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Unveiling the paths of COVID‑19 
in a large city based on public 
transportation data
Jorge L. B. Araújo 1*, Erneson A. Oliveira 1,2,3, Antonio S. Lima Neto 4,5, José S. Andrade Jr. 6 & 
Vasco Furtado 1,2,7

Human mobility plays a key role in the dissemination of infectious diseases around the world. 
However, the complexity introduced by commuting patterns in the daily life of cities makes such a 
role unclear, especially at the intracity scale. Here, we propose a multiplex network fed with 9 months 
of mobility data with more than 107 million public bus validations in order to understand the relation 
between urban mobility and the spreading of COVID-19 within a large city, namely, Fortaleza in the 
northeast of Brazil. Our results suggest that the shortest bus rides in Fortaleza, measured in the 
number of daily rides among all neighborhoods, decreased ≈ 25 % more than the longest ones after 
an epidemic wave. Such a result is the opposite of what has been observed at the intercity scale. 
We also find that mobility changes among the neighborhoods are synchronous and geographically 
homogeneous. Furthermore, we find that the most central neighborhoods in mobility are the first 
targets for infectious disease outbreaks, which is quantified here in terms of the positive linear relation 
between the disease arrival time and the average of the closeness centrality ranking. These central 
neighborhoods are also the top neighborhoods in the number of reported cases at the end of an 
epidemic wave as indicated by the exponential decay behavior of the disease arrival time in relation 
to the number of accumulated reported cases with decay constant � ≈ 33 days. We believe that these 
results can help in the development of new strategies to impose restriction measures in the cities 
guiding decision-makers with smart actions in public health policies, as well as supporting future 
research on urban mobility and epidemiology.

COVID-19 has caused massive loss of lives, economic destabilization, and changes in social relations 
worldwide1–3. In order to mitigate the spread of SARS-CoV-2, several countries have implemented restriction 
measures, such as curfews and lockdowns, which induce a rupture in human mobility4–6. Such rupture yields an 
immediate control of the number of reported cases, at least for some time, to the detriment of the local economy 
and the mental health of the population7–9. In most cases, restriction measures are asynchronous across national 
territories due to the phase difference among epidemic waves in each city10. Nevertheless, they provide inter-
esting case studies to researchers that aim to understand the mechanisms behind the dynamics of COVID-19 
dissemination in order to improve mathematical model predictions for future outbreaks11,12.

There is a consensus that human mobility plays a fundamental role in the dissemination of infectious diseases 
at the intercity scale13–15. Brockmann and Helbing16 introduced a network model to study the dissemination of 
2009 H1N1 flu and 2003 SARS among different cities worldwide. They found that the propagation of infectious 
diseases among cities is better described by an effective distance (defined in relation to human mobility) than 
by the geographic distance since the disease arrival time in the cities only correlates with the effective distance 
to the Initial Outbreak Location (IOL). Therefore, the effective distance is interpreted as the most probable path 
through which an infectious disease spreads, i.e., the path along which the probability of population mixing is 
maximized. On the other hand, this role remains unclear at the intracity scale despite the use of sophisticated 
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techniques, such as contact tracing and meta-population models17–21, in order to find a reliable correlation 
between urban mobility and the spreading of infectious diseases. One of the main reasons for this lack of clarity 
is the rise of complexity introduced by commuting patterns in the daily life of cities.

Here, we perform a longitudinal analysis based on concepts of complex networks fed with 9 months of epi-
demiological and mobility data in order to understand the relation between urban mobility and the spreading 
of COVID-19 within Fortaleza, a large Brazilian city. Brazil is the biggest country in Latin America, having a 
population of 211 million people (estimated for 2020)22. Brazil’s first case of COVID-19 was reported on Febru-
ary 26th, 202023. At the end of that year, the accumulated cases and deaths of COVID-19 were 7,680,082 and 
195,00824, respectively. Regarding Fortaleza, capital of the state of Ceará, a city with a population of 2.68 mil-
lion people (estimated for 2020), the first case of COVID-19 was officially reported in Meireles neighborhood 
on March 16th, 202025. Over that year, 87,636 cases and 4980 deaths of COVID-19 in the city were reported26. 
Taking that into account, we introduce a model that uses the flow of individuals among neighborhoods in order 
to estimate the most probable path in which an infectious disease spreads and, consequently, define the most 
important neighborhoods from the point of view of commuting patterns. Further, we show how a lockdown 
influences urban mobility and, consequently, the arrival time of an outbreak at the intracity scale. The manuscript 
is concluded with a discussion regarding the maintenance of the order in the ranking of the most important 
neighborhoods throughout the investigated epidemic period. Our main contribution is to find evidence that 
these most important neighborhoods are not only the primary targets for infectious disease outbreaks, but also 
the top neighborhoods in the number of reported cases at the end of an epidemic wave. This allows us to shed 
light on a potentially more effective definition of local restriction measures.

