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Information flow among nodes in a complex network describes the overall cause-effect relationships 
among the nodes and provides a better understanding of the contributions of these nodes individually 
or collectively towards the underlying network dynamics. Variations in network topologies result 
in varying information flows among nodes. We integrate theories from information science with 
control network theory into a framework that enables us to quantify and control the information 
flows among the nodes in a complex network. The framework explicates the relationships between 
the network topology and the functional patterns, such as the information transfers in biological 
networks, information rerouting in sensor nodes, and influence patterns in social networks. We show 
that by designing or re-configuring the network topology, we can optimize the information transfer 
function between two chosen nodes. As a proof of concept, we apply our proposed methods in the 
context of brain networks, where we reconfigure neural circuits to optimize excitation levels among 
the excitatory neurons.

The cause-effect relationships between various events or processes, in which an event contributes to the evolu-
tion of another event or a state occurs in different  physical1,  biological2’3,  financial4, or technological systems 
or  networks5’6. Apart from science, causality has been an important topic in contemporary philosophy and its 
branches, including metaphysics, ontology, and epistemology. In physical systems, Maxwell illustrated with an 
experiment (Maxwell’s demon)7 that reveals the relationship between information and entropy. The experiment 
showed that the restrictions imposed by the second law of thermodynamics can be relaxed by using information 
(velocity and positions of the particles) contained in Maxwell’s demon. These notions of information and entropy 
provide a thermodynamical description of information flows in dynamical  systems8. In a social  network9’10, 
information is encoded in the network topology and essential for building reputation, trust, better collaboration, 
or finding short chains in an extensive social network. In cell  biology2’3, the receptor function relies on precise 
dynamical communication and coordinated information transfer between the cell surface receptors and the 
outside world and within the gene networks. In neurological  networks11, information transfers happen across 
the synapse by the activity of several neural populations; the dendrites transmit information to the cell body, 
and the axon transmits information away from the cell body.

The pattern of connections between the proteins or neurons determines how information flows through the 
gene regulatory networks or neural circuits. During evolution, the gene essentiality changes, and the number of 
connections between the essential and non-essential genes depends on the ancestral species. Increased interac-
tions among the genes result in transforming non-essential genes into essential  genes12. Thus knowledge of the 
‘wiring’ of these networks helps understand how the collective behaviour contributes to the information flows 
among the cells. The connectome describes the complete structural wiring diagram of the neurons in the nervous 
system. Studies show that the changes in the ability to learn and form memories in the nervous system depend 
on the modification in the synaptic strength through potentiation or depression,13’14’15. An approach to modify 
synaptic strengths is to reconfigure the wiring by changing the physical connections between the  neurons16’17. 
Recent evidence has shown that network rewiring is an essential mechanism in learning and neuroplasticity, 
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defined as the ability of the brain to modify the information flows among the neurons in response to intrinsic 
and extrinsic  stimuli18’19.

Most of the literature around the study of complex dynamical networks focuses mainly on the study of 
controllability and reachability of nodes and their roles in controlling the network  dynamics20’21. And a few 
other works focus on identifying the effective connectivity from time series data, such as Fourier-based or 
polynomial-based  interpolation22’23. These methods are based on interpolation techniques, and the estimation 
accuracy depends hugely on the chosen basis functions. Various studies on complex networks are specifically 
focused on the analysis of complex brain  networks24’25’26’27. The methods to investigate the functional connectiv-
ity between brain regions in these works include connectivity models such as structural equation  modelling24’25, 
dynamic causal  modelling26, or Granger  causality27. The structural equation modelling  method24’25 is based on 
estimating the correlation matrix between the brain regions and is intractable for large networks. Dynamic causal 
 modelling26 estimates the connectivity by perturbing the brain’s dynamic system and measuring the response 
and does not incorporate an information-theoretic measure. Granger causality characterizes the direction of 
information flow, but it does not quantify the amount of causal inferences. Therefore, in the event of bidirectional 
causal inferences, Granger causality is difficult to differentiate the relative strengths. The works in all these stud-
ies of brain networks focus only on finding the effective connectivity in the brain network. Recently, network 
scientists have integrated information theory with network theory to study the flow of information in complex 
 networks28’29. These studies focus mainly on estimating information transfers in stationary random processes. 
However, in this work, we consider complex dynamical networks with intrinsic stochastic nodal dynamics that 
can provide accurate estimates of the evolution of information transfers. We model the neurological network 
based on a dynamic model of the brain (Wilson–Cowan model) and infer the coupling strengths by perturbing 
the system and finding the phase responses (Phase Response Curve). In this regard, our methods for estimating 
coupling strengths from neurophysiological time series differ from the methods  in22,23 where there is no designed 
perturbation, and the inputs are treated as unknown. We attempt to answer two crucial questions: (i) Is there a 
way to quantify the information flows among nodes in complex dynamical networks? (ii) What are the effects of 
changing the network topology on the information transfers among the nodes? Moreover, assuming we have the 
authority to configure the network topology, can we maximize the information transfer between two predefined 
nodes? A major distinctive feature of our work, therefore, lies in integrating theories from information theory, 
graph theory and optimization algorithms to quantify the flow of information between various nodes in complex 
dynamical networks and finding the optimal topology for maximized information flows.

