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Dynamical system 
of a time‑delayed of rigid rocking 
rod: analytical approximate 
solution
Galal M. Moatimid 1 & T. S. Amer 2*

The stability analysis of a rocking rigid rod is investigated in this paper using a time‑delayed square 
position and velocity. The time delay is an additional safety against the nonlinearly vibrating system 
under consideration. Because time‑delayed technologies have lately been the core of several 
investigations, the subject of this inquiry is extremely relevant. The Homotopy perturbation method 
(HPM) is modified to produce a more precise approximate outcome. Therefore, the novelty of the 
exciting paper arises from the coupling of the time delay and its correlation with the modified HPM. A 
comparison with the fourth‑order Runge–Kutta (RK4) technique is employed to evaluate the precision 
between the analytical as well as the numerical solutions. The study allows for a comprehensive 
examination of the recognition of the outcome of the realistic approximation analytical methodology. 
For different amounts of the physical frequency and time delay factors, the time histories of the found 
solutions are depicted in various plots. These graphs are discussed in the context of the shown curves 
according to the relevant parameter values. The organized nonlinear prototype approach is examined 
by the multiple‑time scale method up to the first approximation. The obtained results have periodic 
behavior and a stable manner. The current study makes it possible to carefully examine the findings 
arrived at by employing the analytical technique of practicable estimation. Additionally, the time 
delay performs as extra protection as opposed to the system potential for nonlinear oscillation.

List of symbols
θ  Angular movement at any time
t   Proper duration
.   Derivative with respect to time is symbolized by a point
ω  Regular frequency of the structure
τ  Time-decay control
a  Dimensional length of the rocking rod
g  Gravitational acceleration
r  Radius of the circular surface
M  Mass of the uniform rigid rod
C.M.  Center of mass of the consistently inflexible rod
L  Non-dimensional length of the rocking rod
δ, ρ  Slight synthetic constraints

The computational asymptotic methodologies of nonlinear applications seemed to be of great significance to 
engineers and scientists as nonlinear science advances so quickly. However, we can easily use simulation studies 
to find solutions of linear systems. It is still extremely challenging to solve nonlinear problems theoretically. One 
of the perfect examples of a Hamilton system was a Duffing oscillator. Simple generalizations of these oscillators, 
including cubic-quintic Duffing oscillators, haven’t been thoroughly  researched1–4. Conclusions for the impacts 
of the base stiffness, position, and amount of combined mass on the change of the vibration cycle graphically in 
non-dimensional presentations were  demonstrated1. A brand-new factor iteration method to analyze the Duffing 
equation as having powerful and high-order nonlinearity was  suggested2. It was demonstrated that the nonlinear 
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frequency gives rise to accurate outcomes, in contrast to the linearized approach, parametrized perturbation pro-
cedure, and variational repetition procedure suggested by Prof. He. In order to arrive at analytical approximations 
and numerical explanations for the cubic-quintic Duffing-van der Pol oscillator, a number of methodologies, 
considering the prospective purposes in manufacturing, integrated circuit technology, physical processes, and 
natural science was  employed3. The parametric Duffing oscillator stability evaluation in light of its numerous 
uses in science and engineering was  examined4. Both resonance and non-resonance situations were examined. 
The perturbed solutions and the stability analysis were graphically verified by numerical approximations. Using 
the combination method, a uniform explanation of the quintic Duffing equation was  reported5. This method 
involved developing the restoring force in Chebyshev’s nonlinear differential equation and approximating it with a 
cubic Duffing oscillator where the constants for the linear and cubic components change on the primary amount.