Results and discussion
Socio‑economical and epidemiological indicators.  We show the geographic and social-economical 
structure of Fortaleza, as well as, some COVID-19 indicators for 2020 in Fig. 1 (see Datasets). Figure 1a shows 
the spatial distribution of population with the names of neighborhoods that will be mentioned throughout our 
study. Figure 1b,c show the spatial distribution of accumulated reported cases and deaths of COVID-19, respec-
tively. We also show the spatial distribution of the Human Development Index (HDI) in Fig. 1d. There was a 
sub-notification of reported cases of COVID-19 in Fortaleza. We can realize such fact by making a comparison 
among the Fig. 1b,c,d. The neighborhoods with the highest HDIs hold the largest numbers of reported cases 
since their inhabitants had more access to COVID-19 tests in private practices. However, we emphasize that 
such neighborhoods are not the top ones in deaths. That being said, we believe that this sub-notification was 
geographically homogeneous in the city, except for the highest HDI neighborhoods (5 out of 119), since we are 

Figure 1.   Geographic and social-economical structure of Fortaleza, as well as, some COVID-19 indicators for 
2020. (a) Spatial distribution of population. (b) Spatial distribution of accumulated reported cases of COVID-
19. (c) Spatial distribution of accumulated deaths of COVID-19. (d) Spatial distribution of Human Development 
Index (HDI). We can realize that there was a sub-notification of reported cases of COVID-19 in Fortaleza. The 
neighborhoods with the highest HDIs hold the largest numbers of reported cases since their inhabitants had 
more access to COVID-19 tests in private practices. However, we emphasize that such neighborhoods are not 
the top ones in deaths. As explained in the main text, we believe that the existing bias is not strong enough to 
change the conclusions our study. All regional maps were produced using Python packages. The map is from the 
package Matplotlib Version 3.7 (https://​matpl​otlib.​org/).

https://matplotlib.org/
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able to recover the expected positive linear relation between cases and deaths (see Fig. SI–1). This result suggests 
the existing bias is not strong enough to change our study.

Figure 2 shows an overview of the COVID-19 spreading across Fortaleza during the studied period. We 
calculate the mobility changes through the quantity (Z(k) − Z(1))/Z(1) , where Z(k) =

∑
ij(i �=j) F

(k)
ij  is the number 

of rides among all neighborhoods in a given week k (see Fig. 2a). Similar to other cities, the restriction measures 
implemented in Fortaleza were divided into two closing periods and one opening period: (i) a social isolation 
period (from week 4–9, State Decree 33,519), in which some services (e.g., schools and universities) were closed, 
and the people were not obligated to stay at home; (ii) a lockdown period (from week 10–13, State Decree 33,574), 
in which the people were obligated to stay at home, and only essential services were functioning; and (iii) an 
economic reopening period (from week 14 onwards, State Decree 33,608), in which all services started to reopen, 
and the people were allowed to leave their houses. In this context, we observe that urban mobility abruptly 
reduced and gradually increased in Fortaleza when the first restriction measures came into force and when the 
economic reopening progressed, respectively. Figure 2b shows these changes stratified by geographic distance d 
through a similar ratio (Z(k)

d − Z
(1)
d )/Z

(1)
d  , where Z(k)

d =
∑

ij(dij∈d)
F
(k)
ij  . The quantity Z(k)

d  is measured by taking 
into account only the neighborhoods in which the geographic distances among their centroids lie in the range 

