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Resting‑state MRI functional 
connectivity as a neural correlate 
of multidomain lifestyle 
adherence in older adults at risk 
for Alzheimer’s disease
Meishan Ai 1*, Timothy P. Morris 2, Jiahe Zhang 1, Adrián Noriega de la Colina 3, 
Jennifer Tremblay‑Mercier 4,5, Sylvia Villeneuve 4,5,6, Susan Whitfield‑Gabrieli 1, 
Arthur F. Kramer 1,7, Maiya R. Geddes 3,4,8 & for the PREVENT‑AD Research Group *

Prior research has demonstrated the importance of a healthy lifestyle to protect brain health and 
diminish dementia risk in later life. While a multidomain lifestyle provides an ecological perspective 
to voluntary engagement, its association with brain health is still under‑investigated. Therefore, 
understanding the neural mechanisms underlying multidomain lifestyle engagement, particularly in 
older adults at risk for Alzheimer’s disease (AD), gives valuable insights into providing lifestyle advice 
and intervention for those in need. The current study included 139 healthy older adults with familial 
risk for AD from the Prevent‑AD longitudinal aging cohort. Self‑reported exercise engagement, 
cognitive activity engagement, healthy diet adherence, and social activity engagement were included 
to examine potential phenotypes of an individual’s lifestyle adherence. Two adherence profiles were 
discovered using data‑driven clustering methodology [i.e., Adherence to healthy lifestyle (AL) group 
and Non‑adherence to healthy lifestyle group]. Resting‑state functional connectivity matrices and 
grey matter brain features obtained from magnetic resonance imaging were used to classify the two 
groups using a support vector machine (SVM). The SVM classifier was 75% accurate in separating 
groups. The features that show consistently high importance to the classification model were 
functional connectivity mainly between nodes located in different prior‑defined functional networks. 
Most nodes were located in the default mode network, dorsal attention network, and visual network. 
Our results provide preliminary evidence of neurobiological characteristics underlying multidomain 
healthy lifestyle choices.

The number of individuals on the Alzheimer’s disease (AD) continuum, from preclinical AD to AD dementia, is 
currently estimated at about 416 million  globally1. AD presents a significant impact on public health systems and 
the well-being of older adults and  caregivers2. Therefore, it is crucial to identify prevention strategies to prevent 
or delay disease progression. Adherence to healthy lifestyle habits may reduce the risk of dementia and preserve 
cognitive health in at-risk seniors, in a cost-effective way. Multidomain lifestyle behaviors may prevent or delay 
up to 40% of  dementias3. Previous studies have found that healthier diet  habits4, physical activity  engagement5, 
cognitively stimulating activity  participation6, and social  support7 prevented or delayed cognitive decline among 
healthy older adults. Similar lifestyle habits (e.g., engaging in exercise, healthy diet, and cognitive activity) are 
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also associated with decreased risks of developing mild cognitive impairment (MCI) and  AD8–10. Therefore, 
promoting healthy lifestyle behaviors are important for brain resilience and AD prevention.

Most prior studies focused on a single lifestyle variable. A few studies examined multidomain lifestyles, cogni-
tive and brain health but with a limited number (i.e., < 3) of lifestyle  variables11–13. However, lifestyle behaviors 
may not act on the brain health in isolation. According to previous reviews, intervention for AD and cognitive 
impairment prevention is moving from targeting a single lifestyle factor to multidomain lifestyle features in 
recent decades, as multidomain interventions mimic a more ecologically valid approach to voluntary adherence 
to modifiable lifestyles  habits14,15. This approach is also based on the assumption that AD is a complex disor-
der that is associated with multiple risk and protective  factors16. Thus, older adults at risk for AD may benefit 
more from interventions that target multiple factors at once. These reasons underscore the need to deepen our 
understanding of engagement in multidomain lifestyle factors. How individuals adhere to multidomain lifestyles 
voluntarily in a real-world setting is presently unknown. Only a few behavioral studies have examined this ques-
tion. For example, more social support was associated with more physical activity engagement and healthy food 
 intake17. Additionally, there was a reverse relationship between physical activity engagement and dietary  fat18. 
Therefore, we hypothesize that engagement in each lifestyle factor is not entirely independent (i.e., people who 
adhere to one healthy habit might be more or less likely to adhere to another). By identifying potential lifestyle 
profiles among individuals, we will be able to provide insights into personalized lifestyle promotion interventions.