In real life, there were occurrences where objects were not steadily attached to their framework but instead 
let rock or drop on the supporting material. These include unsafe supplies in transportation, petroleum cracking 
towers, air distillation columns, liquid gas tanks, and nuclear fuel cells in reactors. The most prominent example 
of how structures behave when they rock was certainly when they shake during earthquakes. Despite their famili-
arity and apparent simplicity, the rocking and overturning of stiff bodies in response to foundation stimulation 
pose difficult problems. The main motivation for understanding the issue has been the possible use of the rock-
ing problem to prevent machinery, furniture, and structures from toppling over and endangering people when 
subjected to shaking during an earthquake. Satisfactory results of the isolation system rocking were obtained in 
Refs.6,7. Ganji et al.8 developed a cubic-quintic Duffing oscillator approach to approximate the performance of an 
inflexible rod swaying on a circular surface with no sliding. Khah and  Ganji9 used the energy balancing approach 
to analyze the previous  problem8. The new methodology showed high effectiveness and convenience and lacked 
the necessity for linearization or tiny perturbation. Additionally, a uniformly rigid rocking rod was  analyzed10.

In industrial control mechanisms, time delay is common. It may become unstable or function poorly if there 
is a time delay, making it more difficult to accurately examine the system. In other words, time delays are a con-
stant feature of controlled system feedback and have a significant impact on their  dynamics11. For instance, even 
for very low time delays, a classical Duffing structure with delayed speed response displays an endless variety 
of regular movements; yet if the duration delay vanishes, the dynamics of this system are extremely straightfor-
ward. Delay feedback control, in contrast, has proven to be one of the most reliable and adaptable methods for 
controlling chaos in nonlinear dynamic  systems12. Over the past few decades, controlled mechanical systems 
with time delays have received a lot of attention. Additionally, researchers in various disciplines, including biol-
ogy, population dynamics, industrial machinery dynamics, and neural networks, have paid close attention to 
the dynamics of delay  prototypes13. Through the use of a Duffing equation with delayed speed response, Wang 
and  Hu14 presented research work on the viability of perturbation approaches as the multiple scales technique, 
and the Lindstedt–Poincaré methodology, to mention a few. Tunç15 provided the necessary conditions. Through 
building a Lyapunov function, a new finding was generated that incorporated and enhanced certain related results 
already found in the pertinent literature. An excited Van der Pol-Duffing oscillator nonlinearity was suppressed 
using time-delayed position and  velocity16. The time delay served as an additional safeguard compared to the 
nonlinearly vibrating system under consideration. Technologies with a temporal delay have recently been the 
aim of various investigations; therefore, the current study is particularly examined.

As is commonly held, the majority of practical and technical implementations demand nonlinear equa-
tions. Perhaps, functional, differential, integral, or integro-differential equations make up these equations. These 
equations are quite challenging to obtain an exact solution. Subsequently, it becomes fundamental to employ 
numerical solutions in different directions. Regardless of the analytical approach, numerical solutions are more 
informative during specific time intervals. Therefore, perturbation approaches have developed in a variety of 
ways, from the standard strained factor approach to methods including those that depend on so many time scales. 
He et al.17 utilized the Poincaré–Lindstedt technique to arrive at a roughly restricted solution for the hybrid 
structure. It was discovered that the approximate solution together with the RK4 were comparable. In reality, the 
presence of a little parameter in the scheme under study is required for all perturbation methods. Consequently, 
without this parameter, the problem is somewhat restricted. The Mathematician Chinese Prof.  He18 discovered 
a novel perturbation technique that was not dependent on such a little parameter. This method allows for the 
placement of a small artificial embedding parameter where δ ∈ [0, 1] . If, δ = 0 , then the zero-order differential 
equation needs to have an accurate solution.  Moatimid19 and 20 used an extended frequency concept combined 
with the HPM and Laplace transform to analyze a parameterized Duffing equation to arrive at a valid constricted 
formula of solution. There have been recent efforts that were connected to the current  manuscript21–23.

