
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5722  | https://doi.org/10.1038/s41598-023-32809-9

www.nature.com/scientificreports

Uncovering the special microbiota 
associated with occurrence 
and progression of gastric cancer 
by using RNA‑sequencing
Bin Ai 1,2,4, Yue Mei 1,2,4, Dong Liang 1,2, Tengjiao Wang 1,2, Hui Cai 3* & Dong Yu 1,2*

Gastric cancer (GC) has been identified as the third deadly cancer in the world. Accumulating 
researches suggest a potential role of microorganisms in tumorigenesis. However, the composition 
of microbiota in GC tissues is not clear and it changes throughout the different stages of GC remain 
mostly elusive. Our study integrated RNA‑Seq data of 727 samples derived from gastric tissues across 
four datasets and revealed its microbial composition. In order to remove the false positive results, core 
taxa were defined and characterized. Based on it, we analyzed the influence of biological factors on 
its composition. The pan‑microbiome of gastric tissues was estimated to be over than 1400 genera. 
Seventeen core genera were identified. Among them, Helicobacter, Lysobacter were significantly 
enriched in normal tissues, while Pseudomonas was enriched in tumor tissues. Interestingly, 
Acinetobacter, Pasteurella, Streptomyces, Chlamydia, and Lysobacter, showed a significant increase 
trend during tumor development and formed strong intra/inter‑correlations among them or with other 
genera. Furthermore, we found that tumor stage played an important role in altering the microbial 
composition of GC tissues. This study provides support for the in‑depth study of tumor microbiome, 
and the specific microbiome excavated provides a possibility for the subsequent identification of 
potential biomarkers for GC. 

Gastric cancer (GC) is a malignancy of the gastrointestinal tract that has been identified as the fifth most common 
cancer and the third deadly cancer in the  world1. The rate of early diagnosis is low and most patients are often 
diagnosed at a late stage, directly leading to miss the best clinical treatment  period2. The prognosis of advanced 
gastric cancer is undesirable and the 5-year survival rate after surgery is less than 30%3. Although the incidence 
and mortality of gastric cancer have decreased in recent years, gastric cancer maintains a high fatality rate of 75% 
in most parts of the  world4. In recent decades, various studies have analyzed the mechanism of its carcinogenesis 
through sequencing technology, especially to explore the relationship between specific microbes and the devel-
opment of gastric  cancer5,6. However, there is still a lack of effective molecular markers for early screening and 
diagnosis of gastric cancer, and new methods are urgently needed to mine new biomarkers.

Recently, more studies have shown that microorganisms play a potential role in tumorigenesis and cancer 
therapies. With the application of high throughput sequencing technology in microbiology, it was found that 
the stomach, once considered as an organ where microorganisms could not thrive, was colonized by robust 
 microbiota7. Aviles-Jimenez suggested that as patients progressed from superficial gastritis to intestinal-type 
gastric cancer (GC), the bacterial diversity of tissues decreased at the genus  level8. In addition, several studies 
found that the microbial diversity of gastric cancer patients was significantly lower than that of chronic gastritis 
 patients9,10. Ferreira found that compared with patients with chronic gastritis, intestinal symbiotic bacteria such 
as Achromobacter, Lactobacillus, Citrobacter, Clostridium and Rhodococcus were significantly more abundant 
in the bacterial community of gastric cancer  patients10. Chen demonstrated that Helicobacter pylori abundance 
was significantly decreased in gastric cancer compared with non-tumor tissue, while some oral bacteria such as 
Peptostreptococcus, Streptococcus, and Fusobacterium were enriched in gastric cancer  tissue11. Notably, a set of 
studies have already proved that Helicobacter pylori colonizes the stomach and its infection is a strong risk factor 
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for gastric  cancer12,13. In conclusion, gastric microbiome change during the progression from normal and healthy 
gastric mucosa to gastric cancer and specific microbes play a potential role in this process.