There are various information-theoretic measures to quantify information flow, such as the time-delayed 
mutual  information30, causation  entropy31, Granger  causality32 etc. One limitation of these measures is the 
lack of determining the cause-effect relation or the direction of information flow. Schreiber’s transfer  entropy33 
describes the flow of information between two random processes and provides a directional sense to the informa-
tion transfer. However,  evidence34 has shown that transfer entropy may give qualitatively incorrect results, such 
as imperfect observations of the states, and, as a result, may not always successfully quantify the true informa-
tion transfers in dynamical  systems35. Recently, Liang and  Kleeman36’37 formulate the evolution of information 
transfers in dynamical systems. In our work, we adopt Liang-Kleeman’s formalism of information transfer to 
measure the flow of information in a network. This formalism has been used to understand causal inference using 
time series data in large-scale  networks38 and for identifying sources of instability in network power  systems39.

To understand the effects of topological changes on the information transfer, we analyze the structural set 
properties of the information transfer function. Our information transfer function is also closely related to the 
mutual  information40, defined as the amount of information obtained about one random variable by observing 
the second random variable. Solving the maximization of mutual information under a constraint on the mar-
ginal distribution has been proven to be NP-Hard41’42. Maximizing information transfer under edge constraints 
is a variant of such problems, and we propose algorithms with provable suboptimality bounds for solving such 
problems. We split the objective function in our maximization problem into two parts: a first term capturing 
the network topology and a second term capturing the edge weights. Finding the optimal topology problem can 
be divided into three subproblems : (a) Design Problem: To design a near-optimal topology given the number 
of nodes and edges (b) Update Problem: To add a fixed number of edges in a given network and (c) Rewiring 
Problem: Reconfigure a fixed number of edges that maximizes information transfer. The weights of each edge 
are upper bounded by a positive weight, and a positive real number bounds the total edge weights. A few ques-
tions arise naturally, which we will answer in this report. What is the approximation guarantee when the Greedy 
Algorithm is used in solving the problems? Are there any algorithms that perform close to the Greedy Algorithm 
while reducing the computational cost? As a computationally cheaper alternative to the Greedy Algorithm, we 
propose a new algorithm, the ‘Sub-Graph Completion Algorithm’, that performs closely to the Greedy Algorithm 
while reducing the computational cost by three folds. We also propose a new centrality measure named ‘Informa-
tion Transfer Edge Centrality’ that quantifies the contributions of edges towards information transfers among 
nodes in the network. Finally, we apply our proposed algorithms and validate the approximation guarantees in 
various random networks. We also apply our algorithms to maximize information transfer between two excita-
tory neurons in a neurological network.

Results
Quantifying the information transfer. To compute the information transfer, we consider a directed 
network with linear time-invariant stochastic dynamics given by:

(1)dx(t) = Ax(t)dt + B1dw(t),
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where x(t) ∈ R
n are the nodal states of the network, w(t) ∈ R

m is a white noise with mean zero and unit covari-
ance and B1 denotes the input noise matrix. The choice for the model is motivated by the fact that we can reduce 
most real-world oscillatory dynamical networks into phase description models that can be approximated by 
linear stochastic  systems29. The model does not incorporate control nodes in the network system and the prob-
lem formulation does not require the controllability constraint to maximize the objective function. We assume 
that the initial states x(0) denoted as x0 are drawn from a normal Gaussian distribution ρ , with initial mean µ0 
and covariance �0 . Additionally, we assume that there are no self-loops in the considered networks. The trans-
pose of the state matrix, AT ∈ R

n×n describes the weighted adjacency matrix. The directed graph is denoted 
by G(V , EA,wA) , with vertices V = {1, 2, . . . n} , given by the n states, EA = {(i, j)|i, j ∈ V} is the edge set, and 
wA : EA → R+ is the weight function. The non-zero entries of B1 define how each of the nodes is affected by the 
white noise. For the linear time-invariant stochastic network model in (1) with n random variables and edges 
EA , information transfer from node j to i at time t for i, j ∈ {1, 2, 3 · · · n} , denoted as Tt

