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Dynamic hierarchical multi‑scale 
fusion network with axial MLP 
for medical image segmentation
Zhikun Cheng  & Liejun Wang *

Medical image segmentation provides various effective methods for accuracy and robustness of organ 
segmentation, lesion detection, and classification. Medical images have fixed structures, simple 
semantics, and diverse details, and thus fusing rich multi-scale features can augment segmentation 
accuracy. Given that the density of diseased tissue may be comparable to that of surrounding normal 
tissue, both global and local information are critical for segmentation results. Therefore, considering 
the importance of multi-scale, global, and local information, in this paper, we propose the dynamic 
hierarchical multi-scale fusion network with axial mlp (multilayer perceptron) (DHMF-MLP), which 
integrates the proposed hierarchical multi-scale fusion (HMSF) module. Specifically, HMSF not only 
reduces the loss of detail information by integrating the features of each stage of the encoder, but also 
has different receptive fields, thereby improving the segmentation results for small lesions and multi-
lesion regions. In HMSF, we not only propose the adaptive attention mechanism (ASAM) to adaptively 
adjust the semantic conflicts arising during the fusion process but also introduce Axial-mlp to improve 
the global modeling capability of the network. Extensive experiments on public datasets confirm the 
excellent performance of our proposed DHMF-MLP. In particular, on the BUSI, ISIC 2018, and GlaS 
datasets, IoU reaches 70.65%, 83.46%, and 87.04%, respectively.

Because medical images are affected by equipment, the partial volume effect, and patient position movement, 
they inevitably have noise and artifacts. At the same time, the lesion areas are complex and diverse, which all 
present certain obstacles to the physician’s diagnosis. As a result, the efficiency and accuracy of diagnosis have 
increased as doctors are assisted by computers.

With the development of deep learning, the emergence of convolutional neural networks (CNNs)1 has played 
a huge role in the development of medical image segmentation. CNNs perform well in many segmentation tasks, 
such as multi-organ segmentation through abdominal CT images2–4, lesion detection5–7, cell segmentation8–10, 
heart segmentation11–13, etc. Unfortunately, for the segmentation of high-level networks, the feature maps con-
tain less detail information due to their low resolution. For the low-level networks of segmentation, the feature 
maps have more noise. The low-level networks also have the characteristics of a small receptive field and weak 
semantic information representation abilities. However, both high-level semantic information and low-level 
features are extremely important to the final segmentation result. Effective multi-scale feature fusion contributes 
to identifying network segment targets more accurately, which is an important way to improve segmentation 
performance. In order to guide the segmentation of small lesions and multi-lesion regions and increase prediction 
accuracy, many CNNs have been proposed that fuse low-level features with high-level semantic information. 
For example, the pure convolutional network U-Net14 fuses low-level features into the up-sampling through skip 
connections. U-Net14 has become the baseline for most medical image segmentation tasks and has inspired a 
large number of researchers to think about U-shaped semantic segmentation networks. V-Net15, which is used 
for 3D image segmentation, also uses skip connections to transmit low-level features. However, these simple 
skip connections do not achieve cross-scale interaction. Later, it is proposed that U-Net++16 indirectly fuses 
features of several different levels through short skip connections and up-down sampling. MDU-Net17 extracts 
rich semantic information through multi-scale dense connection encoders, decoders, and skip connections. 
With the deepening of the network, the features of the deep network are greatly offset from the features of the 
shallow network, and direct feature fusion will lead to semantic conflicts. These conflicts inhibit the learning of 
detail information, which is not conducive to the establishment of context information for multi-scale features 
and has negative impacts on segmentation results.
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For the reasons outlined above, many researchers have proposed a variety of attention mechanisms to make 
networks focus on features of greater interest. SE-Net18 and Coordinate Attention19 use the generated weight 
sequence to explicitly build the dependency relationship between channels, so as to increase the sensitivity of 
the model to channel information and make channel information contribute more to the final decision. CBAM20 
further combines channel attention with spatial attention and has better performance. However, these networks 
ignore the different proportions of foreground and background information for each feature map at different 
sampling stages.

Based on the above analysis, we propose dynamic hierarchical multi-scale fusion network with axial mlp 
(DHMF-MLP) for medical image segmentation, in which we integrate the hierarchical multi-scale fusion (HMSF) 
module. We generate features with rich semantic and spatial information by fusing features from each stage of 
the encoder several times. To alleviate semantic conflicts in multi-scale feature fusion and enhance the ability 
to model the network globally, we propose dynamic spatial linear attention module (DSLA) as a component of 
HMSF. DSLA includes two parts: the adaptive spatial attention mechanism (ASAM) and the global branching in 
multi- gated MLP21 (Axial-mlp21). In the ASAM module, the semantic conflicts between multi-scale features can 
be adjusted adaptively by learning parameters, and the noise inhibiting segmentation performance can be filtered 
out to enhance the attention of important features. Axial-mlp21 addresses the baseline’s (UNeXt22) shortcoming 
in global information modeling with linear computational complexity.

The contribution of this paper can be summarized as follows:

1.	 We design the HMSF module, which achieves cross-level information interaction. HMSF not only improves 
the segmentation accuracy of small lesions and multi-lesion areas but also reduces the loss of information 
caused by pooling structures, fully improving the lack of up-sampling information.