Figure 2.   Mobility changes, number of reported cases, and disease arrival time. In (a), we show the time 
evolution of the mobility changes in percentage through the number of rides among all neighborhoods in a 
given week k, Z(k) =

∑
ij(i �=j) F

(k)
ij  . It is possible to note a substantial decrease in urban mobility from week 3 

(mid-March) to week 14 (end of May) since restriction measures (in brown) were implemented during this 
period. After these two closing periods, the economic reopening process started, and the mobility slowly 
returned to the baseline ( Z(1) ). (b) shows the same as in (a), but stratified by geographic distance d through the 
quantity Z(k)

d =
∑

ij(dij∈d)
F
(k)
ij  , which is measured by taking into account only the neighborhoods in which the 

geographic distances among their centroids lie in the range of the stratum d. Therefore, we can see that the 
shortest rides changed ≈ 25 % more than the longest in Fortaleza. This effect is the opposite of what is observed 
on a higher geographic scale (intercity regime)10. As shown in (c), the restriction measures were essential to 
reduce the number of cases ( nc ) in Fortaleza. In (d), we find that the number of accumulated reported cases 
(until the end of the studied period) nac decays exponentially with the arrival time Ta of the disease in the 
neighborhoods, nac ∼ exp(−Ta/�) , with the decay constant � ≈ 33 days ( r2 ≈ 0.73 ). Here, Ta is measured as 
the number of days from January 1st, 2020 until the day that a threshold of n∗ac = 6 reported cases is reached. 
The dashed line corresponds to the linear fit between ln(nac) and Ta . The solid blue line is the Nadaraya-Watson 
(NW) estimator, and the two dashed blue lines are its 95% Confidence Intervals (CI) estimated using the 
bootstrap method.
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of the stratum d. We find that the shortest rides decreased ≈ 25 % more than the longest ones during the studied 
period, which is the opposite of what has been observed at the intercity scale10. Furthermore, we also find evi-
dence that mobility changes and HDI were correlated in Fortaleza (see Fig. SI–2), similar to previous studies27,28. 
The weekly number of reported cases, nc , is shown in Fig. 2c. We observe that the peak of reported cases took 
place right before the lockdown period. This little anticipation is due to the fact that the dates of reference adopted 
for the x-axis correspond to the days of the onset of symptoms. As shown in Fig. 2d, the number of accumulated 
reported cases (until the end of the studied period) nac decays exponentially with the arrival time Ta of the disease 
in the neighborhoods, nac ∼ exp(−Ta/�) , with the decay constant � ≈ 33 days. Precisely, Ta is measured as the 
number of days from January 1st, 2020 until the day that a threshold of n∗ac = 6 reported cases is reached (see 
Supplementary Information). We also perform the calculation of the Nadaraya-Watson estimator to validate our 
exponential decay hypothesis29,30.

Network metrics and centrality measures.  Three layers of the proposed network (see Methods) are 
shown in Fig. 3a, corresponding to week 3 (before the restriction measures), week 10 (during the lockdown), and 
week 17 (after the beginning of the economic reopening) during the investigated epidemic wave of COVID-19. 
The maps show synchronization of mobility changes among the neighborhoods, which is uncommon to find on 

Figure 3.   Overview of the multiplex network. In (a), we show three layers of the proposed network, 
corresponding to week 3 (before the restriction measures), week 10 (during the lockdown), and week 17 (after 
the beginning of the economic reopening). The vertices stand for the neighborhoods of Fortaleza and the 
weighted directed edges stand for F(k)ij  , the average daily number of individuals that ride from a neighborhood 
i to another j at week k. The sizes of the vertices corresponds to their weighted in-degrees (normalized by the 
average in each layer k). The widths/colors of the edges indicate the magnitude of F(k)ij  as shown by the color 
bar in linear scale. The maps show synchronization of mobility changes among the neighborhoods, which is 
uncommon to find among regions or cities due to different stages of local outbreaks6,10. The largest three vertices 
in the maps are Centro (downtown), Aldeota, and Meireles. Meanwhile, the three highest values of F(k)ij  are (Barra 
do Ceará, Centro), (Vila Velha, Centro), and (Barra do Ceará, Meireles). As the number of rides decreased (see 
Fig. 2a) during social isolation and lockdown periods, the average shortest path length 〈D(k)〉 increases by ≈ 30 % 
as shown in (b). The decrease in the number of rides eliminates some connections among neighborhoods, which 
reduces the density of the network η(k) . The average effect of mobility restrictions in the network connections 
is shown through the average of the in-degrees 〈K (k)〉 , as illustrated in (c). After the restriction measures, these 
metrics tend to return to their original state in the pre-pandemic period. All regional maps were produced using 
Python packages. The map is from the package Matplotlib Version 3.7 (https://​matpl​otlib.​org/ ). Networks are 
from the package Networkx Version 2.5.1 (https://​netwo​rkx.​org/).