j→i is

where ρ�j  denotes the joint distribution of (x1, · · · xj−1, xj+1, · · · xn) at time t, ρi denotes the marginal distribution 
of state xi,ρj|i is the conditional probability distribution of xj given xi at time t and σ t

ij denotes the (i, j) element 
of �t . The derivations are given in Supplementary Notes 1 and 3. In this work, we consider the case where the 
network G admits cooperative (i.e., A(i, j) ≥ 0 ) interactions among the nodes as negative interactions are not 
physically meaningful in biological networks and other real-world networks. We shall drop the explicit depend-
ence of Tj→i on t, as maximizing Tj→i for one time instant maximizes it for all other time instances (Corollary 
1.1, Supplementary Note 5). Figure 1 shows our framework for maximizing information transfer from node 3 
to node 1 in a given network. In Supplementary note 2, we show the theoretical relationships between Liang-
Kleeman’s information transfer, Horowitz’s information, and Schreiber’s transfer entropy.

Structural analysis of information transfer function. For the directed network, G(V , EA,wA) associ-
ated with the system in (1), we study the structural properties of Tj→i . The domain of Tj→i(EA) is the subset of 
edges, EA ∈ E , where E is the set of all possible edges of |V| nodes and the range is a positive real number. It is 
easy to see from (2) that Tj→i(EA) is a function of two set functions σij(EA) and σii(EA) . To maximize Tj→i , we 
need to maximize σij and minimize σii concurrently. However, this approach is not feasible as both σij and σii are 
monotone non-decreasing functions of edges (Lemma 1, Supplementary Note 5). Alternatively, we find the set 
of edges, Eg ⊆ E , such that if any edge from Eg is added to EA , the marginal increase in σij is greater than the 
marginal increase in σii . We can formally define the set Eg as

(2)Tt
j→i(EA) = −E

[

1

ρi

∫

Rn−2

∂fi ρ�j

∂xi

]

= aij
σ t
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Figure 1.  Rewiring network topologies to maximize information transfer from node 3 to node 1. The top figure 
shows a network of 6 nodes and 9 edges, with zero initial mean, initial covariance, �0 = I6 , In is an identity 
matrix of order n, and B1 = 0.1I6 . The matrix heat map corresponds to the various information transfers among 
the nodes at t = 10 . The bottom figures show the network topologies which maximize the information transfer 
using the update and the rewiring techniques.
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Thus, it is easy to see from (3) that Tj→i is a monotone increasing function of the edges in the set Eg . To find the 
elements of Eg , we recall the definition of “communicability”43 from graph theory. Communicability from node 
i to node j in G(V , E) , i, j ∈ V , denoted as cij is defined as the total number of walks of all lengths from node i 
to j, weighting walks of length k by a factor 1k! . It quantifies the ability to exchange messages between two nodes 
and is given by

where A0,1 is the structural interconnection matrix of G . A walk of length k is a sequence of nodes 
n1, n2, · · · nk , nk+1 such that for all 1 ≤ l ≤ k , (il , il + 1) ∈ E . The relationship between σij and cij is given by 
(Theorem 1, Supplementary Note 5) σij ≈

∑n
k=1 ckickj , σii ≈

∑n
k=1 c

2
ki . Thus, a comparison between (4) and σij 

reveals that σij increases for every incoming path of any length to node j, with higher contributions from shorter 
paths to node j. Similarly, σii increases quadratically with incoming paths to node i, with the highest contributions 
from shortest (direct) paths to node i. Therefore, if we fix the in-degree of node i to 1 with the only edge to node 
i from node j, then any directed paths to node i formed by the remaining edges pass through node j. As a result, 
node j has shorter directed paths as compared to node i, and by definition of communicability, σij and σii satisfies 
the inequality condition in (3). Consequently, if we assume there are no incoming edges to node i except from 
node j, then Tj→i is a monotone non-decreasing function of edges (Theorem 1, Supplementary Note 5). Now, 
we consider the case when a given network has direct edges to node i from nodes other than node j. In this case, 
we avoid adding edges that form directed paths to node i but not passing through node j for reasons explained 
earlier. These edges significantly increase σii while their contribution towards σij is minimal. Supplementary 
Fig. 3 shows the structure of the set Eg in the adjacency matrix. The results in this section reveal the relationship 
between the network structure and the functional pattern, defined by the information transfer function. In the 
next section, we formally define our problem definitions and propose algorithms to solve the maximization 
problem. We define the set of possible edges that can be added as the “Ground Set” and is given by Eg.

Finding the optimal topology. We now propose algorithms for solving our optimization problems, 
namely the design, update, and rewiring problems. The update problem can be considered as a sub-class of 
design problem since we are adding k edges to existing network topology.