2.	 We propose the DSLA module and apply it to the HMSF module. One part of the DSLA is the ASAM module, 
which adaptively adjusts the semantic conflict of multi-scale features with learnable parameters, filters out 
background noise that inhibits detail learning, and highlights foreground information appropriately. Another 
part of the DSLA is Axial-mlp21, which enhances the global modeling capabilities of the network with less 
computation.

3.	 We achieve interaction between different layers, enriching the semantic information and reducing the conflict 
of fusing different features when compared to UNeXt22. Further advancements in global modeling capabilities 
allow for even better network segmentation performance.

4.	 The effectiveness of our proposed network has been proven by experiments on three datasets. Compared 
with other networks, our network is highly competitive.

The remainder of this paper is organized as follows: “Related work” section shows the related work. “Method” 
section describes our proposed method in detail. “Experiments and analysis” section  shows the experiments 
and analysis. “Conclusion” section gives the conclusion.

Related work
Based on the traditional image fusion methods.  Spatial domain, transform domain, and their com-
bination make up traditional medical image fusion algorithms. Principal component analysis23 is a common 
fusion technique for medical imaging based on the spatial domain. Nevertheless, spectral and spatial distor-
tion of the merged images are produced by spatial domain approaches. Researchers have moved their atten-
tion to the transform domain in an effort to improve the results of fusion. The contour transform24, discrete 
wavelet transform25, and pyramid transform26 are common examples. Although the transform domain-based 
approaches produce noise during the fusion process, they have the advantages of excellent structure and distor-
tion avoidance. Better fusion results are obtained when the two procedures are combined. However, based on 
the traditional fusion methods, on the one hand, they are compelled to employ the same transform for various 
source images to extract features in order to guarantee the viability of subsequent feature fusion. The fact that 
this process disregards the variations in the source images’ characteristics could result in a subpar representation 
of the extracted features. On the other hand, the performance of the conventional feature fusion technique is 
insufficient and too coarse. The technique for integrating deep learning into image fusion gets over these draw-
backs of conventional approaches.

CNN‑based methods.  The emergence of CNNs has led to rapid development in the field of image segmen-
tation. FCN27 is the pioneer of CNNs for image segmentation, opening up a new era of encoder–decoder struc-
ture for image segmentation. Subsequently, U-Net14 combines encoder features from different levels to reduce 
information loss from pooling structures, achieve more accurate pixel boundary localization, and generate a 
plethora of efficient U-shaped segmentation network architectures28,29. Some researchers have further improved 
the structure of CNN-based networks, like Dilated Convolution30,31, RefineNet32, and PSPNet33.These networks 
are widely used in the field of image segmentation. However, due to the inherent characteristics of convolution, 
it lacks the ability to perform global context modeling.

Attention mechanisms.  The attention mechanism is designed to focus the network on more important 
features. Channel attention is weighted by channel direction to automatically obtain the contribution of each 
channel to the segmentation result. The representative networks are SE-Net18, ECANet34, and FcaNet35. The spa-
tial attention mechanism is weighted along the spatial dimension so that the network can weaken background 
noise and pay more attention to the foreground information. For example, GE-Net36, RA-Net37, and SPA-Net38 
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make full use of spatial context information to make the network more efficient in mining regions of interest. 
However, these attention mechanisms do not take into account the dynamic relationship between foreground 
and background information for different scale features. Self-attention is a variant of the attention mechanism 
that aims to reduce dependence on external information and to use information inherent within features for the 
interaction of attention whenever possible. Like non-local39, the global context is modeled to effectively capture 
feature dependencies over long distances. OCR-Net40 models from a category perspective, which uses the results 
of coarse segmentation as the object of modeling and finally assigns weights to each query point. The bad news 
is that these calculations are relatively large.

MLP‑based methods.  MLP-Mixer41 uses multilayer perceptron (MLP) to replace the convolution opera-
tion of CNN and the self-attention mechanism in Transformer42–44. MLP-Mixer41 builds contextual and inter-
channel correlations between tokens through cross-position and per-position operations, respectively. gMLP45 
achieves better performance than MLP-Mixer40 with fewer parameters and simpler gating mechanism. AS-
MLP46 aligns different features to the same channel by parallel axial shift operations, and the full connection 
along the channel position achieves a cross-shaped field of view. AS-MLP46 is the first MLP architecture to 
migrate to downstream tasks. The above network does not balance model performance and computational 
redundancy. MAXIM21 employs multi-axis gated MLP to extract local and global information simultaneously, 
with cross-gated to achieve information interaction.

Compared to the above network, each layer of features in the DHMF-MLP encoder section interacts with 
its upper layer of features, reducing deviations between features. DHMF-MLP can not only adaptively adjust 
semantic conflicts in multi-scale feature fusion according to image properties but also extract perfect global 
context information.

Method
This section describes our proposed DHMF-MLP network as well as the research motivation. We will briefly 
introduce the overall architecture of the network in “Overall network structure”. We introduce the principle of 
the HMSF module in “Hierarchical multi-scale fusion module (HMSF)”. We elaborate on the principle of the 
DSLA module in "Dynamic spatial linear attention module (DSLA)".

