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Wave optics of imaging 
with contact ball lenses
A. V. Maslov 1*, B. Jin 2 & V. N. Astratov 2

Recent progress in microspherical superlens nanoscopy raises a fundamental question about 
the transition from super-resolution properties of mesoscale microspheres, which can provide a 
subwavelength resolution ∼ �/7 , to macroscale ball lenses, for which the imaging quality degrades 
because of aberrations. To address this question, this work develops a theory describing the imaging 
by contact ball lenses with diameters 30 < D/� < 4000 covering this transition range and for a broad 
range of refractive indices 1.3 < n < 2.1 . Starting from geometrical optics we subsequently proceed to 
an exact numerical solution of the Maxwell equations explaining virtual and real image formation as 
well as magnification M and resolution near the critical index n ≈ 2 which is of interest for applications 
demanding the highest M such as cellphone microscopy. The wave effects manifest themselves 
in a strong dependence of the image plane position and magnification on D/� , for which a simple 
analytical formula is derived. It is demonstrated that a subwavelength resolution is achievable at 
D/� � 1400 . The theory explains the results of experimental contact-ball imaging. The understanding 
of the physical mechanisms of image formation revealed in this study creates a basis for developing 
applications of contact ball lenses in cellphone-based microscopy.

The development of compact, portable, and light-weight optical detection and imaging devices requires the use 
of microoptics, including millimeter and sub-millimeter size lenses. Historically, the construction of single lens 
microscopes, in particular with ball lenses, by Antonie van Leeuwenhoek in the 17-th century enabled him to dis-
cover microorganisms establishing a new direction of life  sciences1–3. Although later in the 18-th and, especially, 
the 19-th centuries microscopy evolved mainly in favor of compound microscopes operating with multi-lens 
objectives and bulky stands, the interest in compact microoptics solutions, including single ball lens designs, 
was revitalized in the 1990s and 2000s due to the advent of megapixel CCD and CMOS sensor arrays used in the 
microscope cameras. The efforts to use uncorrected minilenses (including balls) as a part of optical systems run 
into fundamental obstacles because the resulting images become affected by various aberrations. Optical aber-
rations, in general, put the practical limit on the performance of various optical  systems4. For example, spherical 
aberration leads to blurry images and focus errors which are well known in photography. Aberrations exacerbate 
imaging quality when working with subjects at close distances and using lenses with high-curvature surfaces or 
wide apertures. Yet, these are essentially the operating conditions of microoptical imaging.

On the other hand, a novel type of microscope imaging based on placing microspheres in direct contact with 
nanoscale objects has emerged in the last decade and has been termed “microsphere-assisted” or “microsphere 
superlens” imaging (MSI)5–21. It has been demonstrated experimentally that such microspheres create magni-
fied virtual images with resolution ∼ �/7 well beyond the classical diffraction limit. These results generated a 
significant interest in the mechanisms of such imaging because of its label-free nature, inherent simplicity, and 
potential biomedical applications. Such an extraordinarily successful application of wavelength-scale micro-
spheres raises a question about the role of aberrations in MSI. Indeed, a spherical lens is expected to give rise to 
aberrations and, for example, lens systems in cellphone cameras rely on aspherical lenses to achieve high qual-
ity  imaging22. Moreover, the applicability of the concept of aberrations to microspheres is not well justified due 
to the fact that the optical operation of such contact microspheres cannot be viewed as a result of some rather 
small deviation from an ideal case as in the classical geometrical optics (GO). The involvement of objects’ near-
fields often in a form of plasmonic or localized surface plasmon resonance excitation and extreme curvature 
of the wavelength-scale microspheres call for an exact solution of the Maxwell equations as the only possible 
way of theoretical understanding of such  imaging23–30. The exact numerical solutions predicted the resolution 
at �/4− �/5 approaching the experimental values. This area remains an active field of theoretical studies where 
such factors as structured illumination with the plasmonic hot  spots20, coherent  contributions26, enhancement of 
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near-fields under coupling with whispering gallery modes (WGMs) in  microspheres27, and extreme curvature of 
the wavelength-scale  microspheres23 are being considered to explain experimentally observed super-resolution 
values.

The purpose of this work can be seen as filling the gap between the classical imaging approach based on 
geometrical optics with aberrations included in analysis for sufficiently large ball lenses on the one hand and a 
limiting case of contact, wavelength-scale microspheres for which introducing aberrations is conceptually dif-
ficult on the other hand. We focus specifically on objects near the optical axis where the spherical aberration and 
defocus aberration dominate. We consider the imaging by ball lenses with the index of refraction 1.3 < n < 2.1 
and radius 15 < R/� < 2000 which are placed in contact with the objects. Such imaging can be viewed as an 
extension of MSI towards using submillimeter- and millimeter-scale ball lenses which are much more conveni-
ent for developing portable and lightweight imaging systems not requiring bulky and expensive microscope 
objectives with heavy microscope stands. In addition, millimeter-scale ball lenses provide larger field-of-view 
compared to microspheres. The perfect example of such a system is a cellphone operating in combination with 
a contact ball  lens31 illustrated in Fig. 1a. The interest to similar systems operating with noncontact ball lenses 
emerged in the last  decade32–37. However, some problems such as insufficient magnification, spherical aberra-
tion, and pincushion distortions were found to be limiting factors for developing this technology with the best 
resolution about 1.5 µ m reported up to date.