Given the implications of the above-mentioned features, and because of their extreme sensitivity to dynamic 
loading, differences in geometry, and dissipation difficulties, evaluating the rocking and overturning responses 
of rigid blocks to earthquakes is a challenge. This paper introduces the literature on traditional and cutting-edge 
rocking motion theories. This work has the goal of examining the motion behavior of rigid rocking rods with no 
slippage. The governing equation of motion (EOM) is regulated as an ordinary differential equation (ODE) con-
tract with classical mechanics. The current study uses a connection between the Laplace transform and homotopy 
perturbation methods to identify perturbed solutions. The association of the time delay and its relationship with 
the improved HPM is what gives the interesting paper its uniqueness. It is possible to perform stability analysis 
using a nonlinear frequency. The residual of the text is constructed as follows: Finding a rough solution for 
nonlinear oscillation with an extended frequency is the focus of “Modification of the HPM”. “Linearized Stabil-
ity” provides the linearized stability analysis. "Multiple-time scales method" describes the multiple-time scales 
technique. Furthermore, "Concluding remarks" presents additional understandings.
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Modification of the HPM
Returning to our previous  paper10, the EOM of the uniform rigid rocking rod has been derived and taken the 
following form:

where a list of all the variables used in Eq. (1) is provided at the beginning of the article. The drawing of the basic 
prototype is depicted in Fig. 1.

Equation (1) should just be expressed in a non-dimensional form for more simplicity. There are several ways 
to accomplish this, mostly depending on the properties of mass, length, and time that are selected. Consider 
that these characteristics are chosen as: M, r, and

√
r/g correspondingly. Additionally, the Taylor expansion is 

used to remove the existence of the restoring force. Subsequently, Eq. (1) will be transformed into the following 
simplified form:

As is well known, time-delayed control was suggested to manage the nonlinear vibrations. The loop delay can 
significantly contribute to both stabilizing/destabilizing the structure, as was earlier  shown23. It was compared 
to the previous results to show how well the applied time delay suppressed nonlinear oscillations of the structure. 
Nevertheless, when the ideal time delay was considered, the generated theoretical and computational inspec-
tions indicated that the nonlinear position and nonlinear velocity were the best at suppressing the vibration. 
Furthermore, Saeed et al.24 suggested a straightforward technique for designing the ideal loop delay amounts in a 
such way that enhances the system profile. Additionally, Saeed et al.25 looked at the effectiveness of time-delayed 
linear and nonlinear feedback controllers for position, speed, and acceleration. According to investigators, the 
time-delayed cubic acceleration control was the best at suppressing bifurcations and reducing vibration. There-
fore, in light of the aforementioned achievement, we lay prominence on the square time delay in the position 
and velocity of the existing model.

From now on, the EOM becomes:

It is preferable to picture the initial conditions as follows:

As clearly explained in our previous  studies19,20,26, the HPM can provide a wide range of approximation solu-
tions. One of these methods leads to a conventional solution that includes secular terms, and the cancellation 
of these secular terms provides a trivial solution that is not required. An alternative one produces a consistently 
satisfactory solution by using the expanded frequency conception; unfortunately, the obtained solution does not 
pass through the numerical solution. It is therefore required to modify Homotopy once again. Therefore, one is 
able to re-examine the fundamental Homotopy equation utilizing a recent development in place of the traditional 
extension to look into the consequences of the delay parameter which is superior at preventing bifurcations and 
decreasing vibration. Subsequently, we think that θ(t, ρ) can be expanded upon in light of our earlier  work16. 
The processes to get the needed solution are as follows:

The HPM is built generally on the fundamental Homotopy  formula16,26,27,28:

(1)Ma2

12
θ̈ +Mr2

(

θ2θ̈ + θ θ̇2
)

+Mrg cos θ = 0,

(2)θ̈ + ω2θ + ω2(θ2θ̈ + θ θ̇2)−
ω2

2
θ3 = 0.

(3)θ̈ + ω2θ + ω2
[θ2(t − τ)θ̈ + θ θ̇2(t − τ)] −

ω2

2
θ3 = 0.

(4)θ(0) = 0, θ̇ (0) = 1.

(5)θ̈ + ω2θ + ω2ρ

{

[θ2(t − τ)θ̈ + θ θ̇2(t − τ)] −
1

2
θ3
}

= 0, ρ ∈ [0, 1].

(6)θ(t, ρ) = e−ρτ t
[θ0(t)+ ρ θ1(t)+ ρ2θ2(t)+ . . .].