Problem 1: design problem. The design problem is to construct a connected network topology with n nodes and 
k edges that maximize the information transfer from a predefined node j to another predefined node i, where 
j, i ∈ {1, 2, . . . n}. The total edge weight is bounded by wmax ∈ R

+ . Additionally, the weights of each link, wi 
are upper bounded by wub . Our first objective is to find the topology that maximizes Tj→i by adding minimum 
edges that ensure the network is at least weakly connected. This topology is a tree network with n− 2 edges into 
j from the remaining nodes and an edge from node j to i. We call this the base topology and denote the set of 
edges by Eb . The design problem now is to add k − n+ 1 edges from the ground set Eg to the base topology, that 
maximizes Tj→i . We then find the optimal edge weights for every new edge. The problem can be formulated as

Problem 2: rewiring problem. Given a weighted network GA(V , EA,wA) , the problem is to maximize the infor-
mation transfer between two given nodes by reconfiguring at most k existing edges. The modified network is 
given by GA ∪ GδA = (V , EA ∪ EδA,wA + wδA) , where GδA denotes the modifications on the existing net-
work. We require that the total weights of the modified edges be bounded by wmax and each of the individual 
edge-weights wi

δA be bounded by wub . The rewiring problem can be formulated as

Below, we propose algorithms that solve Problems 1 and 2. First, we propose the algorithms for adding edges that 
maximize Tj→i in Problem 1. Next, to solve Problem 2, we propose an algorithm that removes edges with minimal 
contribution to the information transfer function. We then use the algorithms for Problem 1 to add new edges.

Algorithms for Network Design (Problem 1): We propose the Subgraph Completion Algorithm. This technique 
relies on the communicability centrality measure. From the definition of communicability in (4), shorter paths to 

(3)Eg = {x|σij(EA ∪ x)− σij(EA) > σii(EA ∪ x)− σii(EA); x ∈ E}

(4)cij = [e(A0,1)]ij = A0,1(i, j)+
(A0,1)

2

2!
(i, j)+ · · ·

(5)

maximize
S⊆Eg

Tj→i(S)

subject to |S| ≤ k,

0 ≤ wi ≤ wub,
k

∑

i=1

wi ≤ wmax , where |.| denotes the cardinality of a set.

(6)

maximize
EδA⊆E

Tj→i(EA + EδA)

subject to |EδA| ≤ k,

0 ≤ wi
δA ≤ wub,

k
∑

i=1

wi
δA ≤ wmax .
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node j contribute more to the communicability function. To increase the connectivity with shorter paths to node 
j, we form complete subgraphs between 2 nodes, with j as one of the two nodes, for all the possible combinations 
excluding node i. We then form complete subgraphs for all the combinations of 3, 4, ..(n− 1) nodes, with j as one 
of the nodes. If further |S| < k , we arbitrarily add outgoing edges from node i to the rest of the nodes. We call 
this “Subgraph Completion Algorithm”, which is given in Algorithm 1 (Algorithms Section) and illustrated in 
Supplementary Fig. 4. We also use a Greedy Algorithm that computes the contribution of each edge towards Tj→i 
and selects the best edge whose contribution is the highest. The iteration continues until the added number of 
edges equals k (Supplementary note 5). Other commonly used algorithms include modular and complementary 
modular addition techniques (Methods-Algorithms).

Algorithms for rewiring edges (Problem 2): To maximize Tj→i for a given weighted network GA(V , EA,wA) , 
associated with the system (1) by rewiring the topology, we remove the existing incoming edges to node i except 
from node j (Theorem 1, Supplementary Note 5). Let Ei denote this set of edges. If |Ei| ≥ k , we simply remove any 
k edges from Ei . Else, if |Ei| ≤ k , we look for other k − |Ei| edges to be removed. Towards this end, we introduce 
novel centrality measures that quantify (a) the causal inference of a node to the rest of the network (node-to-
network influence) and (b) the effects (in terms of information transfer) received by a node from the network 
(network to node influence). Finally, we derive an Information Transfer Edge Centrality (ITEC) measure that 
quantifies the contributions of edges towards information transfers among nodes in the network. To define the 
ITEC, we first define the cause and the effect node centralities below.