In our theoretical analysis we make a gradual transition from the paraxial to nonparaxial ray tracing and, 
finally, to wave optics (WO) based on a numerical solution of the Maxwell equations which provide an accurate 
description of imaging by the contact ball lenses with various refractive indices and sizes. As expected, our WO 
results converge to that of GO for larger ball lenses, while they also show a large number of novel properties tak-
ing place in the intermediate range of sizes. Using a two-dimensional (2-D) model, we study the effect of focal 
shift for contact ball lenses for the first time. It is shown that it plays a significantly larger role for real imaging 
taking place for 1.9 < n < 2.1 in the size range 50 < R/� < 2000 , compared to the virtual imaging observed for 
1.3 < n < 1.9 . We also show that the effect of focal shift becomes more significant for smaller ball lenses leading 
to a dramatic reduction of the image magnification compared to the GO predictions. It is shown that the resolu-
tion improves for smaller ball lenses reaching deeply subwavelength value ∼ �/2 at R/� � 100 in the vicinity of 
n ≈ 2 . The index variation about n ≈ 2 affects greatly the magnification but not the resolution. Using diffraction 
integrals we clarify the role of defocus and spherical aberration on the shift of the image plane and also derive 
a simple formula describing the focal shift in a wide range of parameters � , n, and R in a good agreement with 
the exact numerical solution of the Maxwell equations. We show that the WO results for the image plane shift 
agree well with the experimental cellphone microscopy of a Siemens star through a contact R = 1 mm ball lens 
at three different values of its refractive index. Finally, we experimentally demonstrate that cellphone microscopy 
based on using ball lenses with n sufficiently close to the critical index n ≈ 2 allows reaching ∼ 0.9 µ m resolution 
values in a resonable agreement with theoretical predictions.

Geometrical optics of ball lenses
Geometry and typical experimental situation. The use of ball lenses with the index of refraction 
n ≈ 2 can provide very large  magnification31. The experimental setup for imaging through a ball lens is shown 
in Fig. 1a. The measurement details are described in Methods. The imaged object was a Siemens star and the real 
images were recorded by a cellphone camera, see Fig. 1b. The variation of the refractive index near n ≈ 2 was 
obtained due to the material dispersion of the glass and the selection of the operating wavelength using optical 
filters. The measured magnification can be very high, in the range 20–50, but depends strongly on the refractive 
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Figure 1.  Experimental measurements and imaging regimes. (a) Schematic of the experimental imaging 
through a ball lens using a cellphone. (b) Scanning electron microscopy (SEM) image of a Siemens star and 
its cellphone camera images through the ball (LASFN35 glass, R = 1 mm) using optical filters at the specified 
wavelengths. (c) Geometrical optics of imaging with a ball lens for an object at the surface. A virtual image 
is created for nr < 2 and a real image for nr > 2 . The black arrows indicate the displacement of the image as 
nr → 2.
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index, see Table 1. The image analysis also showed that the magnification M depends linearly M = xi/R on the 
distance xi between the image plane and the center of the ball.

Paraxial geometrical optics. Let us now analyze the experimental results on the ball-lens imaging within 
the framework of paraxial GO. The application of GO is rather natural here since the size of the ball is much 
larger than the wavelength. We consider a ball with radius R and refractive index n2 surrounded by medium with 
n1 , see Fig. 1c. An object is located next to the surface of the ball so that the gap is significantly smaller than the 
wavelength. The variation of the gap g(y) due to curvature can be estimated as g(y) = y2/(2R) , where y is the 
displacement from the optical axis. Assuming a subwavelength condition g < �/2 gives the maximum object 
size L = 2

√
R� for which the subwavelength gap approximation holds. Taking, for example, R = 1 mm and 

� = 0.5 µ m yields L ≈ 40 µ m. Thus, the subwavelength gap approximation can easily hold for various samples 
of interest, such as used in the experiments, see Fig. 1b. Thus, the first interface does not participate in the image 
formation. The emission diagram formed inside the lens is transformed by the refraction at the second interface. 
The curvature of the first interface, however, can play a role in increasing the resolution due to the outcoupling 
of evanescent fields but this is likely to take place for lenses with sizes in the micron range. Ray 1, which origi-
nates from a point at distance h ≪ R from the optical x axis and propagates parallel to it, upon refraction bends 
at an angle γ1 = (nr − 1)h/R , where nr = n2/n1 , while ray 2, which passes through the center of the ball, has 
γ2 = h/R . The equations for the two refracted rays

allow finding their intersection xi and resulting object magnification M:

This equation was also used to evaluate magnification in virtual  imaging10,24 and later generalized to the case of 
a finite gap between the object and the ball  lens12. The intersection is virtual ( xi < 0 ) if γ1 < γ2 or nr < 2 and 
real ( xi > 0 ) in the opposite case. According to Eq. (2), the distance |xi| and magnification M increase rapidly as 
nr → 2 . Since M ∝ xi , we can limit ourselves to finding the image location xi for a point source on the optical 
axis.