Figure 1.  Sketches the model under consideration.
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Applying the technique of the previously comprehended examination, the established natural frequency can 
be increased as shown  below19,20:

One insert Eqs. (6) and (7) into the Homotopy equation to create the solution of Eq. (3). Consequently, the 
precise analytic solution to the zero-order problem, which corresponds to the I.C, is given by

It is observed that the time delay of the zero-order solution is given as:

The Homotopy Eq. (5) first-order problem can be expressed as:

according to the I. C.:

Usually, the secular terms are dropped to create a phrase that is consistently acceptable. The coefficients of the 
circular functions sin σ t and cos σ t would never be taken into consideration for this purpose. So, one realizes

additionally with

Now, the first-order uniform formula is characterized as

Accordingly, the approximate uniform formula of the fundamental equation of movement described in Eq. (1) 
may be described as follows:

Consequently, the uniform estimated formula of Eq. (3) may be created as:

Actuality, the uniform estimated formula in Eq. (15) needs that the functions should be of true significance. 
For this objective, combining Eqs. (7), (12), and (13), it is observed that the distinguishing nonlinear frequency 
verifies a specific equation. To this approximation, the computation has demonstrated that the nonlinear fre-
quency validates:

Equation (16) represents the synthetic nonlinear characteristic frequency.
The approximated uniform solution, which is stated in Eq. (3), can be expressed as:

The above solution (17) has been drawn in Fig. 2 for various values of L and σ , where portions (a), (b), and 
(c) are graphed at  (L = 0.5, σ = 5.63, 9.76), (L = 0.7, σ = 4.01, 6.94), and (L = 1, σ = 2.78, 4.82), respectively. It 
should be noted that, in order to obtain a good precision, the Mathematica Software Version 12.0.0.0 will be used 
in the following numerical computations. It is noted that the plotted curves have uniform periodic forms, which 
assert that the obtained solution has a stable manner. Moreover, when L rises from 0.5 to 1 to the value 0.7 , the 
amplitudes of the represented waves increase while the oscillation number decrease. Moreover, when the value of 
σ increases (for the same value of L ), we can observe that the amplitude of the repeated waves decreases while the 
oscillation number increases. It is important to observe that the depicted curves line up with the mathematical 
formulas of Eq. (17). Curves of the phase plane diagrams in parts of Fig. 2 are drawn in the corresponding parts 
of Fig. 3 to assert the stability of the gained solution. These curves have the forms of closed curves and they are 
plotted in the plane θ θ̇ , where θ̇ represent the first derivative of the solution (17) with time. Therefore, one can 
say that these curves illustrate that the solution has a stable form.

It is suitable to evaluate this procedure with the numerical solution (NS), which can be obtained using the 
computational approach that is identified to RK4 to evaluate the practicality of the formerly expanded frequency 
implications. The requirements for implementation are listed below. Therefore, the analytical solution (AS) as 

(7)σ 2
= ω2

+

n
∑

i=1

ρiσi .

(8)θ0(t) =
1

σ
sin σ t.

(9)θ0(t − τ) =
1

σ
sin σ(t − τ).

(10)θ̈1 + σ 2θ1 =
1

2
ω2θ30 − ω2

[θ20 (t − τ)θ̈ + θ θ̇20 (t − τ)],

(11)θ1(0) = 0, θ̇1(0) = 0.

(12)3+ 8σ + 4σ 2(cos2 στ − sin2 στ) = 0,

(13)2τ − σ cos στ sin στ = 0.

(14)θ1(t) =
1

64σ 3
{sin 3σ t−3 sin σ t+4σ 2

[(−3 sin σ t+sin 2σ t+sin 3σ t) cos 2στ−sin 2στ cos 3στ ]}.

(15)θ(t) = lim
ρ→1

e−δρt/2
[θ0(t)+ ρ θ1(t)+ · · · ].

(16)48σ 4
+ 16(3− 8ω2

+ 16τ 2)σ 2
+ (3− 8ω2)2 = 0.

