities and 
the total field decreases with increasing  loss1. However after crossing the symmetry-breaking threshold, i.e., EP, 
imaginary parts of coalescing eigenvalues split and dampings of the two eigenmodes are different. This leads to 
an uneven distribution such that one eigenmode is localised in the more lossy cavity, while the other is in the less 
lossy  cavity1. The result of this field localisation is the increase of the field intensity in one cavity with increasing 
loss despite the fact that only loss mechanisms are included. As a consequence, phenomena such as loss-induced 
transparency and lasing  appear1,46.

We have shown that the non-Hermitian Hamiltonian HnH given by Eq. (10) has a hidden P T symmetry 
and displays EP. Moreover, we know that HnH is appropriate for describing a real quantum system provided 
that the conditional evolution of the system is assumed. According to quantum trajectory  theory21,22 the non-
Hermitian Hamiltonian HnH describes the conditional time evolution of an open system when the system’s 
interaction with the environment is monitored by perfect detectors. During the time intervals when no photon 

Figure 2.  Eigenvalues of the Hamiltonian presented in the damping frame (DF) given by Eq. (17) [panels 
(a) and (b)] and in the initial frame (IF) given by Eq. (18) [panels (c) and (d)] as functions of the gain/loss 
coefficient κ , for (γ , ε)/g = (2, 1) . Real parts are the same in both frames, but imaginary parts are different in 
these frames. Nevertheless, in both frames, the exceptional point exists and is placed at the same point of the 
parameter space, i.e., g = κ.
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decay is detected, the evolution is governed by HnH . This evolution is interrupted by collapses corresponding 
to the action of the collapse operators (7). The quantum trajectory theory makes it possible to describe a state 
evolution conditioned on a sequence of detected collapses. The master equation approach cannot describe the 
state evolution conditioned on a particular detection record, because the master equation evolves all possible 
trajectories in time as a single package. In other words, the master equation approach does not assume any 
knowledge of the detection events.

The non-Hermitian Hamiltonian HnH corresponding to the master equation (8) gives us the opportunity to 
compare EP calculated from the non-Hermitian Hamiltonian (HEP) with EP calculated from a Liouvillian super-
operator (LEP). In general, LEPs can be different from HEPs, because we calculate LEPs taking into account also 
the last term of the master Eq. (8), i.e., 

∑
i CiρC

†
i  , which describes quantum jumps. HnH governs the evolution of 

the system in the absence of quantum jumps, and thus quantum jumps are not taken into account here. The best 
way to calculate LEP in the case of this infinite-dimensional system is to use the Heisenberg-Langevin equations 
averaged over the  reservoir24. This approach is equivalent to calculating LEP from the Liouvillian superoperator 
as shown in Ref.47. Knowing the Hamiltonian (6) and the collapse operators (7) we can obtain the Heisenberg-
Langevin equation without noise terms for an operator A using the following  formula48:

In this way we obtain the closed set of differential equations for the fields’ operator moments

The matrix form of this set of linear equations is given by

where

v = [�a�, �b�]T and v0 = [ε, ε]T . The diagonalisation of M leads to formulas for the eigenvalues �± = ±�− iγ 
and the corresponding eigenvectors v± = [±�− iκ , g]T , where � =

√
g2 − κ2. It is evident that the point 

κ = g is LEP, because at this point both eigenvalues coincide and the corresponding eigenvectors coalesce. One 
can see that in the case of this optical system LEP is equivalent to HEP.

The effect of thermal photons in the reservoir on HEP in circuit QED
Let us now consider another physical system — two coupled superconducting resonators driven by an external 
electromagnetic field. This physical system should also be experimentally  feasible49. The circuit diagram is shown 
in Fig. 3.

These two LC resonators are inductively coupled to each other via mutual inductance M and capacitively 
coupled to sources of loss via Ca and Cb . These two capacitors, i.e., Ca and Cb also allow for driving the LC reso-
nators. It is evident that this electrical circuit system can be also described by the Hamiltonian (6). However, 
the master equation has to be modified because of thermal effects. In the case of optical systems, which interact 
with a thermal environment, the number of thermal photons is negligibly small. However, in the case of super-
conducting microwave resonators, even at liquid helium temperatures, a few thermal photons are present in 

(19)Ȧ = i[H ,A] +
∑

k

1

2

(
2C†

kACk − C†
kCkA− AC†

kCk

)
.

(20)
�ȧ� = − γa�a� − ig�b� − ε ,

�ḃ� = − ig�a� − γb�b� − ε .