The brain systems underlying successful multidomain healthy lifestyle engagement are presently poorly 
understood. This knowledge is critical to more effectively design personalized lifestyle interventions. A few 
studies to date have investigated the relationship between multidomain lifestyle behaviors and brain health. 
Bittner et al. (2019) found that a higher combined lifestyle risk score (i.e., defined by physical activity, social 
engagement, alcohol intake, and smoking) was associated with altered functional connectivity and gyrification 
in motor and frontal areas in healthy older adults. Relatedly, individuals with higher lifestyle risk scores showed 
an older brain age, estimated by T1-weighed structural  images19. Multiple lifestyle factors were also associated 
with neuropathological biomarkers (e.g., amyloid burden)13,20. Prior research has focused on brain character-
istics as the outcome of healthful lifestyles, rather than the cause. This overlooks the bidirectional relationship 
between the brain and lifestyle habits. Morris et al. (2022) found that functional connectivity in regions related 
to inhibitory control predicted older adults’ sedentary behaviors change after an intervention. Therefore, it may 
be equally important to consider the potential neural features that impact an individual’s lifestyle choices when 
interpreting the findings in cohort studies where directionally can be hard to discern. Additionally, the major-
ity of these studies focused on generally healthy older populations, where these findings may not generalize to 
those at risk for AD and who stand to benefit the most from lifestyle engagement. Relatedly, there is a need for a 
mechanistic understanding of the cognitive processes and neural substrates that support intervention response 
in individuals at risk for AD to provide a deeper understanding underlying the efficacy of  interventions21.

In the current study, we aim to (1) identify the potential profiles of individuals’ lifestyle habits based on 
healthy diet adherence, exercise engagement, cognitive activity engagement, and social network, and (2) iden-
tify the dissociable neurobiological substrates among lifestyle phenotypes based on functional and structural 
brain imaging. We examined these research questions in a well-characterized high AD-risk population from 
the Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer’s disease (PREVENT-AD) 
longitudinal  cohort22. Given the heterogeneity of results and distinct methodologies employed in previous studies, 
we chose to use a data-driven approach to identify lifestyle phenotypes and the underlying neural distinctions.

Method
Participants. We obtained cross-sectional data from 139 cognitively healthy older adults, as a subsample 
from the Presymptomatic Evaluation of Experimental or Novel Treatments for Alzheimer’s disease (PREVENT-
AD) cohort. This longitudinal cohort at McGill University, recruited participants who were cognitively normal 
but are at an increased risk of developing dementia and have an immediate family member with a history of AD. 
Selection criteria for the 139 sub-sample included cognitive status, data completeness and quality. Participants 
with potential cognitive impairment, evaluated by a neuropsychologist, were not included in this sub-sample. 
Demographic information (age, sex, years of education, and APOE genotype) was collected during the baseline 
visit of each participant, which occurred between 2011 and 2017. APOE genotype was labeled as whether indi-
viduals were heterozygous carriers for alleles ε3 and ε4 or not. The consent form was reviewed and signed by all 
participants from this study. Specific consent forms were obtained from participants prior to each experimental 
procedure. The consent form, protocols and study procedures were approved by the McGill Institutional Review 
Board and/or Douglas Mental Health University Institute Research Ethics Board. All procedures were carried 
out in compliance with the ethical principles of the Declaration of Helsinki.

Behavioral data. Psychosocial and lifestyle questionnaires were administered through Qualtrics from 2017 
to 2019 at separate timepoints (https:// www. qualt rics. com). Because the majority of lifestyle variables were col-
lected in 2018, the age of each individual was all corrected to their age in 2018. Below is the specific information 
about the lifestyle, psychosocial, and cognitive measures that were used in the current study.