(17)θ = e−τ t

{

1

σ
sin σ +

1

16σ
[(−3 sin σ t + sin 2σ t + sin 3σ t) cos 2στ − sin 2στ cos 3στ ]

}

.
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given by Eq. (17) is drawn in blue. Additionally, the RK4 of the problem under consideration, as provided by 
Eq. (3), is highlighted in red. The subsequent graph is a graph of a structure receiving the specifics:

The computations demonstrated that the synthetic frequency has an amount σ = 2.78388 and other roots 
(two are complex conjugates and the third is negative). It is clear from Fig. 4 how close the two solutions are to 
each other, which in turn highlights the accuracy of the perturbation method used. This reveals that expanded 
frequency, as an estimated formula, is a favorable and effective perturbation procedure.

Equation (16) of the fourth degree of σ has been plotted versus ω , as seen in Fig. 5, at various values of the 
time delay parameter τ(= 0.001, 0.01, 0.1) . It deserves to be highlighted that the calculated curves in portions (a), 
(b), and (c) have fork forms, where they are symmetric about the ω-axis. According to the presented results, the 
amplitude between the two branches of the fork decreases with the increase of τ values, where we find that the 
distance between the original point of σ and the ω axes, and the initial points of the drawn fork curve diverge. 
The reason goes back to the four roots of Eq. (16), in which two of them are drawn in the first quartile, while the 
others are graphed in the fourth quartile. Consequently, there is symmetry in the curves drawn around the ω-axis.

Linearized stability
The purpose here is to depict the stability analysis as well as the phase portrait of the EOM in the absence of the 
time delay as given in Eq. (2). For this objective, the ODE can be converted into a structure of two first-order ones. 
This can be accomplished through the transformation θ̇ = ϕ . Therefore, the resulting system may be displayed as:

where

The equilibrium points happen at the points (θ0, ϕ0) , where

It follows that the fixed points are given at (0, 0) and (±
√
2, 0).

In considering the Taylor series, the functions g(θ , ϕ) and h(θ , ϕ) will be expanded around the fixed point. 
Taking merely the linear terms, one reaches the Jacobian formula:

L = 1.0, and τ = 0.001.

(18)θ̇ = g(θ , ϕ), ϕ̇ = h(θ , ϕ),

(19)g(θ , ϕ) = ϕ, h(θ , ϕ) = −
θ

2(1+ ω2θ2)
(2− θ2 + 2ϕ2)ω2

.

(20)
ϕ0 = 0,

2θ0 − θ30 + 2θ0ϕ
2
0 = 0.

Figure 2.  Represents the time dependent of the solution θ(t) at: (a) L = 0.5, σ(= 5.63, 9.76) , (b) 
L = 0.7, σ(= 4.01, 6.94) , and (c) L = 1, σ(= 2.78, 4.82).
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As previously  shown3, the eigenvalues � for this structure is defined as follows:

(21)J =

(

0 1
−2(1+ϕ20 )+θ20 [3+(2+θ20+2ϕ20 )]

2(1+ω2θ20 )
2 ω2 −

2ω2θ0ϕ0
(1+ω2θ20 )

)

.

Figure 3.  Portrays the corresponding curves of part of Fig. 2 in the plane θ θ̇ at: (a) L = 0.5, σ(= 5.63, 9.76) , (b) 
L = 0.7, σ(= 4.01, 6.94) , and (c) L = 1, σ(= 2.78, 4.82).

Figure 4.  Perturbed and numerical solutions of Eq. (27).
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The equilibrium point is traditionally considered to be stable if all eigenvalues, which are computed at the 
equilibrium points, have negative real portions. As previously  shown3, the final classification can be used for 
this methodology, as seen in Table 1.

Multiple‑time scales method
This method is used to calculate the stability behavior of Eq. (5) for various times  scales29. One might also think 
of the explanatory variables as a function of t  given the HPM. As a result, rather than treating the enlargement 
a consequence of only one independent variable, or scale, it is handled as a function of several time scales. The 
perturbation theory actually views the multiple-time scales procedure a more generic approach.