However, until recent years, the relationship between the non-H.pylori microbiota and gastric cancer is 
still inconclusive and unexplored. For example, whether the microbiome of gastric cancer patients increases or 
decreases compared to healthy individuals is uncertain. Whether the increase or decrease of certain microorgan-
isms is related to the occurrence and development of gastric cancer? Whether other risk factors for gastric cancer 
(including advanced age and male gender) can affect the microbiota of gastric cancer tissue? More investigation 
is needed to help to better explore the role of microorganisms in the progression of gastric cancer.

In the era of high-throughput sequencing, 16S rRNA sequencing is frequently utilized in microbiome 
 studies14. In addition, omics data mining provides a novel approach to study microbial profile, including RNA-seq 
data, WGS data and Metagenomic sequencing data, which can calculate and analyze by microbial classification 
engines such as  Kraken215,  Centrifuge16,  DIAMOND17 and  MetaPhlAn218 to mine the microbial information. 
These new techniques provides more information about the composition of the bacterial community than tradi-
tional cloning and sequencing methods. Among them, Kraken2 has been found to be very reliable in microbial 
identification in a large number of studies, especially in microbiome studies based on RNA sequencing  data19. 
Poore has been provided a valuable and feasible approach to discovering unique microbial information by 
analyzing genome-wide and transcriptomic data from blood and tissues of cancer  patients20. Therefore, these 
techniques can help us to better characterize the GC tissue microbiota.

In this study, four transcriptome datasets from GC tissues, including 727 samples, were used. Microbial reads 
of each sample were obtained by kraken2 algorithm and then integrated to reveal the microbial profile of GC 
tissues. In addition, we explored the influence of biological factors on tumor tissue microbiome. Furthermore, 
the core microorganisms related to the occurrence and development of gastric cancer were revealed. The results 
not only provide support for subsequent studies related to the tumor microbiome, but also provide the possibility 
to identify new biomarkers for gastric cancer.

Methods
Data selection and processing. We performed a search of the dataset in NCBI Gene Expression Omni-
bus (GEO database) using the key words “gastric cancer” and “expression profiling by high throughput sequenc-
ing”. Notably, datasets without detailed biological information or with a small sample size were excluded. Finally, 
four transcriptome sequencing datasets, SRP172499, SRP337610, SRP326473 and SRP330001, were included in 
this study. The raw data from all datasets were downloaded in the sequence read archive (SRA) format and con-
verted into FASTQ format using SRA Toolkit. The raw fastq files were then evaluated, trimmed and filtered for 
quality control using software FastQC and Trim Galore, respectively. To remove human reads from sequenced 
reads, quality-controlled sequenced reads were mapped to the human reference databases.

Microbial detection and visualization. For microbial identification, the sequences were mapped to 
microbial reference database using Kraken2, a taxonomic classification system that uses exact k-mer matches 
to achieve high accuracy and rapid classification. The microbial reference database contains nearly all known 
fungal, bacterial, archaeal and viral genomes. The Kraken2 outputs were integrated in R-software (v.4.2.1). The 
results of Kraken2 analysis were visualized using Krona software, which displays hierarchical aspects of the tax-
onomy and statistics about each taxon in multi-layered pie charts. The following analyses were conducted at the 
genus level of assigned taxa.

Microbial profile analysis. The output file was further analyzed using R-software packages, phyloseq 
(v.1.41.0) and microbiome (v.1.19.0) and visualized using R packages VennDiagram (v.1.7.3) and ggplot2 
(v.3.3.6). Core microbiota were defined as that identified at a minimum positive detection rate, present in the 
majority of the population. Identification of core microbiota was performed under 0.2% positivity detection and 
20%  prevalence21. Calculation of pan microbiome according to research methods to test the openness/close-
ness of the  microbiome22. Diversity measurements of alpha diversity and beta diversity were performed in each 
dataset using the vegan R-package (v.2.6.2) according to its different biological characteristics. The R program 
package “tidyverse” (v.1.3.1) and “rstatix” (v.0.7.0) were used to render STAMP result graph. Correlation analysis 
was performed using R program packages “igraph” (v.1.3.2) and “psych” (v.2.2.5) and considered correlation 
coefficients greater or < 0.6 and − 0.6 respectively and P < 0 0.05. Visualization of the co-occurrence network was 
achieved using Gephi version 0.9.2.