The image plane positions xi/R predicted by the paraxial GO for the experimental parameters using Eq. (2) 
are significantly larger than the measured values, see Table 1. Moreover, the difference increases drastically as nr 
approaches 2. In general, the paraxial approximation is applicable only if the image is formed by rays in a small 
angular range, often limited by apertures in practice. The failure of the paraxial GO can be explained by the fact 
that the imaging here was performed using the full angular range offered by the ball lens.

Ray tracing beyond the paraxial approximation. Let us now go beyond the paraxial approximation 
and consider various rays originating from a point source located at x = −R , Fig. 2a. A ray emitted at an angle 
α is refracted at the interface. The angle of refraction β is determined by Snell’s law: n2 sin α = n1 sin β . The 
refracted ray either crosses the x axis at some xc or disappears in the case of total internal reflection (TIR) if 
α > arcsin(n1/n2) . The intersection can be virtual ( xc < 0 at β < 2α ) or real ( xc > 0 at β > 2α ). The regimes 
are determined by nr and α , see Fig. 2b. At 1 < nr <

√
2 only virtual intersections exist. At 

√
2 < nr < 2 there 

are real and virtual intersections. At nr > 2 there are only real intersections.
Ideal images (virtual or real) are formed if all refracted rays intersect at the same point xi = xc giving 

M = −xi/R . In practice, xc depends on α:

see Fig. 2c. In the limit α → 0 one can recover from (3) the paraxial approximation (2). The variation of xc(α) 
near the focus for paraxial rays xc(α → 0) is referred to as spherical aberration. For rather small nr , see nr = 1.3 in 
Fig. 2c, xc is negative and depends on α very weakly and, therefore, a sharp virtual image is expected to be formed. 
At nr = 1.8, 1.9, 1.95 , the virtual image position |xc| increases and its variation with α becomes very significant. 
This results in image blurring and, probably, disappearance. Moreover, at nr >

√
2 one obtains xc → −∞ as 

α → α∗ , with α∗ = arccos(n2/(2n1)) < π/4 . When α exceeds α∗ , the intersection xc becomes real and strongly 
dependent on α . At nr = 2.05, 2.1, 2.2 the dependence on α becomes flatter and that should increase the sharp-
ness of the real image. At nr = 2 there is no intersection with x, i.e., xc → ∞ as α → 0.

(1)y1(x) = −(nr − 1)(h/R)(x − R)+ h, y2(x) = −(h/R)x

(2)xi/R = −M, M = nr/(2− nr).

(3)
xc

R
= sin(2α)

(

1

tan(β − 2α)
+

1

tan(2α)

)

,

Table 1.  Comparison of the experimental measurements (EM) of image location xi/R for a ball with R = 1 
mm at different operating wavelength � and the predictions for xi/R of various theoretical approaches based 
on the refractive indices n of LASNF35 glass at the specified wavelengths: paraxial geometrical optics (PGO), 
numerical wave optics (NWO), and simple analytical result (10) obtained from WO (AWO).

� (nm) n R/� xi/R (EM) xi/R (PGO) xi/R (NWO) xi/R (AWO)

430 2.068 2326 26 30.4 25.0 25.0

480 2.049 2083 35 41.8 31.9 31.8

546 2.030 1832 46 67.7 43.4 43.6
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Thus, the rays emitted from the point source at x = −R do not converge to a well defined spot for 
1.9 � nr � 2.2 . Under the severely strong spherical aberration the appearance of well resolved images is unlikely. 
Yet, the experiments show distinct images, see Fig. 1b. Thus, the formation of images and their locations observed 
experimentally seem to be in disagreement with the GO predictions.

Wave optics of ball lenses
Theoretical model. To explain the image formation let us now adopt the wave theory. We consider a 2-D 
model, in which the fields depend on x and y only, and take a point current source Jz(x, y) = j0δ(x − R)δ(y) , 
see the coordinate system in Fig. 3b. Without the ball, the same point source located at x = y = 0 generates in 
the uniform medium an outgoing cylindrical wave with the electric field Euz (x, y) = −πE0H

(1)
0 (k1ρ) , where 

H
(1)
0  is the Hankel function, ρ =

√

x2 + y2 , k1 = n1ω/c , and E0 = j0ω/c
2 . Note that |Euz (k1ρ)| = E0 at the 

distance ρ/� ≈ 0.9969/n1 from the source so that E0 can be conveniently used for normalization. The fields 
can be calculated without any further approximations by solving the Maxwell equations using the expansion 
into the cylindrical  functions23,26,27,38. In general, modeling rigorously optical structures with sizes of hundreds 
and thousands of wavelengths thick is very challenging. Often this requires adopting various wave-propagation 
 methods39 which rely on some approximations, such as neglecting back-propagating fields. In the diffraction 
theory the field intensity is also represented as an integral over some aperture with a kernel which depends on 
the  fields40. Since the fields at the aperture are not known, various assumptions are made, such as taking the inci-
dent field only (the Kirchhoff ’s approximation)41,42. The specific circular geometry of the present problem allows 
finding the fields with accuracy limited only by computational precision rather than by a priori assumptions. The 
comparison of 2-D and 3-D FDTD results of modeling the focal distances of 10–18 µm-diameter spheres shows 
only a small difference while all trends remain essentially the  same43. Thus, the application of a 2-D model here 
for significantly larger spheres is quite rational from the computational point of view and its results are expected 
to hold also in 3-D.