For this objective, one starts by presenting three different independently variable quantities corresponding to:

Consequently, one gets:

and

where Dn ≡ ∂
∂Tn

.

(22)

∣

∣

∣

∣

∣

−� 1
−2(1+ϕ20 )+θ20 [3+(2+θ20+2ϕ20 )]

2(1+ω2θ20 )
2 ω2 −

2ω2θ0ϕ0
(1+ω2θ20 )

−�

∣

∣

∣

∣

∣

= 0.

(23)Tn = ρnt, n = 0, 1, . . .

(24)
d

dt
≡

dT0

dt

∂

∂T0
+

dT1

dt

∂

∂T1
+ · · · = D0 + ρD1 + ρ2D2 + · · · ,

(25)d2

dt2
≡ D2

0 + 2ρD0D1 + ρ2(D2
1 + 2D0D2)+ · · · ,

Figure 5.  Reveals the variation of ω with σ according to different values of time delay: (a) τ = 0.001 , (b) 
τ = 0.01 , and (c) τ = 0.1.

Table 1.  Demonstrates the different eigenvalue categories.

Example of selected scheme Fixed point Roots of the eigenvalues Stability/instability

L = 1 (0, 0)
Pure imaginary
�1,2 = ±3.4 i

A stable center
See Fig. 6

(±
√
2, 0)

Real, equal, and different sign
�1,2 = ±0.98

L =
√
12 (0, 0)

Pure imaginary
�1,2 = ± i

A stable center
See Fig. 7

(±
√
2, 0)

Real, equal, and different sign
�1,2 = ±0.82
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The solution of Eq. (5) may be characterized as an extension in the subsequent structure:

In view of the Homotopy perturbation, Eq. (2) might be represented as:

For more accessibility, to achieve a precise formula, we restrict our analysis up to O(ρ) . In this situation, only 
one-time scales, T0,T1, and T2 are needed.

Substituting from Eqs. (24)–(26) into Eq. (27), one gets

(26)θ(t; ρ) = θ0(T0,T1,T2, . . .)+ ρθ1(T0,T1,T2, . . .)+ ρ2θ2(T0,T1,T2, . . .)+ · · ·

(27)θ̈ (t)+ ω2θ(t)+ ρ{ω2
[θ2(t − τ)θ̈(t)+ θ(t)θ̇2(t − τ)] −

ω2

2
θ3(t)} = 0; ρ ∈ [0, 1].

Figure 6.  Depicts the phase portrait at L = 1.

Figure 7.  Depicts the phase portrait at L =
√
12.
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and

With this methodology, it is appropriate to create the solution of Eq. (28) in the following form:

Here, A is an unspecified complex function that can be established later on, and A is a corresponding complex 
conjugate.

Substituting Eq. (31) into Eq. (29), one finds

The removal of the undesired parts, in Eq. (32), at the non-resonant case gives

It worth observing that the consistently reasonable formula of Eq. (32) can be represented as

Again, the exclusion of the unsought pieces, in Eq. (30), at the non-resonant case gives

Equation (34) may be simplified by removing the terms D2
1A,D1A, and D1A from the solvability criterion of 

the first non-resonance argument as offered by Eq. (33), to find

To go back to the initial varying t  , we may reproduce Eq. (33) with the factor ρ , and proliferate Eq. (36) by 
ρ2 , then add up them as one. Ultimately, taking up the limit as ρ → 1 , one realizes

As usual, the solution of Eq. (36) may be formulated as:

where α(t) and β(t) are real functions.
Combining Eqs. (38) and (37), one finds

and

(28)ρ0
: (D2

0 + ω2)θ0 = 0,

(29)
ρ : (D2

0 + ω2)θ1 = 2D0D1θ0(T0,T1,T2)+ ω2
{θ20 (T0 − τ ,T1,T2)D

2
0θ0(T0,T1,T2)