Statistical analysis. Significantly different microbes among groups were screened out by the Wilcox test 
(applied for 2 groups) and two-way ANOVA (applied for more than 2 groups). PERMANOVAR was used to 
quantify multivariate community-level differences in microbial composition among groups. For correlation 
analyses, Spearman’s rank correlation test was used. STAMP algorithm was used to identify microorganism dif-
ferences between groups (Bonferroni correction method). P < 0.05 was considered to be significant.

Results
Dataset characteristics. Four gastric cancer (GC) datasets with RNA sequencing data were selected for 
this study (SRP172499, SRP337610, SRP326473, SRP330001), which contained 160, 461, 76, and 30 samples, 
respectively. The meta information of each dataset was collected by literature search, as shown in Table 1. Nota-
bly, each dataset has its special focus beyond other common factors: tissue type for SRP172499, tissue source for 
SRP330001, tumor stage for SRP337610 and age for SRP326473. Additionally, all the samples we analyzed were 
from Asians.
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Microorganisms are present in the microenvironment of gastric tissues. The microbial profiles 
were detected from the four selected gastric tissues datasets using Kraken2 algorithm. Microbial reads were 
found in all the samples, which were further assigned to the taxa of bacteria, archaea and viruses. The bacterial 
reads in each dataset took the highest proportion (> 90%) (Fig. 1). And less than 4% of the reads were detected as 
virus in each dataset, while the archaea reads take a negligible proportion (Fig. 1). The microbial composition of 
each dataset was shown in Krona plot (Supplementary Figs. S1 and S2). There results suggested that microorgan-
isms, especially bacteria, did exist and take a dominant role in the microenvironment of gastric tissues.

Microorganisms present in gastric tissues are highly conservative and stable. Next, we further 
investigated the microbial composition at different taxonomical level across the datasets. At the phylum level, a 
total of 40 phyla were identified, of which 37 were shared by the four datasets (Fig. 2A). The relative abundances 
of the top10 phylum in each dataset were shown in Fig. 2B. Proteobacteria, Firmicute, Actinobacteria, and Bac-
teroidetes were the most prevalent and abundant phylum across the four datasets (Fig. 2B). The distribution of 
these phyla across the samples were showed in Supplementary Fig. S3. At the genus level, a total of 1324 unique 
genus were identified across all samples, of which the four datasets contained 1266, 1320, 1318 and 1227 taxa 
respectively (Fig. 2C). From these, more than 89.7% (1184/1320) of the microbial composition in each dataset 
were shared, suggesting that the microbial composition of the gastric tissue microenvironment was highly con-
servative and stable.

In order to remove the false positive results, core taxa were defined and characterized. There were 49, 44, 
44, and 52 genera identified as core microbiota in dataset SRP337610, SRP172499, SRP330001 and SRP326473 
respectively (Fig. 3A). Among them, 17 genera: Acinetobacter, Bartonella, Helicobacter, Moraxella, Mycetohab-
itans, Pasteurella, Porphyrobacter, Ralstonia, Bacillus, Pseudomonas, Streptomyces, Cutibacterium, Lysobacter, 
Mycolicibacterium, Clostridium, Streptomonospora, Chlamydia, were shared. The distribution of them in each 
dataset was shown in Fig. 3B. Among them, Bacillus genus was reported as a relatively common microorganism 

Table 1.  Characteristics of the samples in each dataset. “–” means NA, which indicates that the dataset does 
not possess the characteristic.