The lifetime total physical activity questionnaire. Exercise and Sports sub-scale. This questionnaire was devel-
oped and validated by Friedenreich et al. 1998. The participants reported the frequency of each type of physical 
activity they engaged in by day, week, month, and year, and the duration of each activity per session. The accu-
mulated time spent in each activity per year was calculated and summed across all activities, in order to derive 
the total time in exercise and sports engagement in a year. The total score was used as an indicator of physical 
activity engagement of individuals. The scale was assessed throughout the year 2017.

https://www.qualtrics.com
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The lifetime cognitive activity scale. This scale was developed and validated by Wilson et al. 2003. Participants 
reported the frequency of different cognitive activities in different age stages: 6, 12, 18, 30–40, 40 years old and 
currently. The present study focuses on current cognitive engagement only. The sub-scale of current cognitive 
activity engagement lists 11 activities, and the participants indicated the frequency for each activity on a Likert 
scale from 1 (once per year) to 5 (every day). The sum score for this sub-scale was calculated as an indicator of 
cognitive activity engagement for individuals. The scale was assessed in 2018.

The diet habit questionnaire. This questionnaire consists of 4 items from the Mediterranean Diet Adherence 
scale (Martínez-González et al. 2012) and 22 items from the Educoeur questionnaire diet sub-scale (Goyer et al. 
2013). Red meat intake was removed from the analysis because of a large portion of missing values. Higher 
scores suggest higher adherence to recommended dietary habits across all items. The summed score was calcu-
lated as an indicator of adherence to a healthy diet. The scale was assessed throughout the year 2018.

The social life frequency scale. This in-house questionnaire contains four items asking about the frequency of 
getting together with friends/relatives, inviting friends/relatives to participants’ homes, visiting friends/relatives 
at their homes, and on the telephone with friends/relatives over the past month. The participants rate each item 
on a Likert scale from 1 (Not at all in the past month) to 6 (Everyday). The sum score across 4 items was calcu-
lated as an indicator of social activity engagement. The scale was assessed in 2018.

The geriatric depression scale (GDS). This questionnaire was developed and  validated23 to assess depression 
symptoms in older adults. The 15-item version was used. For each item, participants responded with yes or no. 
The maximal score is 15 and a higher score indicates a greater level of depression.

The geriatric anxiety inventory (GAI). This questionnaire was developed and  validated24 to assess anxiety 
symptoms in older adults. The 20-item version was used. For each item, participants responded with agree or 
disagree. The maximal score is 20 and a higher score indicates a greater level of anxiety.

Stress subscale from the depression anxiety stress (DASS). This subscale was developed and  validated25 for 
assessing stress. This subscale has 14 items, each on a Likert scale from 0 to 3. A higher score indicates a greater 
level of stress.

Subscale from the psychological wellbeing scale. This scale was developed and  validated25 and the subscale to 
assess purpose of life was administered in the current study. This subscale has 14 items, each on a Likert scale 
from 1 (Strongly agree) to 6 (Strongly disagree). Higher score indicates greater level of purpose of life.

The apathy evaluation scale (AES). This questionnaire was developed and  validated26 to assess amotivation 
across cognitive, behavioral and emotional domains. The questionnaire contains 20-items. For each item, par-
ticipants responded on a scale from 1 (A lot) to 4 (Not at all). The maximal score is 80 and higher score indicates 
more apathy.

The big five inventory. This inventory was developed and  validated27 to assess five personality dimensions: 
Extraversion, Neuroticism, Consciousness, Agreeableness, and Openness. The questionnaire has 44 items in 
total, participants responded to each by rating from 1 (disagree strongly) to 5 (agree strongly). The summary 
scores for all five dimensions were calculated separately.

The repeatable battery for the assessment of neuropsychological status (RBANS). This neuropsychological battery 
was developed with five cognitive domains: Immediate Memory (i.e., list learning, story remembering), Visu-
ospatial Ability (i.e., figure copy, line orientation), Language (i.e., picture naming, semantic fluency), Attention 
(i.e., digit span, coding), and Delayed Memory (i.e., list recognition, story recall, figure recall)28. The battery was 
administered annually to all participants enrolled in PREVENT-AD. Data from 2016 and 2019 were included 
in the current analysis and change scores were computed by subtracting performance in 2016 from 2019, in 
order to assess the longitudinal change in cognitive function over time. There are 22 out of 139 participants had 
incomplete RBANS data, therefore 117 participants were included in the analysis.