(21)v̇ =− iM v − v0 ,

(22)M =
(
−iγa g
g − iγb

)
,

Figure 3.  Schematic diagram of a superconducting circuit realised in the microwave domain, which is 
equivalent to the optical setup shown in Fig. 1. The difference between these setups is that the frequency of the 
optical cavity is four orders of magnitude higher than that of the superconducting resonator LC. Therefore, 
thermal photons present in the environment can be neglected in the optical case, but should be taken into 
account in the microwave case.
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the thermal  bath21. It is easy to take into account the number of thermal photons by substituting the following 
collapse operators into the master Eq. (5)

For the sake of simplicity, we assume that both resonators are coupled to baths with the same number of thermal 
photons n, i.e., to baths with the same temperatures. Using Eq. (9), we obtain the non-Hermitian Hamiltonian

which governs the evolution of the system between quantum jumps. Using the bosonic commutation relations 
we can rewrite the non-Hermitian Hamiltonian to the form

where γ ′
a = γa(2n+ 1) , γ ′

b = γb(2n+ 1) and χt = i n(γa + γb) . Note that the Hamiltonians given by Eqs. (25) 
and  (10) have a very similar form. Hamiltonian (25) has a different damping constants and an extra term — a 
complex constant. Therefore, this microwave system also has hidden P T symmetry and the point in which a 
transition from broken to unbroken hidden P T symmetry takes place. Due to this similarity, we can diagonalise 
non-Hermitian Hamiltonian (25) in exactly the same way as Hamiltonian (10), which yields

where �′ =
√

g2 − κ ′ 2 , γ ′ = (2n+ 1)γ , κ ′ = (2n+ 1)κ and

The eigenvalues of this microwave system are then given by

(23)
C1 =

√
2γa(n+ 1)a , C2 =

√
2γana

† ,

C3 =
√

2γb(n+ 1)b , C4 =
√

2γbnb
† .

(24)HnH = H − iγa(n+ 1)a†a− iγanaa
† − iγb(n+ 1)b†b− iγbnbb

† ,

(25)HnH =g(a†b+ b†a)+ iε(a− a†)+ iε(b− b†)− iγ ′
aa

†a− iγ ′
bb

†b− χt ,

(26)HnH =�′ (e+e − f +f )− iγ ′(e+e + f +f )− χ ′ ,

(27)χ ′ =i 2γ
[
n+

ε2(2n+ 1)

g2 + (γ 2 − κ2)(2n+ 1)2

]
.

(28)�
nH =�′ (Ne − Nf )− iγ ′ (Ne + Nf )− χ ′ .

Figure 4.  Real and imaginary parts of eigenvalues given by Eq. (28) as functions of κ/g for different number of 
thermal photons. Parameters: γ /g = 2, ε/g = 1. Panels (a) and (d): n = 0, panels (b) and (e): n = 0.1, panels (c) 
and (f): n = 0.2.
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In Fig. 4 we have plotted for different values of n four eigenvalues corresponding to the four eigenstates, which 
were considered in the case of the optical system, i.e., |ψ1� , |ψ2� , |ψ3� , and |ψ4� . It can be seen that the system has a 
hidden P T symmetry and displays HEP between the unbroken and broken phases. It can also be seen that the 
position of HEP is dependent on the number of thermal photons n. From Eq. (28) we can infer that the eigenval-
ues corresponding to the eigenstates with the same number of excitations are equal for g satisfying the condition:

Therefore, the effect of thermal photons in the reservoir on the HEP is to move it in such a direction that the 
parametric region of the unbroken hidden P T symmetry is reduced.

Let us now calculate the eigenvalues of Liouvillian using Heisenberg-Langevin equations averaged over 
the reservoir to obtain the formula for LEP. In order to generate equations for the fields’ operator moments we 
substitute the Hamiltonian (6) and collapse operators (23) into Eq. (19). We obtain the same set of differential 
equations as in the case of the optical setup, i.e., the set given by Eq. (20). So, we obtain also the same eigenfre-
quencies. Thus, the system displays LEP for g satisfying the following condition:

It should be noted that gLEP is independent of n in contrast to gHEP . Therefore, the effect of thermal photons is 
that LEP is not equivalent to HEP in this circuit QED system. This effect of thermal photons on EPs has not been 
observed yet, to the best of our knowledge.

This circuit QED system should be experimentally feasible, so it should also be possible to observe the spec-
trum of the field radiated by this system. Therefore, the question arises whether this circuit QED system displays 
EP in the point gLEP or gHEP . As mentioned earlier, a non-Hermitian Hamiltonian in the quantum trajectory 
method describes a conditional evolution of a system, which is monitored by perfect detectors, whereas the 
master equation method describes an evolution of an open system, for which a sequence of jumps events is not 
known. The position of EP for imperfect detectors can be determined using the Hybrid-Liouvillian  formalism26.