Study SRP172499 SRP337610 SRP326473 SRP330001

DataSubmittedLab Korea University Harbin Medical University Cancer 
Hospital

Harbin Medical University Cancer 
Hospital Peking university

Sequencing platform HiSeq HiSeq HiSeq BgiSeq

Tissue type

 Normal 80 230 38 –

 Tumor 80 231 38 30

Tissue source

 Fresh – – – 30

 Flash frozen 160 461 76

Gender

 Male – 295 48 –

 Female – 166 28 –

Age

 ≤ 50 160 – 26 –

 > 50 – – 50 –

Tumor stage

 IA – 18 – –

 IB – 18 – –

 IIA – 25 – –

 IIB – 24 – –

 IIIA – 47 – –

 IIIB – 50 21 –

 IIIC – 32 17 –

 IV – 17 – –

Histology

 Intestinal 6 – – –

 Diffuse 148 – – –

 Mixed 4 – – –

MSI

 MSS/MSI-L 152 – – –

 MSI-H 8 – – –
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with higher abundance in the composition of gastric  microbiota23,24. Helicobacter pylori is a well-acknowledged 
carcinogen bacterial and its infection significantly increases the risk of gastric  cancer25.

In order to generally estimate the microbial abundance of gastric tissues, the concept of “Pan-genome” was 
referred. We modelled accumulation curves from the genus across our 727 samples to check the openness/
closeness of the pan-genome (Fig. 3C). As expected, the number of the genera increased continuously as the 
number of considered samples increased, but the pan microbial profile in gastric tissues appears not to have 
been reached. Therefore, there are more microbes in gastric tissues than previous known, which should be paid 
more attention in future research studies.

Influence of biological factors on microbial diversity and composition in GC tissue. Two indi-
cators, alpha diversity and beta diversity, can quantify the diversity of a particular microbial community. Then 
the influence of the biological factors on the microbial diversity and composition in each dataset were explored. 
In addition, differential analysis was also conducted to identify the significantly differential genus related with 
these factors.

Tissue type. There were tumor and adjacent normal samples in the datasets SRP326473, SRP172499 and 
SRP337610. However, no significant differences were detected in alpha diversity using Shannon index within the 
three datasets (Supplementary Fig. S4A–C). We found the tumor group has lower inter-divergence values than 
the normal group and only the dataset SRP172499 had significant difference between the two groups (Supple-
mentary Fig. S4D–F). The tissue type (normal vs. tumor) had no significant effect on the overall microbial com-
position in datasets SRP326473 (PERMANOVA test, P = 0.41), but had significant effect in the other two datasets 
(PERMANOVA test, P < 0.001 *** for SRP172499 and SRP337610). The small sample size of SRP326473 dataset 
might make it statistically insufficient to detect potential differences in microbiome between groups. To evaluate 
whether there were differences in taxa that could explain the variation in diversity, the composition of the taxa 
between normal and tumor samples were compared by STAMP (Fig. 4). In the dataset SRP172499, Helicobacter, 
Xanthomonas and Streptomonospora were enriched in the normal group, while Mycolicibacillus, Acidovorax, 
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Gemella, Hymenobacter, Thermodesulfobacterium, Rhodopseudomonas and Pseudomonas were enriched in the 
tumor group (Fig. 4A). However, in the dataset SRP337610, Nocardiopsis and Mesorhizobium were enriched in 
the tumor group and six genera, Helicobacter, Lysobacter, Burkholderia, Paracoccus, Streptomonospora and Kita-
satospora were enriched in the normal group (Fig. 4B). In both datasets, Helicobacter was significantly enriched 
in normal tissues, which is consistent with previous  findings26.