Research motivation.  As down-sampling proceeds, image information is lost and feature offsets can occur. 
By fusing encoder features layer by layer, interaction between higher-level features and their relative lower-level 
features can be achieved, and bias between features can be reduced. Semantic conflicts arise during the fusion 
process, and by adaptively adjusting the conflicts, consistent multi-scale feature sequences can be generated, 
facilitating the learning of important features. The fused features contain rich semantic information and are 
up-sampled from the decoder’s bottom, reducing the semantic gap in the skip connections part and improving 
prediction accuracy. Furthermore, human tissues are highly similar, and both global and local information are 
critical. While UNeXt22 performs well in local feature extraction, it underperforms in global contextual informa-
tion. We cite the Axial-mlp21 to improve the overall network global modelling capability. Therefore, we propose 
the DHMF-MLP with the above issues fully in mind.

Overall network structure.  The overall architecture of DHMF-MLP is shown in Fig. 1. The network is 
U-shaped structure consisting of encoder–decoder and skip connections between the encoder–decoder. In 
the encoder part, low-level features and high-level features with marvelous local characteristics are gradually 
extracted by convolution and Tok-MLP. Intermediate features are retained to form multi-scale feature sequence 

Figure 1.   Overall architecture of the DHMF-MLP (created by ‘Microsoft Office Visio 2013’ URL: https://​www.​
micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).

https://www.microsoft.com/zh-cn/microsoft-365/previous-versions/microsoft-vision-2013
https://www.microsoft.com/zh-cn/microsoft-365/previous-versions/microsoft-vision-2013
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{ f1, f2, f3, f4, f5 }, which is used for skip connections and input of HMSF. To mitigate the simple semantic proper-
ties of medical images, multi-scale feature sequence is fed into the HMSF module. In this part, features con-
taining richly detail information and high-level semantic information can be generated for use as input for 
up-sampling. In the decoder part, the generated multi-scale feature is up-sampled by bilinear interpolation and 
passed through Tok-MLP and convolution to obtain the final prediction map. For all experiments in the DHMF-
MLP network, we set C1, C2, C3, C4 and C5 to 32, 64, 128, 160 and 256, respectively.

Tok‑MLP.  The channel is divided into h parts for the input feature T, then axially shifted along the w-dimen-
sion and Tokenized to obtain TW . The formula (1) is as follows:

where ρ and shiftw indicates the division along the channel dimension and shifted along the w-dimension, 
respectively.

TW performs MLP along the channel dimension to map the number of channels into 768 dimensions, followed 
by 3 × 3 DWConv and GLEU to obtain T1 . The formula (2) is as follows:

where DWConv indicates 3 × 3 depth-wise convolution.
T1 is similarly shifted along the H-dimension to obtain TH . The module output is obtained by concatenating 

the residuals after mapping TH into the original input feature dimension. By generating a random window, the 
module extracts excellent local features. The formula (3) and (4) is as follows:

where FC and shifth indicates fully connected layers and shifted along the h-dimension, respectively. ⊕ denotes 
element-wise addition.

Hierarchical multi‑scale fusion module (HMSF).  It is well known that the low-level features of the 
segmentation network contain more fine-grained information, which is helpful for the segmentation of small 
lesions. The deep segmentation network is able to extract more high-level semantic information, which can 
improve the accuracy of segmentation. Moreover, the rich multi-scale information, which fuses features with 
different receptive fields, facilitates the segmentation of multi-lesion regions.

In this paper, we propose the HMSF module. The structure of the HMSF module is shown in Fig. 2. There 
are two fusions of HMSF. The first, features from each encoder stage are fused with relative low-level features. 
The second, the result obtained after the first fusion is fused again, and the fused result is used as the input for 
up-sampling.

Formally, the HMSF module has five input scales fi (i = 1, 2, 3, 4, 5). For f1 , there are no relatively low-level 
features, so no feature fusion or semantic conflict is required for adjustment. Only Axial-mlp21 is performed to 
create global context to obtain f ′1, the formula (5) is as follows:

(1)TW = Tokenized
(

shiftw(ρ(T))
)

,

(2)T1 = GELU(DWConv(MLP(TW ))),

(3)TH = MLP(Tokenized
(

shifth(ρ(T))
)

),

(4)output = T⊕ FC(TH ),

Figure 2.   Overall architecture of HMSF module (created by ‘Microsoft Office Visio 2013’ URL: https://​www.​
micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).

https://www.microsoft.com/zh-cn/microsoft-365/previous-versions/microsoft-vision-2013
https://www.microsoft.com/zh-cn/microsoft-365/previous-versions/microsoft-vision-2013
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where MLP represents Axial-mlp21. It is a branch of the DSLA, as discussed in detail in "Dynamic spatial linear 
attention module (DSLA)".

For feature fi (i = 2, 3, 4, 5), its relative low-level feature f ′i−1 (i = 2, 3, 4, 5) is down-sampled by 3 × 3 DWConv 
to the resolution of fi(i = 2, 3, 4, 5). The feature obtained from down-sampling is concatenated with fi to retain 
more channel information. DSLA module is applied to obtain new fusion feature f ′i  (i = 2, 3, 4, 5). Reserve the 
intermediate value of this feature, which serves as input for the next stage of fusion. In this way, we can gener-
ate consistent multi-scale sequences { f ′1, f

′
2, f

′
3, f

′
4, f

′
5 } with rich detail and high-level semantic information. The 

formula (6) is as follows:

where Concat is the concatenation operation. We adapt DWConv3×3 to represent 3 × 3 depth-wise convolution.
Then { f ′1, f

′
2, f

′
3, f

′
4 } are down-sampled to the size of f ′5 by adaptiveMaxpool. The features after down-sampling 

are concatenate together along the channel dimensions, and then 3× 3 convolution is carried out to obtain the 
final output fout.The fout can be obtained by the following formula (7):

where f ′i  denotes the output of the i-layer encoder in the first fusion process. fout is the final fusion output of the 
HMSF module , pool we use AdaptiveMaxPool.