Cause centrality in complex network (node to network influence): Cause centrality, denoted by Tj , quantifies 
the contribution of information/causal inferences by a node across the network. In other words, it quantifies 
the ability of a node j to transfer information across the network. For the system in (1) with adjacency matrix 
AT ∈ R

n×n , the cause centrality of a node j ∈ {1, 2 · · · n} is given by

Effect centrality in a complex network (network to node influence): Effect centrality of a node j, Rj is defined 
as the amount of information received by a node j from all other nodes in the network. It measures the ability 
of nodes in a network to receive more “effects” or gather more information along the directed paths across the 
network. For the system in (1) with adjacency matrix AT ∈ R

n×n , the effect centrality of a node j ∈ {1, 2 · · · n} 
is given by

Information Transfer Edge Centrality: We combine the cause and effect centralities to derive a novel edge 
centrality measure based on information transfer. Intuitively, the contribution of an edge toward the infor-
mation transfers across the network is related to the nodes it connects. If an edge connects a node with high 
cause centrality to a node with high effect centrality, then the edge has more influence on the information 
transfers across the network. Thus, the information transfer edge centrality of an edge (i, j), denoted as ecij is 
ecij = Ti ∗Rj , i, j ∈ {1, 2 · · · n}.

To remove k − |Ei| edges from the given network topology, we use the rankings provided by various edge 
centrality measures and remove the lowest rank k edges. We denote this set of edges to be removed by Er . We 
then use the Greedy Algorithm (Algorithm in Supplementary Note 5) or Subgraph Completion Algorithm 
(Algorithm 1, Methods) to add k new edges.

Optimal assignment of edge weights. Let S∗ be the set of edges in the optimal topology which maxi-
mizes Tj→i with |S∗| ≤ k . We show that the optimal edge weights to be assigned lie on the boundary of the fea-
sible weight set (Proposition 1 in Supplementary Note 5). Therefore, given the cardinality constraint k, optimal 
edge set S∗ , wmax and wub , compute Kub = ⌊wmax

wub
⌋ and Kubl = wmax − Kubwub . Assign wub to the first Kub ele-

ments in S∗ . Assign Kubl to the next element in S∗ and 0 to the remaining edges.

Approximation guarantee. Due to the NP-Hardness of our optimization problems, the solutions given by 
the algorithms are not guaranteed to be optimal. Finding an optimal solution requires the brute force method of 
finding all the k combinations of edges in the network and computing the information transfer. This method is 
intractable for moderate to large networks. We look at the structural set properties (submodular and supermod-
ular) of our information transfer function to find an approximation guarantee of using the Greedy Algorithm 
in solving optimization problems. A set function, f : 2E → R is called submodular if for all P ⊆ Q ⊆ E and 
s ∈ E\Q , it holds that f (P ∪ {s})− f (P) ≥ f (Q ∪ {s})− f (Q) . If −f  is a sub-modular function, then f is called 
a super-modular function. Theorem  2 (Supplementary note 6) shows that the information transfer function 
is neither submodular nor supermodular. Therefore, the standard approximation  guarantee44 provided by the 
Greedy Algorithm does not hold. Some recent works on optimizing set functions that are neither submodular 
nor supermodular show that the Greedy Algorithm can still provide performance guarantees. For example, 
 in45, the authors employ the submodularity ratio, γ and the curvature, α to define an approximation guarantee 
of greater than 1

α
(1− e−αγ )f ∗ where f ∗ denotes the optimal value. For a given non-negative set function f, the 

(7)
Tj = Tj→1 + Tj→2 + · · · + Tj→n = A1j

σ1j

σ11
+ A2j

σ2j

σ22
+ · · · + Anj

σnj

σnn

= A(:, j)T ∗M(:, j); where M(i, j) =
�(i, j)

�(i, i)
. i, j ∈ {1, 2 · · · n}.

(8)Rj = Aj1
σj1

σjj
+ Aj2

σj2

σjj
+ · · · + Ajn

σjn

σjj
= A(j, :) ∗M(j, :)T .
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submodularity ratio is the largest γ ∈ R
+ such that 

∑

ω∈�\S �ω(S) ≥ γ��(S), ∀�, S ⊆ E . The curvature is the 
smallest α ∈ R

+ such that �j(S\j ∪�) ≥ (1− α)�j(S\j), ∀�, S ⊆ E , ∀j ∈ S\�.
To justify the use of the Greedy Algorithm for solving the problems, we derive a positive lowerbound on γ 

and an upperbound on α for our set function in the network topology defined by A0,1 . In the ground set Eg , the 
bounds on γ and α are given by (Theorem 3, Supplementary note 5)