MRI data acquisition and preprocessing. Participants were scanned in a Siemens TIM Trio 3 Tesla 
magnetic resonance imaging (MRI) scanner. The Siemens standard 12-channel coil was used. T1-weight struc-
tural data were acquired using an MPRAGE (Magnetization Prepared Rapid Gradient Echo Imaging) sequence. 
The parameters were as follows: repetition time (TR) = 2300  ms, echo time (TE) = 2.98  ms, inversion time 
(TI) = 900 ms, flip angle = 9°, Field of View (FOV) = 256 × 240 × 176 mm, phase encode A-P, GRAPPA accelera-
tion factor = 2. Resting-state functional MRI data were acquired by an echo-planar imaging (EPI) sequence. The 
scanning duration for each run was 5.04 min and two runs were performed sequentially. The parameters were 
as follows: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 9°, FOV = 256 × 256 × 252 mm, 
phase encode A-P, Bandwidth = 2442/px. Thirty-two slices were collected in each run.

The preprocessing of both functional and structural data was performed using the fMRIprep  pipeline29. The 
structural images went through skull stripping, brain tissue segmentation, spatial normalization to Montreal 
Neurological Institute (MNI) space, and surface reconstruction. Preprocessing steps for the resting-state func-
tional images include head motion correction, realignment, slice timing correction for sequential acquisition, 
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susceptibility distortion correction, co-registration to reconstructed structural images, and spatial normalization 
to standard space. Some extra preprocessing steps were performed on functional images in CONN  toolbox30 as 
follows. The functional data were smoothed using a full-width half-maximum kernel of 6 mm. Volumes with 
framewise displacement above 0.5 mm and/or global blood-oxygen-level-dependent (BOLD) signal changes 
above 3 standard deviations were flagged as motion outliers. Noise reduction was performed with 10 noise 
components from white matter and cerebrospinal areas estimated using an anatomical component-based noise 
correction procedure (aCompCor) (Behzadi et al. 2007), 12 estimated subject-motion parameters estimated 
from fMRIprep, motion outliers, and constant and first-order linear session effects detected in CONN. Nine 
participants were removed because of having less than five minutes of scanning time after the outlier scans being 
 removed31. These nine participants were not included in any analysis of the current study.

Structural and functional image features preparation. Schaefer 100 parcellation was applied to both 
functional and structural brain  data32. Cortical area and thickness were extracted from the 100 parcels in T1 
structural images, which resulted in 200 structural features. Fisher-Z transformed bivariate Pearson correla-
tion coefficients between each pair of parcels were calculated in CONN toolbox for the resting state functional 
images, which resulted in (100 × 100 − 100)/2 = 4950 functional features.

Lifestyle phenotyping (K‑means clustering). The k-means algorithm was used to cluster the partici-
pants into different lifestyle phenotypes. K-means is an unsupervised methodology to investigate patterns in 
a dataset, by defining a priori the potential number of clusters (k) that exist in the dataset. For a given k, the 
algorithm will assign each data point into a cluster by minimizing the distance between that data point and the 
centroid (i.e., the center of a cluster). All data were transformed to z-scores initially and all analysis was done in 
R (version 4.1.3). The four lifestyle variables (physical activity, cognitive activity, diet, and social activity) were 
separately entered into a linear regression model as dependent variables, with age, years of education, sex, and 
APOE4 carrier status as independent variables. Residuals from the regression models of the four lifestyle vari-
ables were entered into k-means function from the stats package, with number of clusters set from 1 to 9. The 
Clusterboot function from fpc package was used to calculate the Jaccard index by bootstrapping the clustering 
100 times and calculating how many datapoints stayed in the same cluster across resamples. The Jaccard index 
was calculated by the ratio between number of data points assigned to the same cluster and the total number of 
data points. We determined the optimal k using two criteria: 1) highest Jaccard index, a higher value indicates 
higher stability, and 2) ‘elbow’ for within sum of squares for k versus k + 1, a lower value of within sum of squares 
indicates higher compactness for a cluster, which is the distance of each participant from the centroid.