Dynamic spatial linear attention module (DSLA).  As down-sampling proceeds, there exists posi-
tional deviation between low-level features and high-level features. To resolve the semantic conflicts that occur 
when they are fused and to enhance the global modeling capability of the network, this paper proposes the DSLA 
module. As shown in Fig. 3, the DSLA consists of two parts. On the one hand, ASAM is used for feature selec-
tion. On the other hand, Axial-mlp21 is used to enhance the global contextual information of the fused features.

Adaptive spatial attention mechanism (ASAM).  Inspired by SE-Net18, we propose an efficient mechanism, 
which is shown in Fig. 3a. In this part, we conduct Avgpool and Maxpool of input FB×C×H×W features along 

(5)f ′1 = MLP
(

f1
)

,

(6)f ′i = DSLA(Concat(DWConv3×3

(

f ′i−1

)

, f ′i ), (i = 2, 3, 4, 5),

(7)fout = Conv3×3(Concat(pool
(

f ′i
)

, (i = 1, 2, 3, 4)), (i = 1, 2, 3, 4, 5))),

Figure 3.   Overall architecture of DSLA module (created by ‘Microsoft Office Visio 2013’ URL: https://​www.​
micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).

https://www.microsoft.com/zh-cn/microsoft-365/previous-versions/microsoft-vision-2013
https://www.microsoft.com/zh-cn/microsoft-365/previous-versions/microsoft-vision-2013
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channel dimensions to obtain corresponding feature maps FB×1×H×W
1 ,FB×1×H×W

2  . In order to adaptively adjust 
the dynamic balance between redundant background information and foreground information according to 
the characteristics of the different scale features, we apply the learnable parameters μ(0 < μ < 1), 1 − μ multi-
plied by the Avgpool and Maxpool, respectively. After learning the two features are summed to get FB×1×H×W

add  . 
FB×1×H×W
add  and sigmoid are operated to obtain the adaptive weight parameter wB×1×H×W , which is used for 

feature selection. The ASAM module is calculated by the following formula (8):

where Fi+1 represents the output after feature selection, CAvg is the spatial Avgpool of features compressed into 
individual channel along the spatial direction of channel dimension, CMax is the spatial Maxpool of features 
compressed into a individual channel along the spatial direction of channels dimension. ⊗ denotes element-wise 
multiplication, and ⊕ denotes element-wise addition. σ is the sigmoid function.

Axial‑mlp21.  In order to enhance the ability of the network to capture global context information and reduce 
computational complexity, Axial-mlp21 is constructed by processing non-overlapping image patches of fixed size 
to achieve this goal. The structure of Axial-mlp21 is shown in Fig. 3b. For the input feature FC×H×W , the channel 
is mapped to 2C, and then the new feature is gridded into the shape F12C×(d×d)×(Hd ×

W
d ) . We set the size of the 

grid to be fixed (d × d) . In this paper, we set d = 8. The formula (9) is as follows:

where LN, FC represents LayerNorm and fully connected layers, respectively. σ denotes GELU. δ denotes grid 
operation.

After encapsulation, the channel dimension is divided into two branches to obtain F2C×(d×d)×(Hd ×
W
d ) , 

F3
C×(d×d)×(Hd ×

W
d ) . F2C×(d×d)×(Hd ×

W
d ) performs MLP in the second dimension. The result of F2C×(d×d)×(Hd ×

W
d )  

performing MLP is fused with F3C×(d×d)×(Hd ×
W
d ) via multiplicative gating to obtain F4C×(d×d)×(Hd ×

W
d ) . The 

formula (10) is as follows:

where ⊗ denotes element-wise multiplication.
The output of the multiplication gate performs reshape and grid reassembly operations to obtain F5C×H×W

.Finally, the output of the Axial-mlp21 is obtained by adding FC×H×W to F5C×H×W . The out of the Axial-mlp21 
module is calculated by the following formula (11), (12):

where FC represents fully connected layers. ϕ denotes reshape and ungrid operation. ⊕ denotes element-wise 
addition.

Experiments and analysis
Datasets.  (1) Breast UltraSound Images (BUSI)47: ultrasound images and corresponding segmentation 
images of normal, benign, and malignant breast cancer cases were collected. We use only benign and malig-
nant images (647 images) and resize all images to 256 × 256. (2) International Skin Imaging Collaboration (ISIC 
2018)48: the dataset consists of skin images containing cases and corresponding segmentation images of skin 
lesions, including a total of 2594 images. We resize all images to 512 × 512. (3) GlaS49: the dataset consists of 165 
microscopic images of hematoxylin and eosin-stained slides, all of which are resized to 256 × 256.