Examples. Design Problem: We first consider a small network of 6 nodes and analyze the performance of our 
heuristic algorithms for adding 11–17 edges that maximize T3→1 . We take the edge weights to be 1. To compare 
the results of our algorithms with the optimal value, we employ a brute force technique to find the optimal T3→1 
with 11–17 edges. Since the method requires an exhaustive search over different combinations, we restrict our 
analyses to 6 nodes. The performance comparison is shown in Fig. 2a. In all the figures, we denote the Subgraph 
Completion Algorithm by SC, the Greedy Algorithm by Greedy, Modular Addition, and Complementary Modu-
lar Addition by MA and CMA, respectively. We see that the Greedy Algorithm performs better than the rest, and 
the SC Algorithm performs closely to the Greedy Algorithm. Now, we look at the performance of the proposed 
algorithms at each stage of edge addition. Let the number of nodes be n = 15 , and the objective is to maximize 
T3→1 . We take the input noise matrix B = 0.1I15 and the initial covariance �0 = 5I15 . After fixing the in-degree 
of node 1 and constructing the base topology, we have n2 − 2(n+ 1) = 197 possible edges. Out of these, 14 edges 
are self-loops. So, we need to select k out of 183 edges that maximize T3→1 . The values of T3→1 obtained for dif-
ferent values of k using the algorithms are shown in Fig. 2b. The constraint on the total weight is removed, and 
all the weights are assigned wub = 1.

Update Problem: In the update problem, we are a given network topology, and the goal is to add k edges that 
maximize Tj→i . To compare the performance, we generate 100 randomly connected networks of 6 nodes and 10 
edges. We use the above algorithms to add 5 new edges with wmax = 4.2 and wub = 1 such that T5→2 is maxi-
mized. Because of the complexity in finding the optimum value for T5→2 (using the Brute force approach for 
comparison purposes) for large networks, we limit our analysis to a small network of 6 nodes. We take �0 = 5I6 
and B = 0.1I6 . The performance comparison is shown in Fig. 2c.

Computational Complexities:The Greedy Algorithm is computationally expensive, bearing the worst-case 
computational complexity of O(n4β1 + n4) , where β1 is the cost of computing the information transfer function 
and n is the number of edges to be added. The performance of the Subgraph Completion Algorithm is very close 
to the Greedy Algorithm with a significantly less computational complexity of O(n4) . A detailed comparison 
of the performances of these algorithms in terms of computational complexities and the maximization of the 
information transfers is given in Supplementary Note 6. An illustration of different topologies generated by the 
proposed algorithms for a network size of 20 nodes is also given.

Approximation Guarantee: From the definitions of submodularity ratio and curvature (Definitions, Supple-
mentary Note 5), we compute γ and α among all the subsets of Eg and select the largest and the smallest values 
respectively. We randomly generate 100 different subsets of S for a network of 50 nodes and determine the larg-
est and smallest values of γ and α . The largest value of γ has an average value of 0.9, signifying the closeness to 
submodularity empirically. The value of α ranges between 0 and 0.4, with an average value of 0.15. Thus using 
1
α
(1− e−αγ )f ∗ , the Greedy Algorithm achieves over 80% , and it outperforms the worst-case approximation of 

60% for submodular functions.

(9)γ ≥
Tji(ωij)

Tji(Eg )− Tji(ωij)
, α ≤ 1−

Tji(ωij)

Tji(Eg )− Tji(ωij)
, where ωij = {(j, i)},Tji = Tj→i .

Figure 2.  (a) Performance of different algorithms with respect to the optimum value for n = 6 , the input 
noise matrix B = 0.1I6 and the initial covariance �0 = 5I6 . The evolution of T3→i is shown in Supplementary 
Fig. 5. (b) Performance of different algorithms for maximizing T3→1 (c) Performances of different algorithms 
for maximizing T5→2 for 100 random networks. We observe that out of the 100 random networks, the Greedy 
Algorithm achieves 90–100% of the optimum value for 94 networks, and for the rest of 6 networks, the greedy 
algorithm achieves 80–90% of the optimum value.
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Applications to neurological networks
Information flows in Neurological Networks: We study the various information transfers among the excitatory 
populations of neurological networks. The dynamical interactions among the excitatory and inhibitory popula-
tions in a synaptically coupled neuronal network can be approximated by the Wilson–Cowan model of interacting 
oscillators (Supplementary note 8). In neurological networks, a single neuron fires repetitively when injected with 
a constant current. Therefore, it is reasonable to regard a simulated neuron as a limit cycle, at least for a certain 
small duration over a period of several spikes. We, therefore, assume that each oscillator i has an asymptotically 
stable periodic solution with frequency ωi . The couplings among the neurons are often only through weak input 
currents to the membrane potential of the cell. Thus, we assume weak couplings among the oscillators to prevent 
“Oscillator death”46. Moreover, when the couplings are weak, we can reduce the system of nonlinear equations to 
a set of equations on a torus using invariant manifold  theory46. We then use averaging theory to obtain equations 
that depend only on the phase differences as (Supplementary Note 7)