In the simulations we take a vacuum background n1 = 1 and various values for n2 . The results for n1  = 1 can 
be obtained directly from those for n1 = 1 as it follows from the Maxwell equations. Indeed, let us assume that we 
have some arbitrary current that produces fields in two situations, (a) and (b), so that the spatial dependences of 
the refractive index differ by a constant factor s: nb(r) = s na(r) . The fields in case (b) are related to that in (a) as 
Eb(r,ω) = Ea(r, sω)/s and Hb(r,ω) = Ha(r, sω) . Thus, the case of a background index n1 > 1 is equivalent to the 
case with n1 = 1 but with operation at a proportionately higher frequency or, equivalently, shorter wavelength. 
This also increases the resolution by the same factor as in immersion microscopy.

Image plane position and magnification. The spatial spectrum of the fields in the far-field region from 
the ball at x ≫ R defines the image (real and virtual) which is formed by the objective (or cellphone camera) 
lens, see Fig. 1a. The image can be found by recreating the intensity in the focal plane of the objective lens using 
the far fields  only23,24,26,44,45. This is equivalent to backpropagating the fields from some plane x ≫ R to the 
image plane. The distribution of the image intensity along y for a given location of the focal plane x gives the 
2-D point spread function (PSF) psf(x, y) = |Ebz (x, y)|2 , where Ebz (x, y) is the backpropagated field. The back-
propagated field Ebz (x, y) coincides with the true field Ez(x, y) at distances larger than a few wavelengths from 
the ball at x > R . In the other regions they differ from one another. In particular, the true field diverges at the 
location of the point source while the backpropagated field (and PSF) does not. Note that without the ball, the 
z-polarized current point source located at the origin x = y = 0 produces far fields that after backpropaga-
tion give at x = 0 the image intensity psf(0, y) = π2E20J

2
0 (k1y) , where J0 is the Bessel function. This implies 

the angular range of −π/2 < ϕ < π/2 for the collection of the outgoing waves. This image has the first zero at 
y/� = 2.4/(2πn1) = 0.38/n1 and its full width at half maximum (FWHM) is W/� = 0.36/n1 . So the z-polar-
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Figure 2.  Nonparaxial ray tracing for a point source at the surface of a ball lens. (a) As the emission angle α 
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disappear in the TIR case. (b) Propagation regimes for the refracted ray at various nr = n2/n1 and α . (c) Virtual 
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ized source gives a smaller width compared to a y-polarized  one23 which can be attributed to its uniform angular 
emission.

To understand the role of wave phenomena in image formation we take a ball with R/� = 15 ( kR = 94.25 ) and 
n2 = 2 , see Fig. 3. While its size is smaller than in the experiments shown in Fig. 1a, b it is still much larger than 
the wavelength. The paraxial GO predicts no ray convergence in this case, see Eq. (2). The intensity |Ez(x, y)|2 
diverges near the point source and its value exceeds the color scale range in Fig. 3a. The intensity |Ez(x, y)|2 inside 
the ball near its boundary is also very high because of TIR. This accumulation of energy takes place even with-
out any resonances, such as WGMs. The WGMs can also exist but their quality factor is extremely high around 
R/� = 15 with n2 = 2 so that their excitation requires extremely fine tuning of R/� or n2 . The psf(x, y) in Fig. 3b 
coincides with the true intensity |Ez(x, y)|2 in Fig. 3a for x > R but differs substantially for x < R . In particular, 
psf(x, y) has no enhancement inside the ball or singularity near the point source. The peak at x/� = 124 is the 
diffraction focus which is formed in contrast to the lack of ray convergence in the paraxial GO. Its location can 
be considered as the image plane xi . The longitudinal width of the peak (or the focusing depth) is very large, 
� 20� . However, the transverse width is very small. Indeed, the FWHM of the central peak is W = 3.42� . Taking 
into account the magnification M = 124/15 = 8.27 , the resolution becomes W/M = 0.41� , which is close to 
the PSF width of 0.36� obtained in free space in 2-D for a z-polarized point source under the condition of light 
collection in the largest possible angular range of −π/2 < ϕ < π/2 . Thus, the ball itself does not produce any 
significant broadening of the PSF.

Having established the presence of focusing enabled by the contact ball with R/� = 15 , let us now move on 
to larger balls, closer to the GO regime. To investigate the location of the image plane we plot in Fig. 4 the PSF 
along the optical axis as the refractive index of the ball n2 changes from 1.3 to 2.1 at a fixed size R/� = 100 . At 
n2 = 1.3 a sharp peak is observed at x/R = −1.91 corresponding to the location of the virtual image, see Fig. 4a. 
As n2 increases, the peak rapidly becomes smaller and broader. At n2 = 1.9 , a noticeable intensity also appears at 
x/R > 0 . At n2 = 1.95 the furthest maximum of intensity is at x/R ≈ 50 , however, the second one at x/R ≈ 15 
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is higher, see Fig. 4b. As n2 increases even more, the furthest maximum becomes narrower, higher, and closer to 
the ball. The furthest peak is still slightly smaller than the second peak at n2 = 1.98 but it overcomes it at n2 = 2 . 
Note that psf(x, 0) always oscillates along x. These oscillations can disappear in practice if imaging is performed 
using illumination with a broad spectrum. However, the slow variation can still remain if the illumination band-
width is sufficiently small. The plane locations at the maxima along x that differ from the furthest one cannot 
produce images because the PSF has much stronger sidelobes in the transverse y direction, see, for example, the 
plane at the second maximum at x/� = 56 in Fig. 3b. Thus, the furthest peak defines the image plane location xi.