Implementation details.  We utilize the Pytorch framework to develop DHMF-MLP. Consistent with the 
UNeXt22 loss function scaling, we adopt a combination of binary cross entropy (BCE) and dice loss (Dice) for 
training. The total loss L between prediction ŷ and target y is expressed as:

We use Adam optimizer to train the model with the initial learning rate of 1e−4 and momentum of 0.9. The 
training times are 400 epochs. Eight batches of training are used on the BUSI and ISIC 2018 datasets, and four 
batches are used on the GlaS datasets. The rotation and flipping techniques are adopted as data augmentation 
methods to force the model to learn more robust features, so as to effectively improve the generalization ability of 
the model. We randomly divide all datasets by 8:2 for training and testing, respectively. We evaluate our method 
on three datasets using IoU, Dice, Sensitivity (SE), Accuracy (Acc), Presion (PPV), and Specificity (SP). All our 
training is done on a Tesla V100-PCIE GPU.

Evaluation metrics.  We exploit the IoU, Dice, SE, Acc, PPV, and SP segmentation metrics to quantify the 
segmentation ability of DHMF-MLP. For instance, IoU is used to assess the degree of similarity between pre-
diction and ground truth. SE is a measure of the ability to correctly identify pixels that are not in the region of 
interest in a segmentation experiment. The formula is shown below:

(8)Fi+1 = σ(ReLU(µ⊗ CAvg (F)⊕ (1− µ)⊗ CMax(F)))⊗ F,

(9)F1 = δ(σ(FC(LN(F))))

(10)F4 = MLP(F2)⊗ F3,

(11)F5 = ϕ(FC(F4)),

(12)out = F5 ⊕ F,

(13)L = 0.5BCE
(

ŷ, y
)

+ Dice
(

ŷ, y
)
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where TP denotes that the sample is deemed positive and is, in fact, positive. TN denotes that the sample has 
been judged to be negative and is, in fact, negative. FP denotes that the sample is thought to be positive but is 
actually negative. FN denotes that the sample is thought to be negative but is actually positive.

Training process.  Figure 4 shows a relatively "perfect" loss curve. At the beginning of the training phase, 
the loss value decreases significantly, indicating a suitable learning rate and a gradient descent process. After a 
certain stage of learning, the loss curve plateaus.

Comparative experiment.  In order to further measure the effectiveness of the proposed DHMF-MLP 
network for lesion segmentation, we conduct comparative tests on the BUSI, ISIC 2018, and GlaS datasets. 
The network architectures used in our comparative experiments include the most advanced CNN-based net-
works, such as U-Net14, U-Net++ 16, U-Net3+ 28, Att-Unet29, and transformer-based network architectures, such 
as TransUnet42 and MedT50. We also make comparisons with UNeXt22, the network based on MLP. In the fol-
lowing, we will conduct the quantitative and qualitative analysis of the comparative test results. Moreover, the 
number of Parameters in each network is maintained to two decimal places.

Evaluation of the BUSI dataset.  Quantitative result analysis.  The quantitative comparison results of the BUSI 
dataset on different methods are depicted in Table 1. Based on the traditional convolution methods, they still 

(14)Iou =
TP

FP+ TP+ FN
,

(15)Dice =
2TP

2TP+ FP+ FN
,

(16)SE =
TP

TP+ FN
,

(17)Acc =
TP+ TN

TP+ FP+ FN+ TN
,

(18)PPV =
TP

TP+ FP
,

(19)SP =
TN

TN+ FP
,

Figure 4.   Training loss variation curves for different datasets.
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have good performances. U-Net3+ 28 even outperforms the MedT50 network based on the transformer method, 
with the best PPV and SP. However, there is a big gap between the overall performance of the CNN-based meth-
ods and DHMF-MLP. IoU, Dice, SE, and ACC are 8.14%, 5.76%, 10.95%, and 0.59% higher than U-Net3+ 28, 
respectively. We note that the 4.54 M parameters of DHMF-MLP are also relatively low compared to the 26.97 M 
parameters of U-Net3+ 28. It shows that DHMF-MLP is efficient in its segmentation performance.

Qualitative result analysis.  The qualitative comparison results of the BUSI dataset using different methods are 
presented in Fig. 5. According to the third row of Fig. 5, due to the inherent local characteristics of traditional 
convolution, the control ability of global modeling is insufficient, resulting in under-segmentation. In contrast 
to the methods based on transformers, we not only achieve cross-scale interaction but also adaptively adjust 
the semantic conflicts that arise during fusion according to image characteristics. As can be seen in Fig. 5, the 
DHMF-MLP segmentation is more accurate and complete. From the qualitative analysis, the validity of the 
HMSF module is verified.

Evaluation of the ISIC 2018 dataset.  Quantitative result analysis.  Results of the quantitative comparison of 
the ISIC 2018 dataset on different methods according to Table 2, DHMF-MLP has all the best segmentation 
metrics. Among the other baseline models, the TransUnet42, based on the Transformer method, has the best PPV 
and SP. However, the number of DHMF-MLP parameters is very low compared to TransUnet42, which is also a 
relatively lightweight model. These experiments have verified the consistency of the foregoing.

Qualitative result analysis.  Figure  6 provides exemplary qualitative results generated by different methods 
for several challenging cases from the ISIC 2018 dataset. According to the qualitative analysis results of the 
red box position in the first row, it is obtained that DHMF-MLP effectively measures the relationship between 
background information and foreground information and improves the segment effect. Because of the simple 
semantics of medical images, rich multi-scale information is beneficial for improving segmentation accuracy. 
Combined with the importance of global context information to the segmentation performance, DHMF-MLP 
effectively reduces false negatives and better preserves boundaries compared with other methods. The second 
and third rows of red box positions in Fig. 6 confirm this view.