where γi,j denotes the coupling function between nodes i and j and the last term models external stochastic noise 
process, ξi with covariance ςi , wk is a white noise Gaussian process with zero mean and unit covariance (Sup-
plementary note 7). Because of the white noise process, strong deviations may occur that switches the dynam-
ics to other stable states. When the noise levels are reduced, the expected time for such switching of the stable 
phase-locked states becomes arbitrarily large. In our work, we focus on finding the information transfer from a 
single dynamical state to another dynamical state. Therefore, we assume that the noise levels are small enough 
so that no such switching occurs during the relevant time intervals where the dynamical states communicate. 
The coupling function is computed by finding the response of the phase difference due to electrical synapse via 
gap junction potentials. A sensitivity analysis of the coupling function to noise levels, types of noise, and local 
noise is given in Supplementary Note 9. Information transfer between any two neurons in the network can be 
defined as an excitatory neuron’s influence on the excitation level of the second neuron and depends on the level 
of phase synchronization over the periodic interval. A popular and widely used theory in computing information 
transfers among neurons is that effective transmission of information between two oscillating neurons occurs 
when the pre-synaptic input of the sending neuron reaches the post-synaptic neuron at its maximum excitability 
phase, thereby amplifying the firing rate of the post-synaptic group. To compute the information transfers, we 
decompose the dynamics in (10) into a deterministic component and a fluctuating stochastic component. We 
estimate the stochastic component using linear approximations yielding a linear continuous stochastic model of 
the form in (1) (Methods and Supplementary Note 8). We show that changes in the network topology alter the 
information transfers among neurons and that by designing the correct topology, we can control the informa-
tion transfers to modify undesired excitation levels or achieve desired patterns of information transfers. Change 
in network topology can be due to endogenous changes promoting physiological or pathological conditions or 
exogenous interventions. We assume the initial state covariance of the fluctuating components is 0.1I8 , and the 
input noise matrix is taken as 0.001I8 . We first show in Fig. 3a–d that a change in the interactions among the 
neurons induces a change in the stable phase-locked states and eventually in the coupling strength and informa-
tion transfers. Next, we show in Fig. 3h–n how we can use our proposed algorithms in the previous section to 
maximize T8→7 for the network shown in Fig. 3e. Figure 3f illustrates the oscillatory dynamics of the neurons 
and in Figure 3g, we demonstrate the variations of the phase difference around a stable point.

Update Problem: We consider the given neural network in Fig. 3e for both the update and rewiring problems. 
We take the initial state covariance for the states φi as 0.1I8 and the input noise matrix as 0.001I8 . The adjacency 
matrix has entries given by Gi,k . Note that Gi,j depends on the phase difference and the phase response curve. 
Also, Gi,j = 0 if there is no edge from i to j (see Methods). The update problem is to add 5 edges such that T8→7 
is maximized. The upper bounds on the weights are given by wmax = 0.07,wub = 0.015 . Note that the coupling 
matrix given in Fig. 3c should not be confused with the weights wmax and wub . The edge weights are denoted by 
the black (0.1) and purple arrows (0.015) in the network in Fig. 3e.

Rewiring Problem: We continue with the example of the neural network in Fig. 3e for the rewiring problem 
to maximize T8→7 . We restrict the number of edges that can be reconfigured to 7. Following Algorithm 2, we 
first remove the three edges sinking in node 7 (excluding the edge from node 8). The remaining 4 edges to be 
removed are found from the lowest rank edge rankings based on the ITEC. The bounds on the weight are given 
by wmax = 0.1 and wub = 0.015.

These results validate the postulation that the functional information transfers among the neurons depend on 
the underlying network topology, which may occasionally change due to physiological or pathological conditions.

Discussion
This report provides a generic mechanism to quantify the information transfers among nodes in complex network 
systems. For a network system with linear stochastic dynamics, we define information transfer as the difference 
between the marginal entropies. For weakly coupled oscillators with stochastic fluctuations, we show that the 
information transfer is a function of the state covariance and the coupling strengths among the oscillators. We 
show that the formulation is consistent with Schreiber’s transfer entropy and Horowitz’s thermodynamical infor-
mation flow (Supplementary node 3). We provide supporting examples that indicate the change in information 
transfer patterns because of network topology changes. For networks of weakly coupled oscillators, the theory is 
based on a linear approximation of the phase dynamics around the stable phase-locked states. The method thus 
highlights the significance of phase synchronizations in the study of weakly coupled oscillators.

(10)dφi =

(

ωi +
∑

j

γij(φi − φj)

)

dt +
∑

ςikdwk
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The structural analysis of the information transfer function reveals that the information transfer is a mono-
tone-increasing function under specific conditions. The NP − hardness of the function forces us to define an 
approximation guarantee when using the Greedy algorithm. Also, the information transfer function is proven 
to be neither a submodular nor a supermodular function. These conditions place the context of our study out-
side the standard submodular or supermodular functions, preventing the use of the standard approximation 
guarantee of (1− 1/e) ≈ 63.21% (of the optimal value for submodular functions). However, these conditions 
are favourable because the complexities are reduced by minimizing the search space to only those edges with 
positive contributions. Also, we show that the information transfer function enjoys an approximation guarantee 
of more than 80% when we use the Greedy Algorithm. For assigning the edge weights, we proved that optimal 
edge weights to be assigned to the set of new edges lie on the boundary of the feasible weight set.