Gender. The datasets SRP337610 and SRP326473 had the gender phenotype for each sample. The gender 
group (female vs. male) had no significant effect on the overall microbiota composition in either of the datasets 
(PERMANOVA test, for SRP326473, P = 0.71; for SRP337610, P = 0.36). The similar results were observed in 
Shannon diversity between the female and male samples (Supplementary Fig. S5A, B). Although there was no 
significant difference in the beta diversity of the gender group in the SRP326473 dataset, the beta diversity of the 
female group was significantly higher than that of the male group in the SRP337610 dataset, which had a larger 
sample size (Supplementary Fig. S5D, E). The results showed that the overall community structure of gastric 
tumor tissue was similar in different genders, but the heterogeneity of gastric tumor tissue microorganisms 
might be higher in female patients.

Age. Age is a well-known risk factor for gastric cancer and the incidence rate of GC increases gradually with 
age. The dataset SRP326473 contained the phenotype of age for each sample. In order to explore the effect of age 
on microbial composition, the samples were divided into two groups by age 50: Old (> 50 year old), and Young 
(≤ 50 year old)27. PERMANOVA analysis showed that the age group (Old vs. Young) also had no significant effect 
on the microbiota composition (P = 0.27). However, the definition of young age or old age GC remains contro-
versial, so we also set different thresholds ranging from 40 to 65 were set to re-define the age  groups28. There 
were still no significant differences between the Old and Young group, suggesting a stable composition after 
tumorigenesis. As for diversity, there were no differences in Shannon index between the Old and Young groups 
(Wilcox test, P = 0.50) (Supplementary Fig. S5C), but there were significant differences in divergences within the 
two groups (Wilcox test, P = 0.014) (Supplementary Fig. S5F). Beta diversity was significantly increased in the 
old group, suggesting that the patients with older age may have a more heterogeneous tumor microbiome in the 
GC tissue.

Figure 3.  Core microbial profiles and estimation of the size of pan-microbiome in GC tissue. (A) UpSet plot of 
the core microbial profiles across the four datasets at the genus level. The horizontal axis represents the number 
of core genus in each dataset. The vertical axis represents the number of core genus for one or several datasets. 
(B) The relative abundances of the 17 genera in 4 datasets. (C) The accumulation curve of GC tissues.
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Tumor stage. The datasets SRP337610 and SRP326473 contained the tumor stage for each sample. The sam-
ples from dataset SRP326473 had tumor stage IIIB and IIIC. There were detailed tumor stages in the SRP337610 
dataset, including IA, IB, IIA, IIB, IIIA, IIIB, IIIC and IV. Neither the microbial diversity nor composition 
between IIIB and IIIC were significantly different in the dataset SRP326473 (Supplementary Fig. S6A,B), sug-
gesting that the microbial composition might be more stable in high-level malignant tumor tissues. To further 
explore the changes in microbial composition at different tumor stages, the present study merged IA, IB into 
stage I, IIA, IIB into stage II, and IIIA, IIIB, IIIC into stage III. The microbial diversity was not significantly differ-
ent among the four cancer stages, but the beta diversity has significantly different (Supplementary Fig. S6C,D). 
We found that as tumor development progressed, the tissue microbial divergences showed a significant decrease. 
PERMANOVA analysis showed that there were significant differences among the microbial composition of I, 
II, III and IV samples (P = 0.011). 17 genera (Cryobacterium, Kitasatospora, Streptomyces, Chryseobacterium, 
Chlamydia, Methylobacterium, Sphingomonas, Cupriavidus, Paraburkholderia, Herbaspirillum, Aquabacterium, 
Sphaerotilus, Rheinheimera, Pasteurella, Acinetobacter, Lysobacter and Stenotrophomonas) were identified to be 
significantly different in abundance across the four groups and tended to increase during tumor progression 
(Fig. 5). In summary, the microbial composition of GC tissue changed significantly during the development and 
progression of tumors.
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Correlation network analysis. To further understand the potential interaction among core bacterial gen-
era, we performed co-occurrence network analysis in the three datasets. Significant correlations were found in 
SRP172499 (27 genera pairs), SRP337610 (24 genera pairs ) and SRP326473 (26 genera pairs ) (P < 0.05, r > 0.6 or 
r < −0.6, Fig. 6). The correlation networks formed different bacterial clusters in the three datasets. We could see 
that the bacterial community is mainly composed of the genera of Proteobacteria and Actinobacteria. There were 
five genera pairs appearing negative correlations. Among them, strong negative correlation was formed between 
Sphingomonas and Parburkholderia. Streptomyces, Pasteurella formed various bacterial clusters in all three data-
sets and positive correlations were found between them. In addition, Pasteurella also had some co-occurrence 
interactions with Lysobacter, Porphyrobacter. Most of the strong positive correlations occurred in the genera of 
Proteobacteria, such as among Acinetobacter, Ralstonia, Delftia, Escherichia, Aquabacterium, and Rubrivivax. 
Interestingly, Cutibacterium had a strong positive correlation with the genera of Proteobacteria (Aquabacterium, 
Rubrivivax, Acinetobacter). These microorganisms might play a key role in the network.