https://matplotlib.org/
https://networkx.org/
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a larger geographic scale, e.g., among regions or cities, due to different stages of local outbreaks6,10. The size of 
the vertices is based on their weighted in-degrees. The neighborhoods Centro (downtown), Aldeota, and Meireles 
are the largest three vertices in the maps. Further, the magnitude of the directed edges, which is defined by F(k)ij  , 
is compatible with the macroscopic evolution of the mobility shown in Fig. 2a. The edges corresponding to the 
three highest values of F(k)ij  are (Barra do Ceará, Centro), (Vila Velha, Centro), and (Barra do Ceará, Meireles). 
Figure  3b shows the average shortest path length �D(k)� = [n(n− 1)]−1

∑
ij(i �=j) D

(k)
ij  for each week k of the 

studied period. As compared with the values observed before the restriction measures, we observe an increase of 
≈ 30 % in 〈D(k)〉 during the social isolation and lockdown periods, due to the substantial decrease in the number 
of rides in Fortaleza. Such a result indicates that, on average, a hypothetical outbreak would take longer to reach 
all neighborhoods if the regular urban mobility was similar to the one found during the restriction measures. In 
the same time interval, the density η(k) = m/[n(n− 1)] , where m is the number of edges in the layer k, decreased 
as shown in the inset of Fig. 3b. Since n is constant, such behavior implies missing edges during this period, 
which is consistent with the rise of the 〈D(k)〉 . In Fig. 3c, the average of the in-degrees 〈K (k)〉 exhibits a behavior 
similar to η(k) , indicating a decrease in the probability of mixing the populations among neighborhoods during 
the restriction measures. All metrics tend to eventually return to their original values, i.e., before the restriction 
period.

Shortest path distributions.  The effective distance distributions during weeks 3, 10, and 17 from two 
particular IOLs, Centro and Castelão, to all other neighborhoods are shown in Fig. 4. In Fig. 4a,b, the distribu-
tions are represented in a polar coordinate system, where the radius stands for the shortest path, D(k)

ij  , and the 
angle stands for a random number between 0 and 2π , for better visualization. We observe that D(k)

ij  and d(k)ij  do 
not exhibit linear correlation, i.e., a comparatively lower shortest path D(k)

ij  between two neighborhoods does 
not necessarily imply that they are closer in the geographic space. As shown in Fig. 4c,d, we can also describe 
these distributions through the Kernel Density Estimation (KDE), defining an estimator g(D(k)

ij ) with a Gauss-
ian kernel (see Methods). In both cases, we observe that g(D(k)

ij ) shifts to the right from week 3–10, indicating 
that there is, on average, an increase in D(k)

ij  , and shifts back to the left from week 10–17, partially recovering the 
urban mobility pattern observed in week 3. We find similar behaviors considering all other neighborhoods as 
IOLs, even in the cases where g(D(k)

ij ) has a bimodal-like shape, as shown in Fig. 4d. This shows that the restric-
tion measures effectively resulted in the increase of the shortest path between the neighborhoods of Fortaleza.