Table 1.   Comparison results of the proposed method on BUSI dataset. Significant values are in [bold].

Method Year Params (in M) IoU Dice SE ACC​ PPV SP

U-Net14 2015 34.53 63.98 76.52 73.36 95.77 81.23 98.24

U-Net++ 16 2015 9.16 64.09 76.21 73.49 95.74 80.74 98.31

U-Net3+ 28 2020 26.97 65.33 77.73 73.30 96.02 84.36 98.64

TransUnet42 2021 105.32 66.59 79.60 79.83 95.99 79.76 97.80

MedT50 2021 1.56 62.20 75.85 74.76 95.34 78.56 97.77

UNeXt22 2022 2.52 67.44 79.55 77.11 96.31 83.29 98.42

(Ours) 2022 4.54 70.65 82.21 81.33 96.59 83.90 98.28

Figure 5.   Qualitative comparison results for the BUSI dataset. From left to right: Input, U-Net14, U-Net++ 16, 
U-Net3+ 28, MedT50, TransUnet42, DHMF-MLP and GT. (created by ‘Microsoft Office Visio 2013’ URL: https://​
www.​micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).
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Evaluation of the GlaS dataset.  Quantitative result analysis.  Table 3 shows the results of the quantitative com-
parison of the GlaS dataset on different methods. This dataset is characterized by inconsistencies in shape and 
size and by numerous small lesion areas. Both local feature extraction and global context feature extraction 
are extremely important for segmentation results. As can be seen in Table 3, TransUnet42 improves its perfor-
mance by using CNN and Transformer to extract local and global contextual information, respectively. UNeXt22 
achieves great competitive advantages by extracting excellent local features through CNN and shifted MLP. 
DHMF-MLP considers both local features and global feature extraction. Further better segmentation results 
from the medical image’s own characteristics. Our proposed network (DHMF-MLP) has the best IoU, Dice, 
ACC, PPV and SP, which is 3.87%, 2.10%, 2.10%, 3.42%, 3.46% higher than UNeXt22. It should be noted that the 
proposed DHMF-MLP is also a relatively lightweight model, which is more feasible in clinical scenarios. There 
are huge advantages to these advanced methods.

Qualitative result analysis.  Based on the above analysis of the characteristics of the GlaS dataset and the results 
of the qualitative analysis of the GlaS dataset in the first row of results in Fig. 7, U-Net++ 16 and DHMF-MLP 
enable cross-scale interaction to reduce redundant information interference compared to U-Net14. From the 

Table 2.   Comparison results of the proposed method on ISIC 2018 dataset. Significant values are in [bold].

Method Year Params (in M) IoU Dice SE ACC​ PPV SP

U-Net14 2015 34.53 73.02 83.73 81.90 93.46 87.55 97.21

U-Net++ 16 2015 9.16 74.48 84.80 85.25 93.76 86.32 96.70

U-Net3+ 28 2020 26.97 78.66 87.81 85.91 94.92 90.65 97.74

TransUnet42 2021 105.32 80.69 89.08 86.81 95.45 92.19 97.96

MedT50 2021 1.56 79.02 88.00 86.67 95.13 90.34 97.52

UNeXt22 2022 2.52 82.55 90.28 89.08 95.87 92.14 97.91

(Ours) 2022 4.54 83.46 90.84 89.69 96.18 92.54 98.08

Figure 6.   Qualitative comparison results for the ISIC 2018 dataset. From left to right: input, U-Net14, 
U-Net++ 16, U-Net3+ 28, MedT50, TransUnet42, DHMF-MLP and GT. (created by ‘Microsoft Office Visio 2013’ 
URL: https://​www.​micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).

Table 3.   Comparison results of the proposed method on GlaS dataset. Significant values are in [bold].

Method Year Params (in M) IoU Dice SE ACC​ PPV SP

U-Net14 2015 34.53 66.18 79.26 96.67 75.16 67.79 55.37

U-Net++ 16 2015 9.16 68.43 80.83 74.68 83.59 89.90 91.86

Att-UNet29 2019 19.17 70.62 82.68 82.97 83.25 83.01 83.61

TransUnet42 2021 105.32 80.11 88.85 87.74 89.45 90.23 91.12

MedT50 2021 1.56 68.44 80.98 92.19 78.81 73.07 66.32

UNeXt22 2022 2.52 83.80 91.12 92.19 91.42 90.16 90.50

(Ours) 2022 4.54 87.04 93.03 92.85 93.35 93.24 93.63
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second row of results, TransUnet42 and MedT49 combine the CNN with the Transformer and give better seg-
mentation results of the junction of the lesion area compared to U-Net++ 16. DHMF-MLP further considers the 
feature conflict during fusion compared to TransUnet42 and proposes ASAM. As shown in Fig. 7, our method 
effectively measures foreground and background information. Compared with other methods, verify the feasi-
bility of DHMF-MLP for segmentation.