+ θ0(T0,T1,T2)[D0θ0(T0 − τ ,T1,T2)]
2
−

ω2

2
θ30 (T0,T1,T2)},

(30)

ρ2
: (D2

0 + ω2)θ2 = −{D2
1θ0(T0,T1,T2)+ 2D0D2θ0(T0,T1,T2)+ 2D0D1θ1(T0,T1,T2)

−
3ω2

2
θ1(T0,T1,T2)θ

2
0 (T0,T1,T2)+ 2ω2θ0(T0,T1,T2)D1θ0(T0 − τ ,T1,T2)

× D0θ0(T0 − τ ,T1,T2)+ ω2θ1(T0,T1,T2)[D0θ0(T0 − τ ,T1,T2)]
2

+ 2ω2θ0(T0,T1,T2)D0θ0(T0 − τ ,T1,T2)D0θ1(T0 − τ ,T1,T2)

+ 2ω2θ20 (T0 − τ ,T1,T2)D0D1θ0(T0,T1,T2)+ 2ω2θ0(T0 − τ ,T1,T2)

× θ1(T0 − τ ,T1,T2)D
2
0θ0(T0,T1,T2)+ ω2θ20 (T0 − τ ,T1,T2)D

2
0θ1(T0,T1,T2)}.

(31)θ0(T0,T1,T2) = A(T1,T2)e
iωT0 + A(T1,T2)e

−iωT0 .

(32)
(D2

0 + ω2)θ1 =
1

2
ω2A3e3iωT0(1+ 4e−2iτωω2)+

1

2
ω2A

3
e−3iωT0(1+ 4e2iτωω2)+ eiωT0 [

1

2
ω2A2A

× (3+ 4e−2iτωω2)− 2iωD1A] + e−iωT0 [
1

2
ω2AA

2
(3+ 4e2iτωω2)+ 2iωD1A].

(33)ω2A2A(3+ 4e−2iτωω2)− 4iωD1A = 0.

(34)θ1(T0,T1,T2) = −
1

16
[A3e3iωT0(1+ 4e−2iτωω2)+ A

3
e−3iωT0(1+ 4e2iτωω2)].

(35)
1

8
e−2iτωω4A3A

2
(1− 8e−2iτωω2

+ 5e4iτω + 20eiτωω2)+
3

32
ω2A3A

2

+ 2iω3AAD1A(1+ e−2iτω)+ 2iω3A2D1A(1− e−2iτω)+ D2
1A+ 2iωD2A = 0.

(36)
e−4iτωω2

[32ω4
+ 4e6iτωω2(16ω2

− 11)− 4e2iτωω2(16ω2
+ 7)

+ e4iτω(15− 176ω4)]A3A
2
− 64iωD2A = 0.

(37)
16ω(3+ 4e−2iτωω2)A2A+ e−4iτωω[32ω4

+ 4e6iτωω2(16ω2
− 11)− 4e2iτωω2(16ω2

+ 7)

+ e4iτω(15− 176ω4)]A3A
2
− 64i

dA

dt
= 0.

(38)A(t) = α(t)eiβ(t),

(39)α′(t) = 0,



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5570  | https://doi.org/10.1038/s41598-023-32743-w

www.nature.com/scientificreports/

Solving Eqs. (35) and (36), one finds α = c1 and

where c2 is an integration constant.
Curves of Fig. 8 show the time history of the obtained findings by the multiple-time scale method, and they 

are drawn at various values of L(= 1.0, 0.7, 0.5) when σ(= 2.78, 4.01, 5.63) . These curves have a uniform periodic 
behavior, in which the numeral of vibrations rises while the wave numbers decrease with the decrease of the 
amounts of L , as seen in portions (a), (b), and (c). Therefore, the motion is stable and free of chaos. To assert this 
statement, the phase plane diagram for the same amounts of these curves in Fig. 8 is plotted in Fig. 9 to draw 
closed symmetric curves which correspond to the curves of Fig. 8.