Spearman’s correlation of the closeness centrality.  As the network is a weakly connected graph for 
each temporal layer k, we calculate the time evolution of the closeness centrality, C(k)

i  , for all neighborhoods 
i (see Methods). In Fig. 5a., we observe that the values of C(k)

i  were synchronously affected by the restriction 
measures, which resembles the Z(k) profile in Fig. 2a. For such metric, the most central neighborhood is Centro 
(downtown), while the least central is Sabiaguaba. Figure 5b shows the time evolution of the Spearman’s rank 
correlation coefficient31, ρ(k) , between the sets C(k)

i  and C(1)
i  (see Methods). We find that the C(k)

i  lines rarely cross 
each other since ρ(k) > 0.92 in all layers. The inset shows the linear relation between C(1)

i  and C(10)
i  (first week 

of lockdown) with a slope coefficient a ≈ 0.75 ( r2 ≈ 0.90 ). Here, we use Nadaraya–Watson estimator to validate 
the linear relation between C(k) and C(1) . We believe that these results are supporting evidence that the restriction 
measures were not only synchronous but also geographically homogeneous in Fortaleza. We conjecture that this 
can be explained in terms of the stability in the commuting patterns, i.e., the restriction measures can increase 
the shortest path among the neighborhoods, but their proportional commuting patterns remain the same since 
there are strong socioeconomic ties between people and places within a city32. Furthermore, we also find that 
neighborhoods with high values of Ci tend to exhibit unimodal-like shapes in g(D(k)

ij ) profiles, while the ones 
with low values tend to exhibit bimodal-like shapes.

Arrival time and closeness centrality.  As shown in Fig. 6, the disease arrival time Ta increases linearly 
with the average rank position of the closeness centrality, 〈Ri〉 , calculated for all layers. This linear relation is char-
acterized by the slope coefficient a ≈ 0.24 ( r2 ≈ 0.41 ). Again, we use Nadaraya–Watson estimator to validate 
the linear relation between Ta and 〈Ri〉 . Such result reveals that the more neighborhoods are effectively central 
in the mobility network, the faster the disease arrives at them. Consequently, as already shown in Fig. 2d, these 
neighborhoods also produce the highest number of reported cases throughout the investigated epidemic period.

Conclusions
We have proposed a data-driven model to understand the relation between urban mobility and the spreading 
of COVID-19 in the city of Fortaleza, Ceará, Brazil. Our results show that the shortest bus rides within the city 
decreased ≈ 25 % more than the longest ones during the first epidemic wave of reported cases, i.e., from March 
to December 2020. Such a finding is the opposite of what has been observed at the intercity scale10. Applying the 
proposed model, we found that mobility changes among the neighborhoods are synchronous since their close-
ness centrality curves have a similar shape during the studied period. They can also be considered geographically 
homogeneous because there are almost no crossings among these curves. Both behaviors are also uncommon 
to see on a larger geographic scale - the former due to different stages of local outbreaks and the latter due to 
the invariance of the commuting patterns within a city, which can be explained by the fact that there are strong 
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Figure 4.   Polar representations and shortest path distributions of D(k)
ij  for different Initial Outbreak Locations 

(IOLs). In (a) and (b), we show the polar representations during weeks 3 (before the restriction measures), 
10 (during the lockdown), and 17 (after the beginning of the economic reopening) from two particular IOLs, 
Centro and Castelão, to all other neighborhoods of Fortaleza. The value of D(k)

ij  from i to j at the week k is 
calculated through the Dijkstra’s algorithm38 upon each layer of the multiplex network. The polar representation 
is a coordinate system, where the IOL is set in as the origin, the radius stands for D(k)

ij  and the angle stands for 
a random number between 0 and 2π . Each point represents a neighborhood in which its size is proportional to 
the population Ni and its color is based on the geographic distance dij , measured in kilometers (km), according 
to the color bars in linear scale. The dashed gray lines stand for D(k)

ij = 10 and D(k)
ij = 20 . In (c) and (d), we 

show the radial distributions of the shortest paths g(D(k)
ij ) for the same previous IOLs and weeks. We calculate 

g(D
(k)
ij ) through the Kernel Density Estimation (KDE) with a Gaussian kernel (see Methods). In both cases, 

g(D
(k)
ij ) shifts to the right from week 3–10, showing that there is, on average, an increase in D(k)

ij  , and shifts back 
to the left from week 10–17, partially recovering the urban mobility pattern observed in week 3. For all other 
neighborhoods as IOLs, we find similar behaviors, even in the cases where g(D(k)