We can now compare the predictions of GO with that of WO. Due to symmetry of the problem, M in both 
cases is directly related to the image location M = −xi/R . Since xi and M diverge as nr → 2 in the GO limit, it 
is convenient to analyze graphically R/xi = −1/M . Figure 5a,b show the comparison for virtual and real imag-
ing, respectively, for several ball sizes: R/� =50, 100, and 1000. For virtual images, WO predicts slightly larger 
|xi|/R (or smaller R/|xi| ) as compared to that from GO. However the agreement with GO becomes closer as R/� 
increases. More interesting situation is observed for real images. The function R/xi for all R/� behaves linearly 
with n2 having practically the same slope as predicted by GO. However, the lines are shifted and the shift depends 
on R/� . With increasing R/� , the shift decreases and eventually one recovers the GO regime. The presence of even 
a small shift in R/xi in the region of nr ≈ 2 (or 1/M ≈ 0 ) can lead to dramatic deviations of xi/R and M from the 
GO predictions. The image plane positions calculated using WO for the indices n2 and sizes R/� realized in the 
experiments are given in Table 1 and agree well with the experimental measurements.

Figure 5c shows magnification (and therefore, the position of the real image plane xi = |M|R ) as a function 
of R/� for n2 = 2.02 , 2.05, and 2.1. In all cases |M| initially grows with R/� . If n2 differs from 2 significantly, 
for example, n2 = 2.1 , then |M| saturates quite rapidly at R/� ∼ 200− 300 . If the difference n2 − 2 becomes 
smaller, then the growth of |M| becomes much slower and reaching the asymptotic GO values requires much 
larger values of R/� . For n2 = 2.05 , for example, |M| still continues growing slightly even for R/� ∼ 1000 . For 
n2 = 2.02 , the growth of |M| is very pronounced even for R/� ∼ 2000 . Thus, the convergence to the GO regime 
is determined not only by the ratio R/� but also by the difference n2 − 2 . When the difference n2 − 2 is small, 
the deviation from the paraxial GO even for large lenses remains very significant. This conclusion is supported 
well by the experimental results, see Table 1.

Resolution. According to the Houston criterion the resolution is defined as the FWHM of the  PSF46. After 
finding the image of the point source, the width W of the central peak was divided by |M| and normalized to � . 
Figure 6a shows the transverse dependence of psf(xi , y) at the image plane xi for various n2 and fixed R/� = 100 . 
In all cases the PSF has sidelobes. Their height relative to the central peaks decreases as n2 increases from 1.98 to 
2.05. In the estimates of the FWHM of the PSF we only consider the central peak keeping in mind the adverse 
effect of large sidelobes. The FWHM of the central peak does not change significantly: W/|M| = 0.64� at 
n2 = 1.98 and W/|M| = 0.67� at n2 = 2.05 . Although this resolution slightly worse than the diffraction limit 
�/2 , it is surprisingly high considering the large spherical aberration, see Fig. 2c. Thus, for a fixed R/� the resolu-
tion does not change significantly for different n2 but magnification at n2 = 1.98 is larger than that at n2 = 2.05 . 
On the other hand, the larger sidelobes at n2 = 1.98 will lead to lower image quality. The resolution decreases 
with increasing R/� . For example, in Fig.  6b the FWHM increases from W/(|M|�) = 0.98 at R/� = 500 to 
W/(|M|�) = 1.38 at R/� = 2000.

Figure 6c shows that the PSF width W/(|M|�) for a fixed n2 grows with increasing R/� but does not signifi-
cantly depend on n2 . On the other hand, the magnification |M| increases both with n2 and R/� , see Fig. 5c. Thus, 
for a fixed n2 the increase of |M| always comes at the expense of decreasing resolution. This trend is illustrated 
in Fig. 6d which shows the relation between the resolution and magnification for several n2 . A natural question 
arises of whether we can achieve simultaneously high resolution (small PSF width) and large magnification. 
Unfortunately, the answer to this question is negative. Indeed, let us fix a rather high |M| = 40 and try to increase 
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the resolution by moving in the direction 1 → 2 indicated in Fig. 6d. The apparent increase in resolution here is 
accompanied by the growth of the sidelobes. The same growth takes place if we try to fix resolution, W/(|M|�)
=0.8, and move in the direction 3 → 4 in attempt to increase magnification.