Finally, let us explain the difference in the positions of EPs revealed by considering the non-Hermitian Ham-
iltonian HnH (24) and by analysing the dynamical matrix of the Eq. (20) for mean  values47. The Hamiltonian  HnH 
in Eq. (24) describes two bosonic modes interacting with two independent reservoirs at finite temperature, i.e., 
with non-zero mean reservoir photon numbers n. Without the loss of generality, let us concentrate our attention 
to one bosonic mode. The form of the non-Hermitian Hamiltonian  HnH corresponds to the following master 
equation for the mode statistical operator ρ describing its interaction with the  reservoir50:

To identify the drift and diffusion terms in the evolution of the mode as described by the master Eq. (31), let us 
rewrite it for the quasi-distribution function �N introduced in the Glauber-Sudarshan representation of the 
statistical operator ρ in the basis of coherent states |α�50:

Using the properties of coherent states, we arrive at the following Fokker-Planck  equation51:

According to Eq. (33), the drift terms correspond to the following Heisenberg-Langevin equations for the opera-
tors a and a†,

and the stochastic operator forces L and L† serve to describe the influence of the diffusion term. The form of 
Eq. (34) corresponds to the following non-Hermitian Hamiltonian Hdrift

nH ,

that completely describes the mode evolution caused by the drift terms.
The consideration of non-Hermitian Hamiltonian (24) in the form of Eq. (35), i.e.

then leads to the EPs according to the condition (30) that identifies LEPs.
The approach that gives the non-Hermitian Hamiltonian of Eq. (24) incorporates the drift terms only partly, 

which results in shifted temperature-dependent positions of EPs. Subsequent inclusion of quantum  jumps26 then 
has to correct for both the dynamics of the drift terms and the diffusion terms. Once this correction is done, the 
positions of EPs (HEPs) shift to those identified from the analysis of the whole Liouvillian of the system (LEPs).

(29)gHEP =(2n+ 1)κ .

(30)gLEP =κ .

(31)
ρ̇ =γa(n+ 1)

(
[aρ, a†] + [a, ρa†]

)

+ γan
(
[a†ρ, a] + [a†, ρa]

)
.

(32)ρ =
∫

d2α �N(α,α∗)|α��α|.

(33)
d�N

dt
= γa

∂

∂α
(α�N)+ γa

∂

∂α∗ (α
∗�N).

(34)ȧ = −γaa+ L, ȧ† = −γaa
† + L†,

(35)H
drift
nH = −iγaa

†a,

(36)H
drift
nH = H − iγaa

†a− iγbb
†b
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Discussion
We have introduced the concept of the damping frame (DF) — a frame, which scale is time dependent. This 
frame makes it possible to reveal P T symmetry hidden in passive non-Hermitian Hamiltonians, which do not 
have an incoherent gain term. More specifically, we have shown that if a non-P T-symmetric non-Hermitian 
Hamiltonian can be expressed as a sum of two terms (a P T-symmetric term and a second term commuting with 
the first one), then such Hamiltonian has a hidden P T symmetry. Using the DF method we have proved that 
the non-Hermitian Hamiltonian describing a quantum system composed of two coupled optical cavities, which 
are both driven by a classical field, and from both of them a field leaks out to the reservoir, has a hidden P T 
symmetry. Although systems composed of two coupled optical resonators have been investigated many times in 
the context of P T  symmetry24,43,44, to our knowledge, the non-Hermitian Hamiltonian (10) with hidden P T 
symmetry and coherent gain has been never presented. The presence of the coherent gain is important because 
it allows for using this system as a source of light. Thanks to the DF method, we have identified the region of the 
parameter space where the hidden P T symmetry is unbroken and the region of the broken phase. In this way, 
we have also found the position of the exceptional point (EP), where a transition from the broken phase to the 
unbroken phase takes place.

The non-Hermitian Hamiltonian (10) describes a conditional evolution of a feasible optical open system 
interacting with its environment. Therefore, it is possible to write the master equation for the considered system. 
We have written the master equation that describes the evolution of this optical system and we have calculated 
EP from a Liouvillian superoperator. We have found that in the case of this optical system, EP obtained from the 
Liouvillian superoperator (LEP) is equivalent to EP determined from the non-Hermitian Hamiltonian (HEP). 
Next, we have investigated a circuit QED system, which is described by the same Hermitian Hamiltonian as the 
optical system. However, in this microwave system, the effect of thermal photons present in the environment 
cannot be neglected, so the master equation is different than in the optical case. We have found that in the case 
of the circuit QED system LEPs differ from HEPs as a consequence of non-zero number of thermal photons. 
This means breaking the equivalence between HEPs and LEPs.

Data availability
All the data necessary to reproduce the results are included in this published article.
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