Analytical study.  To verify the individual contribution of each module in DHMF-MLP, we perform abla-
tion experiments on three datasets and compare them with the baseline model (UNeXt22). (1) UNeXt22 frame-
work; (2) DHMF-MLP without DSLA: our propose DHMF-MLP framework does not include DSLA module in 
its HMSF framework; (3) DHMF-MLP without ASAM: our propose DHMF-MLP framework with DSLA mod-
ule without ASAM block; (4) DHMF-MLP without (lp and Axial-mlp21) Our proposed DHMF-MLP framework 
with DSLA modules does not have Axial-mlp21 blocks or learnable parameters. (5) DHMF-MLP without Axial-
mlp21: our propose DHMF-MLP framework with DSLA module without Axial-mlp21 block; (6) DHMF-MLP: 
the DHMF-MLP framework is proposed by us. Tables 4, 5 and 6 show the quantitative analysis results of the 
ablation studies on the BUSI, ISIC 2018 and GlaS datasets, respectively. Figures 7, 8 and 9 show the qualitative 
analysis results of the ablation studies on the BUSI, ISIC 2018 and GlaS datasets, respectively.

Quantitative result analysis.  From the quantitative results in Tables  4, 5 and 6, our proposed DHMF-MLP 
without DSLA outperforms UNeXt22, verifying that multi-scale feature fusion can contribute to optimal seg-
mentation results. The superiority of DHMF-MLP without Axial-mlp21 over DHMF-MLP without (lp and Axial-
mlp21) indicates the importance of the learnable parameters. In addition, DHMF-MLP without Axial-mlp21 and 
DHMF-MLP without ASAM improve the segmentation metrics essentially without increasing the number 
of parameters and by increasing the number of parameters by less, respectively. We conclude the lightness of 
ASAM and Axial-mlp and the necessity of applying them to the feature fusion process. When they are all applied 
to the network, the IoU (%) of BUSI, ISIC 2018, and GlaS increases by 4.76%, 1.10%, and 3.87%, respectively.

Qualitative result analysis.  Taking the first row of Fig. 8 as an example, DHMF-MLP without DSLA reduces 
redundant information through multi-scale feature aggregation, thus reducing over-segmentation. The addition 
of ASAM has positive influences on the adjustment of foreground and background information relationships 
compared to DHMF-MLP without DSLA, which is closer to the ground truth. The addition of Axial-mlp21 

Figure 7.   Qualitative comparison results for the GlaS dataset. From left to right: input, U-Net14, U-Net++ 16, 
Att-Unet29, MedT50, TransUnet42, DHMF-MLP and GT. (created by ‘Microsoft Office Visio 2013’ URL: https://​
www.​micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).

Table 4.   Ablation studies of the proposed blocks on the BUSI dataset.

Method Params (in M) IoU Dice SE ACC​ PPV SP

UNeXt22 2.52 67.44 79.55 77.11 96.31 83.29 98.42

DHMF-MLP without DSLA 4.18 67.80 79.97 77.00 96.36 84.42 98.53

DHMF-MLP without ASAM 4.54 69.59 81.05 82.10 96.39 81.06 97.93

DHMF-MLP without (lp and Axial-mlp21) 4.18 68.54 80.66 81.19 96.26 80.70 97.93

DHMF-MLP without Axial-mlp21 4.18 69.29 81.21 79.51 96.43 84.05 98.28

DHMF-MLP 4.54 70.65 82.21 81.33 96.59 83.90 98.28

https://www.microsoft.com/zh-cn/microsoft-365/previous-versions/microsoft-vision-2013
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enhances the boundary segmentation effect, validating the module’s ability to improve the network’s ability to 
extract global contextual information. Compared with DHMF-MLP without (lp and Axial-mlp21), DHMF-MLP 
without Axial-mlp21 takes into account the difference of foreground and background information of different 
scale features and automatically adjusts itself by using the learnable parameters. From the segmentation results 
of the two columns in Fig. 8, the necessity of learnable parameters is proven.

As is vividly depicted in the third line of Fig. 9, DHMF-MLP without DSLA is much sharper in terms of edge 
profile compared to UNeXt22. That is, by fusing multi-scale features, rich semantic information is extracted, 
improving the segmentation effect. As shown in the second row of Fig. 9, DHMF-MLP without ASAM and 
DHMF-MLP without Axial-mlp21 achieve better boundary preservation results than DHMF-MLP without DSLA 
by utilizing global contextual information and adjusting for semantic conflicts that arise during the fusion pro-
cess, respectively. The segmentation results from Fig. 9 show that the learnable parameters facilitate the adaptive 
adjustment of the semantic conflicts generated during the fusion process. The combination of the three of them 
significantly improves the segmentation effect and is closer to ground truth.

According to the location of the red box in the second row shown in Fig. 10, DHMF-MLP without DSLA 
effectively reduces the under-segmentation of the lesion region compared to UNeXt22. This is due to the better 

Table 5.   Ablation studies of the proposed blocks on the ISIC 2018 dataset.

Method Params (in M) IoU Dice SE ACC​ PPV SP

UNeXt22 2.52 82.55 90.28 89.08 95.87 92.14 97.91

DHMF-MLP without DSLA 4.18 82.88 90.52 89.90 95.57 91.60 97.73

DHMF-MLP without ASAM 4.54 83.21 90.68 91.01 95.98 90.91 97.45

DHMF-MLP without (lp and Axial-mlp21) 4.18 82.91 90.51 89.73 95.91 91.83 97.69

DHMF-MLP without Axial-mlp21 4.18 83.08 90.64 89.89 96.00 91.82 97.77

DHMF-MLP 4.54 83.46 90.84 89.69 96.18 92.54 98.08

Table 6.   Ablation studies of the proposed blocks on the GlaS dataset.