ij ) has a bimodal-like shape, as 
shown in (d).
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socioeconomic ties between people and places. Finally, we found that the most central neighborhoods in the 
mobility network were not only the primary focuses of the COVID-19 outbreak but also the top neighborhoods 
in the number of reported cases at the end of epidemic wave. We emphasize that our mobility dataset is based on 
public bus transport only. However, as explained in SI, it is a good proxy for the total urban mobility of Fortaleza. 
Another limitation that can be pointed out in our study is that there was indeed a sub-notification of reported 
cases of COVID-19 in Fortaleza. However, our results suggest the existing bias is not strong enough to change 
our conclusions. As a perspective, the development of dynamic models could improve the understanding of 
the studied phenomenon at the intra-city scale. Despite the leading role of massive vaccination campaigns in 
controlling outbreaks of respiratory communicable diseases and the large number of studies published in the last 
three years regarding the use of Non-Pharmaceutical Interventions (NPIs) to mitigate the spread of COVID-19, 

Figure 5.   Closeness centrality and Spearman’s rank correlation coefficient. (a) We show the time evolution 
of the closeness centrality C(k)

i  for some neighborhoods i. All C(k)
i  curves exhibit a high similarity among 

themselves. Furthermore, they were synchronously affected by the restriction measures in the city of Fortaleza. 
(b) We also show the time evolution of Spearman’s rank correlation coefficient ρ(k) between C(k) and C(1) . We 
find that ρ(k) > 0.92 in all layers, which implies that the C(k)

i  lines rarely cross each other. The inset shows a 
dashed black line that represents the linear relation between C(1)

i  and C(10)
i  (first week of lockdown) with a 

slope coefficient a ≈ 0.75 ( r2 ≈ 0.90 ). The solid blue line is the Nadaraya–Watson (NW) estimator, and the 
two dashed blue lines are its 95% Confidence Intervals (CIs) estimated using the bootstrap method. Such 
results prove that the restrictive measures were not only synchronous but also geographically homogeneous in 
Fortaleza.

Figure 6.   Disease arrival time Ta and average rank position of the closeness centrality 〈Ri〉 . We find a linear 
relation (dashed black line) between Ta and 〈Ri〉 characterized by the slope coefficient a ≈ 0.24 ( r2 ≈ 0.41 ). Each 
point in the scatter plot is a neighborhood of the city of Fortaleza. The solid blue line is the Nadaraya–Watson 
(NW) estimator, and the two dashed blue lines are its 95% Confidence Intervals (CIs) estimated through the 
bootstrap method. We observe that the linear regression fitting follows the NW estimator and lies approximately 
within the CIs. This result reveals that the more neighborhoods are effectively central in the mobility network, 
the faster the disease arrives at them.
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more research is still needed to improve public policies based on NPIs, mainly for situations that, for some 
reason, there are no vaccines available, which usually happen in the least developed and developing countries. 
Historically, most local outbreaks in Fortaleza were controlled through massive vaccination campaigns, e.g., 
in the cases of H1N1 and measles33,34. In such cases, where both were vaccine-preventable diseases, the main 
interventions were the characterization of transmission chains to interrupt the spread (especially in the case of 
measles), and large-scale vaccination, which included an active search for unvaccinated individuals. Furthermore, 
focused quarantines were only recommended when outbreaks were in institutions such as schools, prisons, and 
churches. We believe that these results may unveil new strategies to impose restriction measures in the cities 
guiding decision-makers with smart actions in public health policies, as well as supporting future research on 
urban mobility and epidemiology.

Methods
Datasets.  Population.  We use the 2010 census population provided by the Brazilian Institute of Geography 
and Statistics (IBGE)35 to define the number of inhabitants from the 119 neighborhoods of the city of Fortaleza, 
Ceará, Brazil.

Reported cases and deaths of COVID‑19.  We collect the number of reported cases and deaths of COVID-19 
from Fortaleza in IntegraSUS26, the official repository of the Ceará State Government, and make them available 
(see Data Availability). For both, the file structure is similar: each row represents the number of reported cases or 
deaths of COVID-19 on a specific date for all neighborhoods. We emphasize that such a dataset is retrospectively 
updated and corrected.