Analytical results. Having the exact WO solution at our disposal, let us now try to build an approximate 
model which would yield a simpler physical interpretation of the image formation. In our specific case the fields 
are expanded into the cylindrical functions and the expansion coefficients are subsequently calculated. Let us 
now represent the field at any arbitrary (observation) point r as an integral over the surface just outside the ball:

where r′ is a point at the cylindrical surface with radius R. In Eq. (4), the effective electric and magnetic currents, 
which are obtained from the fields outside the  cylinder47, and the Green’s functions are

where H(1)
0,1 are the Hankel functions. To investigate the contribution to Ez(r) from different parts of the integra-

tion surface, let us define the cumulative field, which is formed by the currents in the angular range limited by 
[−ϕ : ϕ],

so that the integral over the full circle ϕ = π gives the actual field at the observation point: Ez(r) = Ecz(r,π) . 
Note that the field is calculated using the integration over a closed surface, not a finite opening in a screen which 
is common in the diffraction theory.

Figure 7a shows the magnitude of the cumulative field |Ecz(x,ϕ)| as a function of ϕ for n2 = 2.02 at several 
special locations on the x axis: x/R = 101 (GO focus), x/R = 20.3 (diffraction focus), and x/R = 12.77 (the 
furthest minimum of PSF). At the GO focus, the contributions |Ecz(r,ϕ)| originate from a rather small angular 
range ϕ/π � 0.15 . At the diffraction focus, the contributions increase more rapidly, come from a larger interval 
ϕ/π � 0.25 , and subsequently result in a much larger value for |Ez(r)| . At the PSF minimum, the contributions 
initially increase and then start to decrease leading eventually to a very small |Ez(r)|.

The rigorous representation of the field at any observation point using the fields at the circle just outside 
the ball, see Eq. (4), can also be recast into a simplified form. We can assume that the effective currents are 
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approximately the same in amplitudes but their phases are determined by the distance from the source to the 
location on the circle. The contributions of the currents can also be assumed to vary only in phase. The field at 
an observation point becomes dependent only on the optical path difference θ between an off-axis path and the 
axial one, see the inset in Fig. 7b,

where

and d = xi − R . For α ≪ 1 we obtain

The term f2 describes defocus aberration and f4 describes spherical  aberration48. By setting f2 = 0 in Eq. (8) 
we can obtain the focal distance df = 2R/(nr − 2) and magnification in the paraxial GO approximation (2).

The focusing properties of an optical systems are often characterized by the Fresnel number N of the exit 
pupil with radius R: N = R2/(�df ) , where df  is the GO focal distance. Typically, the presence of a sharp focus 
requires N ≫ 10 . For N � 10 , the defocus tolerance can be significant. Moreover, the maximum of irradiance 
can shift closer to the exit pupil. The regime N � 10 can significantly differ from the predictions of GO due to 
the influence of diffraction which defines not only the resolution but also the position of maximum intensity. 
In the case of ball lenses, there is no clearly defined aperture. However, to estimate the Fresnel number we can 
simply use the ball radius R since the effective aperture is formed by the TIR:

For large df  , which are obtained for small nr − 2 , the Fresnel number becomes small. For example, the Fresnel 
number reaches N = 10 only at R/� = 1000 if nr = 2.02 . As seen from Fig. 5c, at R/� = 1000 the focal position 
is still significantly smaller than the GO prediction.

The phase difference allows us to explain the shift of the intensity maximum as compared to the paraxial 
GO. Figure 7b shows the phase difference θ(α) as a function of the location on the circle ϕ = 2α for the same 
observation points on the x axis as in Fig. 7a. In general, if the spherical aberration term vanishes f4 = 0 , the 
focal point is defined by f2 = 0 and its intensity is determined by the integral over the full aperture (limited by 
TIR) resulting in the largest possible intensity. The deviation f2  = 0 from the GO focus leads to the blurring 
of the image due to defocus aberration. The spherical aberration f4  = 0 , see the line for x/R = 101 in Fig. 7b, 
gives rise to a rapid phase decrease for α/π > 0.15 and therefore, to the oscillations of the integrand reducing 
significantly its value. A larger intensity can be obtained if one moves away from the GO predicted focus in such 
a way as to provide the smallest variation of the phase θ(α) over the aperture. Since usually f4 < 0 , compensat-
ing it requires f2 > 0 , and therefore, taking smaller d as compared to the paraxial GO prediction. Indeed, at the 
point of maximum, x/R = 20.3 in Fig. 7b, the phase deviation from zero is limited to |θ | � π/2 in the interval 
ϕ/π < 0.25 . For even smaller x, the minimum at x/R = 12.77 in Fig. 7b, the phase changes significantly bring-
ing the total intensity to almost zero.

We can further apply this simple physical picture to derive an analytical curve that describes the image 
plane location and magnification. From Fig. 7b we can note that at the location of intensity maximum the phase 
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difference is limited to θ � π/2 . Indeed, exceeding this value would cancel out the contributions from the smaller 
angles. Thus, we can state that at the extremum θ(α∗) = π/2 . Using (8) we can find α∗ and then relation between 
f2 and f4 . Further, we can approximate f4 ≈ −1/2 and obtain

The paraxial GO result described by Eq. (2) follows from the more general Eq. (10) in the limit R/� → ∞ . The 
WO effects in the position of the image plane and corresponding magnification are accounted for by the extra 
term δ , which depends on the size parameter kR. Note that one can often use GO formulas and account for the 
effects not described by GO by introducing some effective parameters, for example, an effective refractive index 
of a spherical lens which becomes a function of its  diameter43. In our case, we obtained the GO result from the 
more general WO result and, therefore, we do not need to resort to any effective parameters.