Validating microbial signatures in GC tissue. The computational results were validated using TCGA 
 dataset20. We also screened the core genera in the TCGA dataset and examined gastric tissue on basis of several 
significantly different microorganisms. 57 genera were identified as core microbiota in TCGA cohort, of which 
7 core microbiota (Acinetobacter, Bacillus, Chlamydia, Clostridium, Helicobacter, Pseudomonas, and Streptomy-
ces) were also detected in our dataset (Fig. 7A). In the core genera of TCGA, Helicobacter was found to be dif-
ferentially abundant between tumor and normal tissue with higher relative abundance in normal tissue than 
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tumor tissue in TCGA cohort (Fig. 7B). Similarly, Xanthomonas was also significantly enriched in normal tissue 
(Fig. 7C). In addition, Pseudomonas and Mesorhizobium were found significantly higher prevalence in tumor 
tissue than in normal tissue (Fig. 7D,E), in which Pseudomonas had been confirmed to have certain anti-tumor 
 activity29. These consistent results indicated the reliability and validity of our analysis.

Discussion
At present, more researches focus on the role of microorganisms in the occurrence and development of gastric 
cancer. However, apart from Helicobacter pylori, a definite role for the other microbiota in the development of 
gastric carcinogenesis has not yet been established. In this study, we integrated four datasets to demonstrate 
microbial landscape of gastric tissues and explore the network of microbial interactions and influencing factors 
in GC tissue. The results would be helpful for future exploration of the relationship and mechanisms between 
microbiota and gastric cancer.

Previously, gastric tissue was universally considered to be devoid of microorganisms due to its prolonged 
exposure in a strong acidic  environment30. However, during the development of sequencing technology, more 
evidences have been obtained to confirm that the stomach contains a diverse microbial community. A total of 
1324 genera were detected across the four datasets in this study. The pan-microbiome was estimated to be open, 
the size of which might surpass 1400. Then we identified 17 core genera across the datasets, which were prevalent 
in gastric tissue. Among them, Acinetobacter, Helicobacter, Pasteurella, Ralstonia, Bacillus, Pseudomonas, Clostrid-
ium and Cutibacterium were also detected in gastric tissue through 16S rRNA sequencing or Meta-analysis in 
other  studies31–34. In addition, other core microbiota had also been reported to be involved in tumorigenesis or 
tumor treatment. For example, Chiu’s study has demonstrated the anti-tumor activity capacity and inhibition of 
the growth of cancer cells of the secondary metabolites of Streptomyces sp.35. Chlamydia sp. has been confirmed 
to be involved in cell proliferation process and inhibiting  apoptosis36,37. Mycolicibacterium sp., growing rapidly 
in vitro, has shown outstanding anti-tumor and immunomodulatory  capabilities38. Cutibacterium sp. can induce 
long-term chronic infections in various areas including the prostate and has been identified as the dominant 
microbe in prostatic tissue obtained from prostate cancer  patients39. From this perspective, we should pay more 
attention to the distribution of core or epidemic microbial groups in GC tissues, which might play a potentially 
important role in GC tumors.