Human development index.  The Fortaleza City Hall made available the Human Development Index (HDI) by 
neighborhood. (see Data Availability)

Urban mobility.  The Fortaleza City Hall made available a set of 39 weekly Origin-Destination (OD) matrices 
{M} , based on bus validations during weekdays, among all neighborhoods of Fortaleza (see Data Availability). 
For each week k, M(k)

ij  represents the average of the number of individuals that commute from the neighborhood 
i to the neighborhood j, i.e., M(k)

ij  only considers one-way rides. The period of the data ranges from March to 
December 2020. We emphasize that matrices M are identical to matrices F, except for the main diagonals, since 
M

(k)
ii  stands for the number of intra-neighborhood rides, while F(k)ii = Ni −

∑
j(i �=j) F

(k)
ij  stands for the number 

of inhabitants that remain in the neighborhood i. Finally, we also note that the neighborhood Vila Ellery has no 
entries in M during the studied period. For this reason, we remove it from the entire analysis.

The model.  We investigate the effects of the restriction measures on the urban mobility of Fortaleza by 
representing the data in terms of a multiplex network36 with 39 layers, each corresponding to a week during the 
period from March to December 2020. Precisely, for each week k, the vertices i stand for the n = 118 neighbor-
hoods of Fortaleza, while the weighted directed edges (i, j,w(k)

ij ) stand for the commuting patterns from neigh-
borhoods i to others j. The weight w(k)

ij  is given by16:

where F(k)ij  is the average daily number of individuals that ride from i to j at week k, and Ni is the population of 
i. We emphasize that F(k)ij  is estimated from the public urban transportation using a dataset with more than 107 
million bus validations (see Datasets). Furthermore, the main diagonal elements of the matrices F(k) are set as 
F
(k)
ii = Ni −

∑
j(i �=j) F

(k)
ij  . Figure 7a,b show a schematic representation of the geographic distance dij between the 

centroids of the neighborhoods i and j, as well as the shortest path (or the effective distance) D(k)
ij  from i to j at 

the week k, respectively. The distance dij is calculated through the Haversine formula37, while D(k)
ij  is calculated 

through the Dijkstra’s algorithm38. As highlighted in light red in Fig. 7, a neighborhood j which is geographically 
far away from neighborhood i may, however, be effectively close to it (low D(k)

ij ), i.e., may have high commuting 
levels with i.

Closeness centrality.  As all layers of the proposed multiplex network are directed subgraphs, the closeness 
centrality C(k)

i  of the neighborhood i in the layer k is given by36,

where n− 1 is the number of neighborhoods j that reach i, and D(k)
ji  is the shortest path from j to i, i.e., D(k)

ji  is 
the inward distance of i.

Spearman’s rank correlation.  The Spearman’s rank correlation coefficient31, ρ(k)
i  , between C(k)

i  and C(0)
i  

is calculated as follows:

(1)w
(k)
ij = 1− ln

F
(k)
ij

Ni
,

(2)C
(k)
i =

n− 1
∑

j D
(k)
ji

,
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where R(k)
i  is the ranking of C(k)

i  , cov is the covariance and σ is the standard deviation.

Nadaraya–Watson estimator.  The Nadaraya–Watson (NW) estimator is defined by the following kernel 
smoother function29,30:

where x is the evaluation point, N is the number of points of the data distribution {Xi ,Yi} , 
Kh(x − Xi) = exp[(x − Xi)

2/(2h2)] is a Gaussian kernel, and h is the bandwidth. We estimate the bandwidth h 
by the least squares cross-validation method39,40. We compute the 95% ( α = 0.05 ) Confidence Intervals (CIs) 
over 500 random bootstrapping samples with replacement through the so-called α/2 quantile function.

Kernel density estimator.  The Kernel Density Estimation (KDE) is a non-parametric method to estimate 
the probability density function based on kernel smoothing41,42. Given a data distribution {Xi} with N points, the 
estimator is calculated as follows:

where x and Kh(x − Xi) are defined in a way similar to the NW estimator. On the other hand, the bandwidth h 
is defined by Scott’s rule ( h = N−1/5).

Data availability
The data that support the findings of this study are available in Zenodo with the identifier https://​doi.​org/​10.​
5281/​zenodo.​76550​82.
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