Figure 5c shows that simple formula (10) describes the fully numerical results very accurately. This extra term 
also agrees with the kR-dependent shifts of the straight lines in Fig. 5b, especially for large R/� . Moreover, Eq. (10) 
explains accurately the experimentally measured image plane locations, see Table 1. The analytical derivation 
of Eq. (10) uses the phase difference between the path characterized by α  = 0 and that for α = 0 . We neglected 
the variation of intensity as a function of α in order to obtain a simple result which, however, agrees well with 
the fully numerical modeling. In the 3-D case, the formula for the optical path difference remains valid but one 
may need to account for the solid angle factor sin α and specific orientation of the emitter.

We can conclude that there are two main physical factors that contribute to the shift of the image plane in 
contact-ball imaging. First, even an aberration-free converging spherical front does not focus to its origin once 
an aperture is  introduced41,42. The focal point moves towards the aperture and the shift increases with decrease 
of the Fresnel number of the aperture. When the relative refractive index of the ball is nr ≈ 2 , the geometric 
focus goes to infinity and, therefore, the Fresnel number decreases drastically. Second, in the case of contact ball 
lenses the phase front immediately after the ball suffers from spherical aberration and, therefore, it cannot focus 
to a single point. In terms of ray optics, the spherical aberration is particularly significant near nr ≈ 2 when no 
single focal point for the rays refracted by the ball can be defined. Both factors define the distribution of the dif-
fracted intensity in contact-ball imaging. Within the realm of WO the intensity at a given point can be written 
as a diffraction integral over an aperture effectively defined by TIR of the spherically aberrated wavefront. The 
axial intensity reaches a maximum at the point at which the defocus and spherical aberration terms, see Eq. (8), 
can partially compensate each other over the integration aperture.
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Experimental resolution. The resolution of the ball lens imaging can also be estimated from the experi-
ments shown in Fig. 1a,b. The image of the Siemens star was scanned at several distances from the center, see 
Fig. 8a,b. The metallic spokes manifest themselves as the dips. The oscillations of the intensity become larger as 
the local period of the structure increases. The image intensity contains some spatially uniform background level 
 Ib due to various scattering in the experimental setup. Using the SEM of the Siemens star, see Fig. 1b, the gap-to-
pitch ratio L1/L can be estimated as 0.6 in the area of the scans.

To extract the resolution from the measurements it was assumed that at each scan the star can be described 
as a 1-D structure in which each period L contains a bright stripe with intensity I0 and width L1 . The image is 
obtained by the convolution of this ideal object with a Gaussians PSF defined by its FWHM W. According to the 
Houston resolution  criterion46, the FWHM of the PSF represents the resolution of the system. The resultant image 
is also a periodic structure which can be characterized by the intensity at the peak Ipeak and at the dip Idip . For a 
specific geometrical parameter L1/L , the intensity depends only on the ratio W/L and therefore, one can define

where 0 < f (W/L) < 1 . The difference Ipeak − Idip does not depend on the presence of the background level 
Ib in the measurements and, therefore, can be directly used for fitting once the geometric function f(W/L) is 
known. Figure 8c shows the function f(W/L) at several values of L1/L . Note that this function is symmetric rela-
tive to L1/L = 0.5 , that is it takes the same value, for example, for L1/L = 0.4 and L1/L = 0.6 . In all cases the 
modulation amplitude f(W/L) decreases with increasing W/L. The oscillations become observable for W/L � 1.

The fitting of the analytical dependence (11) with L1/L = 0.6 to the experimental points, see Fig. 8d, gives 
W = 0.92 µ m or W/� = 1.9 . Varying W near this optimal value makes the fit worse and therefore, the approach 
allows a reliable extraction of resolution. Indeed, the curve for W = 1.02 µ m cannot be fitted to the points bet-
ter than shown since any variation of I0 would only scale the curve up or down and therefore, worsen the fit. 
The value W/� = 1.9 is slightly greater than the PSF obtained in the simulations W/(|M|�)=1.4, see the curve 
for n2 = 2.05 at R/� ≈ 2000 in Fig. 6c. The knowledge of I0 allows estimating the background level Ib as well. 
Without the background scattering and for small periods the intensity should oscillate symmetrically around its 
average value (L1/L)I0 = 0.6I0 = 0.55 while the average value for scan 1 is Iave = 1.19 . This gives the background 
level Ib = Iave − 0.6I0 = 0.64 . Thus, the background scattering is very significant and should be accounted for 
in resolution estimations.

We also note that for a gold double-stripe object the resolution was previously  estimated31 to be W = 0.65 µ m 
at � = 480 nm or W/� = 1.4 . This resolution is better than in the present study of the star. The difference can be 
attributed to several factors. One factor is related to geometry since the double-stripe element of the long-period 
array in Ref.31 is practically an isolated object and, therefore, is more suitable for resolution  quantification49 
compared to the star with azimuthally periodic spokes, which also have a width gradient in the radial direction. 
Another factor is related to different reflection properties of thin metallic layers, Au in Ref.31 versus Cr in the 
present study.