The variation of the function β via time at various values of the time delay parameter τ(= 0.001, 0.01, 0.1) 
is plotted in Figs. 10 and 11. Parts (a) and (b) of Fig. 10 are calculated at L = 0.5 when σ = 5.63 and σ = 9.76 , 
respectively. Additionally, curves of Fig. 11 are calculated at L = 0.7 when σ = 4.01 and σ = 6.94 . According 
to the previous equation, one can expect that the graphed curves in these figures have straight lines behavior, in 
which they start from one initial point and have a decay form according to the values of the decaying parameter. 
It is noted that the angle between the lines of each figure decreases with the increase of σ amounts, as graphed in 
portions (a) and (b) of Figs. 10 and 11, while this angle decreases as L increases, as noticed in the corresponding 
parts of these graphs. This means that the time delay factor has a positive impact on the behavior of function β.

Concluding remarks
The present investigation looks at the subject of an inflexible rod revolving on a solid rod as a spherical surface 
with no sliding. In our previous  study10, the EOM was developed on the basis of the Euler–Lagrange theorem. 
This work applies a time-delayed square position as well as speed to examine the stability analysis of a rock-
ing rigid rod in line with the perception of time delay. The subject of this inquiry is extremely significant since 
time-delayed technology has recently been the subject of several investigations. A coupling of the enlarged 
nonlinear frequency notion and the HPM is employed in view of the time delay. This investigation is significant 
since the time-delayed technology issue of this investigation is extremely relevant. An exponential term is also 
introduced to obtain a rough solution of the EOM in light of the time delayed factor. The temporally histories of 
the obtained solution have been plotted at various values of the used parameters. It is noted that the behavior of 
graphed curves has a periodic form, in which the phase plane plots of the obtained outcomes assert their stabili-
ties. To validate the accuracy of the theoretical outcome, a comparison with the RK4 is provided. The present 

(40)
16ω(3+ 4e−2iτωω2)α2(t)+ e−4iτωω[32ω4

+ 4e6iτωω2(16ω2
− 11)− 4e2iτωω2(16ω2

+ 7)

+ e4iτω(15− 176ω4)]α4(t)+ 64β ′(t) = 0.

(41)
β(t) = c2 +

1

64
c21ω t{−48− 32e−4iτωc21ω

4
− 4e2iτωc21ω

2(16ω2
− 11)+ c21(176ω

4
− 15)

+ 4e−2iτωω2
[c21(16ω

2
+ 7)− 16]},

Figure 8.  Describes the temporaly history of θ when τ = 0.0 at: (a) L = 0.5, σ = 2.78 , (b) L = 0.7, σ = 4.01 (c) 
L = 1.0, σ = 5.63.
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Figure 9.  Reveals the curves of Fig. 8 in the plane θ θ̇.

Figure 10.  Shows the temporaly histories of β when L = 0.5 and τ(= 0.001, 0.01, 0.1) at: (a) σ = 5.63 , (b) 
σ = 9.76.

Figure 11.  Shows the temporaly histories of β when L = 0.7 and τ(= 0.001, 0.01, 0.1) at: (a) σ = 4.01 , (b) 
σ = 6.94.
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study allows a careful analysis of the conclusions reached using the analytical strategy of practical approximation. 
The time delay acts as an extra protection against the system potential for nonlinear oscillation. In contrast to 
earlier research, the methodology arrived at the current answer is notable for being effective, promising, and 
simple. The multiple scale method is used to test if it can be applied to additional nonlinear oscillators even with 
the organized nonlinear prototype approach. It has investigated how various regulatory constraints affected 
foundation vibration achievements.

Another non-perturbation procedure built on the well-known He’s  frequency30–33 is suitable for use as a 
prototype for the latest research. With this methodology, the nonlinear EOM as shown in Eq. (1) is transformed 
into a linear one. The novel method appears effective and interesting and can be used in the study from differ-
ent classes of nonlinear partial/ordinary differential equations. Additionally, the stability requirements of the 
nonlinear differential equation can also be easily met.

Data availability
All data generated or analysed during this study are included in this published article.
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