Method Params (in M) IoU Dice SE ACC​ PPV SP

UNeXt22 2.52 83.80 91.12 92.19 91.42 90.16 90.50

DHMF-MLP without DSLA 4.18 85.46 92.11 92.67 92.36 91.64 91.87

DHMF-MLP without ASAM 4.54 86.71 92.85 93.41 93.11 92.34 92.66

DHMF-MLP without (lp and Axial-mlp21) 4.18 86.03 92.44 92.51 92.81 92.40 92.92

DHMF-MLP without Axial-mlp21 4.18 86.42 92.66 92.87 92.94 92.50 92.77

DHMF-MLP 4.54 87.04 93.03 92.85 93.35 93.24 93.63

Ground truth UNeXt DHMF-MLP
DHMF-MLP

without Axial-mlp

DHMF-MLP

without ASAM 

DHMF-MLP

without DSLA
Input

DHMF-MLP without

(lp and Axial-mlp)

Figure 8.   Ablation segmentation results of HMSF block on the BUSI dataset. From left to right: input, ground 
truth, UNeXt22, DHMF-MLP without DSLA, DHMF-MLP without ASAM, DHMF-MLP without (lp and Axial-
mlp21), DHMF-MLP without Axial-mlp21, DHMF-MLP(Ours). (created by ‘Microsoft Office Visio 2013’ URL: 
https://​www.​micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).
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identification of lesion regions through the interactive learning of low-level and high-level features. According to 
the red box position in the first row shown in Fig. 10, DHMF-MLP without Axial-MLP further utilizes learnable 
parameters to balance foreground and background information and reduce the adhesion between different lesion 
regions. DHMF-MLP without ASAM utilizes global contextual information to make the segmentation regions 
more complete. The feasibility of learnable parameters for adjusting semantic conflicts during fusion can be seen 
from the comparison results of DHMF-MLP without (lp and Axial-mlp21), DHMF-MLP without Axial-mlp21.

Through the above analysis, it can be seen that the quantitative results are consistent with the qualitative 
results. These experiments demonstrate the efficacy of our proposed method, which is exploited to extract rich 
multi-scale information for improving the accuracy of segmentation of small lesions and multi-lesion regions. 
Simultaneously, determine the feasibility of ASAM for adaptive learning of important features, as well as the 
necessity of Axial-mlp21 to retrieve global contextual information. When they are all applied to the network, as 
shown in the last column of the qualitative analysis results, they compensate for each other’s flaws, resulting in 
significant improvements in the segmentation effect.

Ground truth UNeXt DHMF-MLP 
DHMF-MLP 

without  Axial-mlp

DHMF-MLP 

without  ASAM 

DHMF-MLP 

without  DSLA
Input

DHMF-MLP without 

(lp and Axial-mlp)

Figure 9.   Ablation segmentation results of HMSF block on the ISIC 2018 dataset. From left to right: input, 
ground truth, UNeXt22, DHMF-MLP without DSLA, DHMF-MLP without ASAM, DHMF-MLP without (lp 
and Axial-mlp21), DHMF-MLP without Axial-mlp21, DHMF-MLP(Ours). (created by ‘Microsoft Office Visio 
2013’ URL: https://​www.​micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).

Ground truth UNeXt DHMF-MLP 
DHMF-MLP 

without  Axial-mlp

DHMF-MLP 

without  ASAM 

DHMF-MLP 

without  DSLA
Input

DHMF-MLP without 

(lp and Axial-mlp)

Figure 10.   Ablation segmentation results of HMSF block on the GlaS dataset. From left to right: input, ground 
truth, UNeXt22, DHMF-MLP without DSLA, DHMF-MLP without ASAM, DHMF-MLP without (lp and Axial-
mlp21), DHMF-MLP without Axial-mlp21, DHMF-MLP(Ours). (created by ‘Microsoft Office Visio 2013’ URL: 
https://​www.​micro​soft.​com/​zh-​cn/​micro​soft-​365/​previ​ous-​versi​ons/​micro​soft-​vision-​2013).
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Conclusion
We propose a new medical image segmentation framework called DHMF-MLP. HMSF is proposed as part of the 
encoder, which contains three functions. First, the accuracy of small lesion and multi-locus region segmentation 
is improved by fusing features from each stage of the encoder to obtain rich semantic information and reduce 
the deviation between features. Second, lightweight ASAM is constructed by applying learnable parameters to 
calculate feature weights based on the foreground and background information of the feature map to adjust the 
semantic conflicts arising from feature fusion. Third, Axial-mlp21, which is introduced to establish the global 
contextual information, fully compensates for the lack of global information at baseline and allows the fused 
feature information to be propagated so as to improve the overall performance of the network. Extensive experi-
ments on three medical segmentation datasets have revealed that our proposed DHMF-MLP is competitive with 
current state-of-the-art methods. In the future, we will investigate the merits of the proposed DHMF-MLP on 
a wider range of datasets to improve the generalisation capability of the model.

Data availability
The BUSI, ISIC 2018 and GlaS datasets are openly available at: https://​www.​kaggle.​com/​aryas​hah2k/​breast-​ultra​
sound-​images-​datas​et (accessed on 28 April 2022), https://​chall​enge.​isic-​archi​ve.​com/​data/ (accessed on 28 April 
2022) and https://​warwi​ck.​ac.​uk/​fac/​cross_​fac/​tia/​data/​glasc​ontest (accessed on 28 April 2022).
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