The final chosen clusters were validated by examining group differences in psychosocial variables and lon-
gitudinal cognitive changes. The goal of this step is to confirm that the resultant clusters are derived from real 
differences in the data rather than being spurious. Psychosocial variables included depression, anxiety, stress, 
apathy, purpose of life, and Big Five Inventory. Cognitive measures included the change in scores from 2019 
to 2016 across the five dimensions of the RBANS battery. False Discovery Rate (FDR; p < 0.05) correction was 
applied within dimensions of Big Five Inventory, RBANS, and other psychosocial variables (i.e., depression, 
anxiety, stress, apathy, purpose of life) separately. A t-test was performed to examine the difference between 
cluster groups.

Imaging classification. We ran a classification analysis using neuroimaging features to classify groups 
obtained in the k-means clustering solution with optimal k. Age, sex, educational years, APOE4 genotype, and 
mean head motion (only for the functional features) were regressed out of each feature and the residuals were 
used in the prediction model, in order to control for potential confounding. To select the imaging feature set that 
would be used in the training model, a feature selection filter was applied to all imaging features using the sbf 
function in the caret package. For each imaging feature, a logistic regression model was generated with the clus-
tering solution as a binary categorical dependent variable, and the imaging feature as an independent variable. 
Then the features that predicted the clustering at p < 0.05 in the logistic models were selected across a tenfold 
cross-validation manner.

The main classification model was built using a linear support vector machine (SVM) classifier with linear 
kernel in kernlab package. The linear SVM classifier tries to find a hyperplane that separates the data points in a 
N-dimension space (N = the number of features in this model). The analysis was done in a nested cross-validation 
manner, with 25 inner loop resampling and tenfold outer loop cross-validation, in order to avoid over-fitting 
when using the same samples for tuning and testing. The tenfold in the outer loop was consistent with the folds 
in feature selection described above. A list of cost C was created varying from 0.25 to 64. The analysis involved 
two steps: (1) Tuning the parameter cost in inner loop resamples by maximizing Area Under Curve (AUC) in 
a receiver operating characteristics (ROC) curve, (2) testing the model by applying the best cost value for each 
fold in outer loop cross-validation. Model performance was averaged across all 10 folds in the outer loop. The 
same pipeline with the same fold splits was repeated in the same seed with a Random Forest model and a SVM 
classifier with non-linear kernel, in order to examine the stability of the outcome across models. Number of 
predictors to be sampled at each split, and the minimum number of data points in a node for further splitting 
were tuned in the inner resample. The number of trees was set at 1000.

The performance of each classification model was evaluated by accuracy, sensitivity, specificity, and AUC. An 
AUC of 1 indicates perfect prediction, and an AUC of 0.5 performs at chance. The significance of accuracy was 
examined via a permutation test. The sample was permutated and generate a new accuracy which repeated 1000 
times, in order to produce the null distribution of the accuracy. The p value was determined by the percentage 
of values from the null distribution that are equal or greater than the observed accuracy.
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The whole schema for the analysis pipeline is depicted in Fig. 1:

Pos‑hoc analysis. In order to determine which neurobiological features were important for the classifica-
tion of individuals into lifestyle adherence clusters, the weights for all features were extracted from the lin-
ear SVM model. Specifically, coefficients from the orthogonal vector to the hyperplane were extracted and the 
greater absolute value of the coefficient for each feature indicates greater importance in separating the clusters. 
We ranked the absolute values of coefficients and selected the features that ranked among the top 30 for no fewer 
than 8 out of the 10 outer folds as the final list of important features.

Results
Descriptive information. There are 139 participants included in the k-means analysis (age = 66.53 ± 5.04; 
47 males; educational years = 15.50 ± 3.46; 48 APOE4 carriers). The distribution of each lifestyle habit and their 
correlation with each other are displayed in Fig. 2a. Spearman correlation was examined for each pair of lifestyle 
variables and the scatter plots are displayed in Fig. 2b. Cognitive activity engagement was significantly correlated 
with exercise engagement (r = 0.30, p = 0.001 FDR-corrected) and social activity engagement (r = 0.24, p = 0.01 
FDR-corrected). While diet was not statistically associated with the other variables, a non-significant positive 
correlation between these lifestyle factors and all the other factors was observed.