Conclusion
Despite a tremendous interest in MSI methods developed with wavelength-scale  microspheres5–21, the con-
nection of this field of studies to the standard wave theory of aberrated imaging by macroscopic ball lenses has 
not been previously established. In this work we developed a comprehensive approach to this problem for ball 
lenses with diameters varying from D/� ≈ 30 (quite often used in MSI studies) up to D/� ≈ 4000 (reaching 
the limit of millimeter-scale ball lenses). Our approach is based on the transition from geometrical optics to 
full-wave solutions of the Maxwell equations. A unique feature of our numerical modeling approach is that it 
bridges wave phenomena taking place at completely different spatial scales – the near-field coupling of a point 
source, the field propagation inside ball lenses with diameters 30 � D/� � 4000 , and, finally, the formation of 
the diffracted field at distances ∼ 105�.

Our theory is developed specifically for the case of a direct contact of a ball lens with nanoscale objects with 
intention to increase the resolution due to near-field effects in a spirit of the solid immersion lens  concept50,51. 
Another feature of the theory is its ability to describe accurately the imaging by ball lenses with refractive index 
near the critical value n ≈ 2 , for which the deviations from geometrical optics become dramatic. This critical 
regime is very attractive for imaging applications because of extremely large M > 50  magnification31. We showed 
that the image plane location and magnification in this regime can be described correctly only by wave optics 
which predicts a significant shift of the image plane towards the ball with corresponding reduction in magni-
fication, in accord with the presented experimental evidence. The shift becomes more significant as ball’s size 
becomes smaller and n closer to 2. This effect is governed mostly by diffraction since the Fresnel number of the 
effective aperture is small. It is demonstrated that the exact location of the image plane is defined by the coun-
terplay of defocusing and spherical aberrations. This allowed us to derive a simple correction to the geometric 
formula for the image plane location. In contrast to common expectation, we showed that the resolution improves 
for smaller ball lenses reaching deeply subwavelength values ∼ �/2 at R/� � 100 in the vicinity of n ≈ 2 . The 
index variation about n ≈ 2 affects greatly the magnification but not the resolution.

Although the dispersion n(�) is present in all microspheres used previously for MSI, its impact on imaging 
becomes dramatic only in the vicinity of the critical value n ≈ 2 for contact microspheres in the air environ-
ment studied here. These effects are significantly less pronounced for the relative indices 1.4 < n < 1.8 which 
are typical for the previously studied silica microspheres in air or BTG microspheres in water, in PDMS, or in 
plastic environments.

To experimentally test our theoretical predictions, we performed a resolution quantitation aimed at the 
demonstration of potential advantages of ball lenses with the specially designed index for cellphone-based 

(11)Ipeak − Idip = I0f (W/L),



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6688  | https://doi.org/10.1038/s41598-023-32826-8

www.nature.com/scientificreports/

microscopy applications. Currently, the resolution of such portable and lightweight microscopes is pixel-limited 
at a ∼ 1.5-µ m level due to insufficient magnification. Using a Siemens star object imaged through a LASFN35 
glass ball lens with n = 2.049 at � = 480 nm we demonstrated a resolution of ∼ 0.9 µ m or 1.9� , slightly below the 
resolution of 1.4� predicted by our theory, and magnification M ≈ 35 . In our previous studies we approached 
the wavelength-scale resolution using similar  approaches31. Thus, this experiment demonstrates a potential of 
the proposed methods for increasing the resolution of imaging based on using contact ball lenses with n ≈ 2 . 
The peculiar imaging properties of contact ball lenses with n ≈ 2 complement their ability to focus plane waves 
to strongly enhanced photonic nanojets on the outer  edge52. The theoretical methods developed in this work 
demonstrate a gradual transition from MSI methods to classical imaging by aberrated macroscopic ball lenses 
with applications in high-resolution cellphone-based microscopy.

Methods
Experiments. All experiments were performed using the cellphone-based transmitted light microscopy 
shown in Fig. 1a. The illumination from a tungsten halogen lamp was provided through narrow (about 10 nm) 
bandpass filters with transmission peaked at different wavelengths. A white light 120-grit ground glass diffuser 
(Edmund Optics) was installed at 8-mm distance below the sample to provide widefield incoherent illumination 
with a broad range of incident angles. The object was a Siemens star (Edmund Optics) made of 36 equidistant 
Cr spokes on a silica substrate. The ball lens was made of LASFN35 glass with the refractive index varying from 
about 2 to 2.1 as the wavelength changes from 700 nm to 400 nm. The measurements were performed in air 
environment. The optical images in Figs. 1b and Fig. 8a were recorded using a cell phone camera (Samsung Gal-
axy S9+). The SEM image in Fig. 1b was obtained using the Raith 150 e-beam lithography system. The location 
of the scans in Fig. 8a were selected close to the central part of the image to minimize pincushion distortion. 
The center of the Siemens star was shifted to the edge of the limited circular field-of-view where all distances 
are locally distorted. The local coordinate scale along lines (1–3) in Fig. 8a was determined by the magnification 
data independently obtained for the same ball lens at the central part of the image using a double-stripe object 
with known physical dimensions.

Simulations. All simulations were performed using in-house developed codes in C programming language.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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