2 10.1

2 10.1

(a) (b) (c) (d)

1
2

34
5

6

8
7

(e) (f) (g) (h)

(i) (j) (k) (l) (m) (n)

Figure 3.  (a) The Wilson–Cowan neuronal oscillator consisting of two excitatory (triangle) and inhibitory 
(circle) neurons with average membrane potentials of v and u for two network topologies. The edge weight 
is 0.1. (b) The coupling function curves for both cases in figure (a). The dark red and blue curves show the 
coupling function and its antisymmetric curve for the bottom figure in (a). The other two dashed curves 
correspond to the coupling for the topology in the top Figure (a). (c) The transpose of coupling matrices found 
by linearizing the coupling functions shown in figure (b) around the zero crossings of γ̄ in both cases. The 
(2, 1) element in the upper matrix is 0 as the corresponding network has no connection from 1 to 2 (d) Tj→i 
curves for both the topologies in Figure (a). The red curve shows T2→1 for the upper topology. T1→2 is 0 for this 
topology as there is no connection from node 1 to 2. The blue curve and the dotted red curve show T1→2 and 
T2→1 for the topology in bottom figure (a). As the coupling strengths are similar, the two information transfer 
curves overlap (e) Excitatory and inhibitory network of 8 nodes with couplings 0.015 and 0.1 (f) Oscillatory 
behaviours of the neurons (g) The phase differences fluctuate around a stable phase-locked state (darker lines) 
(h) Various information transfers among the excitatory neurons. (i) Given binary interconnection matrix of 
8 nodes (j) Interconnection matrix using the update technique of adding 5 new edges with Greedy Algorithm 
(k) Interconnection matrix using the rewiring technique of 7 nodes using the Greedy Algorithm and ITEC 
centrality measure, (l) Information transfers among various excitatory neurons after updating with 5 edges (m) 
Information transfers among various excitatory neurons after rewiring using 7 edges, (n) Evolution of T8→7 after 
the update and the rewiring process.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5588  | https://doi.org/10.1038/s41598-023-32762-7

www.nature.com/scientificreports/

Information transfer, in the context of neurological networks, is defined by the amount of influence of one 
node on the excitation levels of a neighbouring node and depends on the level of phase synchronization. We 
computed the various information transfers among the neurons in a Wilson–Cowan model of 8 neurons. Finally, 
using the proposed algorithms, we maximized information transfer between two prespecified excitatory neu-
rons. While the theory in this report focuses on maximizing information transfers by finding the near-optimal 
topology, there are other possible scopes that we can explore to control information transfer. For example, if the 
system in (1) is controllable with an input matrix defining the controllable nodes in the network, then we can 
study the variations in information transfer due to varying inputs. Hybrid control of the topology (passive) and 
external control (active) may provide more flexibility in controlling information transfer.

Methods
Algorithms. 

Modular Addition Technique: 47 In this approach, we compute Tj→i for each potential edge in the network. 
The edges are then sorted in decreasing order of their contribution to Tj→i . The first k edges are then used for 
maximizing Tj→i.

Complementary Modular Addition Technique:47 Given the ground set, Eg  , we compute 
f (Eg )− f (Eg )\i, ∀i ∈ Eg where f is Tj→i . The edges are then sorted in descending order and the first k links are 
added to the base topology.

Reducing the phase dynamics into linear stochastic dynamics. We assume that in the unperturbed 
system ( ςik = 0 ), the phase dynamics in (10) has a stable phase-locked state with a constant phase difference, 
�φij = φ

ref
i − φ

ref
j  and a collective oscillation frequency, � , that is for all i ∈ {1, · · ·N} , � = ωi +

∑

j γij(�φi,j) . 
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We decompose the phase dynamics into a deterministic reference part, φref
i  , and a fluctuating part, φfluc

i  . 
The solution to the deterministic dynamics is given by φref

i (t) = �t +�φ
ref
i,1  . Introducing new coordinates, 

ϕi = φi − φ
ref
i  , (10) can be written as dϕ = f (ϕ)dt + ςdw , where fi(ς) = ωi +

∑

j γij(ςi − ςj +�φ
ref
i,j )−� . 

We assume that the noise levels, ςik are small and linearizing around the stable phase-locked states, we get a 
linear continuous stochastic model as

Data availibility
The codes/data used during the current study are available from the corresponding author upon reasonable 
request.
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