Previous studies have shown that advanced age, male and environmental factors, such as smoking and eat-
ing smoked foods, all can increase the risk of gastric  cancer40. However, we found that age and gender had no 
significant effect on the microbial composition of gastric cancer tissues, suggesting that the tumor microbiome 
might be in a stable state after tumorigenesis. In addition, we identified several microorganisms with significant 
differences between normal and tumor tissues. Among them, Helicobacter pylori, has been confirmed to increase 
the risk of gastric cancer and its abundance is significantly reduced in tumor  tissues10. Gemella, Pseudomonas, 
Acidovorax are also common microorganisms enriched in gastric tumor  tissues33,41. These are consistent with 
our results. Moreover, Acidovorax has been developed as a sputum biomarker to diagnose lung squamous cell 
 carcinoma42. Pseudomonas aeruginosa was relatively abundant in the genus Pseudomonas and has been proved to 
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be an important cause of infection in immunosuppressed patients, particularly cancer  patients43. Dysregulation 
of these bacteria (Gemella, Pseudomonas, Acidovorax) may alter gastric cancer risk.

Notably, a series of differential genera related to tumor stage were identified. Among them, Lysobacter and 
Kitasatospora were significantly enriched in normal tissue and showed a significant increase trend in tumor 
development. A new proteasome inhibitor, derived from tyropeptin A produced by Kitasatospora sp., showed a 
strong growth inhibition and apoptosis in human prostate  cancer44. Interestingly, we found Acinetobacter, Pas-
teurella, Streptomyces had higher relative abundance and showed a significant increase trend in the development 
of tumors, and formed strong correlations among them or with other genera. Acinetobacter baumannii detected in 
the genus Acinetobacter has been shown to be an opportunistic pathogen and carbapenem-resistant Acinetobacter 
baumannii infection in cancer patients has been shown associated with high  mortality45. Pasteurella multocida, 
the most abundant bacterium detected in the genus Pasteurella, has been shown that the protein toxin produced 
by Pasteurella multocida is a potential  carcinogen46. The Streptomyces sp. is the rich source of terpenoids, some 
of which have anti-tumor activity in against cancer  cells35. In summary, these results suggest that changes in 
these gastric microbes (Lysobacter, Kitasatospora, Acinetobacter, Pasteurella, Streptomyces) may contribute to GC 
initiation and progression, so follow-up studies should focus on exploring the molecular mechanisms of these 
microorganisms on the occurrence and development of tumor.

However, our study has limitations. First, there are many other factors that may affect the gastric microbiota, 
such as dietary habits and previous diseases. The lack of biological information about these factors make it 
impossible to effectively explore their impacts. Second, the sample has strong individual heterogeneity and the 
sample size for analysis is not enough.

Conclusion
To date, however, the composition of microbiota in gastric tissues is not clear and the gastric microbiome changes 
throughout the different stages of gastric carcinogenesis remain mostly elusive. This study revealed the micro-
biome of gastric cancer tissue and explored the influences of biological factors on gastric microecology. We find 
the microbial composition of the GC microenvironment is highly conservative and stable. Seventeen common 
core genera were identified in GC tissue, which should be paid more attention. Moreover, tissue type and tumor 
stage may play a significant role in the alteration of microbiome composition. Notably, we found significantly 
different genera in the occurrence and development of tumor. These bacteria (Helicobacter, Streptomonospora, 
Acinetobacter, Pasteurella, Streptomyces, Chlamydia, and Lysobacter) may be involved in tumor progression as 
potential characteristic genera and may provide a theoretical foundation for the non-invasive prediction of gastric 
cancer. More work is needed in the future to verify these bacteria in actual samples and explore the molecular 
mechanisms in tumorigenesis of gastric cancer.

Data availability
The datasets analysed during the current study are available in the Gene Expression Omnibus (GEO), provided 
by Hwang D (SRP172499, RNA-seq, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE12 2401), Xue Y 
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