Lifestyle phenotyping (K‑means clustering) results. The within cluster sum of squares showed an 
‘elbow’ at k = 2, as it decreased with a steeper slope from k = 1 to 2, compared with further increments in k 
(Fig. 3a). Additionally, the highest Jaccard index appeared at k = 2 (i.e., 0.90 for cluster1, 0.89 for cluster2), com-
pared to clustering solutions with a higher k (from 2 to 9; Fig. 3b). Therefore, the solution of two clusters pro-
vided the best fit for the current k-means analysis. The scatter plots of pairs of lifestyle variables across all k values 
(i.e., from 1 to 9) are displayed in Supplementary Fig. S(1). Scatterplots allow visualization of the different centers 
(Fig. 4a). For the final two-cluster solution, we separately examined the two groups’ lifestyle variables and found 
the two groups represented adherence and non-adherence to healthy lifestyle choices (Fig. 4b).

The demographic information and lifestyle engagement for both groups separately are summarized in Sup-
plementary Table S(1). We used psychosocial variables (i.e., depression, anxiety, stress, apathy, purpose of life, 
big five personality), and cognitive change across 4 years (i.e., RBANS change scores for five dimensions from 
2016 to 2019) to validate that the two clusters reflect meaningful behavioral patterns that extend beyond lifestyle 
choices. The results showed that the group with non-adherence healthy lifestyle (NAL) had a higher score in apa-
thy (t = 3.25, p = 0.007 FDR corrected; Fig. 5a) and a lower score in Big Five extraversion subscale score (t = − 3.0, 
p = 0.01 FDR corrected; Fig. 5b) than the group with adherence to healthy lifestyle (AL) group. NAL group also 
showed more longitudinal decline in language index change (t = − 0.31, p = 0.015 FDR corrected; Fig. 5c).

Figure 1.  The classification analysis pipeline.
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Classification results. After feature reduction filtering, 255 brain imaging features were chosen as the final 
set of imaging features to be included in the classification model with 252 functional features and 3 structural 
features. The linear SVM model successfully classified each cluster assignment (p < 0.001; accuracy = 0.75, sen-
sitivity = 0.72, specificity = 0.77, AUC = 0.87; ROC see Fig. 6). The non-linear SVM model and random forest 
model produced similar results (Supplementary Fig. 3).

Feature importance. The features that were the most important to the classification model are displayed in 
Fig. 7. The functional connections that are important for the classification model were mostly between-network 
and cross-hemisphere. The importance value of each feature is displayed in Table 1 and mapped on the atlas in 
Fig. 7a. The connectivity direction for both AL and NAL groups are displayed in Fig. 7b. Nodes that showed 
higher importance are distributed mainly in the default mode network, dorsal attention network, sensorimotor 
network and visual network (Fig. 7c).

Discussion
In the current study, we identified two lifestyle phenotypes among older adults at-risk for AD and examined the 
neurobiological distinction between these two phenotypes. We applied rigorous data-driven machine learning 
methods, an important step towards generalizable findings and precision neurology. We have two major find-
ings in this study. Firstly, the data-driven clustering approach revealed two distinct phenotypes that adhere to a 
healthier lifestyle and a less healthy lifestyle in all four categories of lifestyle habits. We found that older adults 
engaged in protective lifestyle behaviors across multiple domains, rather than in isolation. Between-group dif-
ferences were also verified in increased extraversion, lower apathy levels, and more preserved cognitive change 
over time in adherence group. Secondly, the classification model identified functional connectivity features that 
successfully differentiated the two lifestyle phenotypes. Most features represented between-network functional 

Figure 2.  The distribution of each lifestyle variable (a). Scatterplots of the correlations between each pair 
of lifestyle variables (b). correlation coefficients and significance were displayed on each correlation pair 
(***p < 0.001, **p < 0.01, *p < 0.05).
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connectivity, which revealed a distributed set of neural features related to lifestyle choices. The non-adherent 
lifestyle group (i.e., NAL group) showed a larger number of features representing greater between-network and 
cross-hemisphere functional connectivity than adherent lifestyle group (i.e., AL group).

We validated patterns in our data that showed two distinct sub-groups of people who either adhere well to all 
four lifestyle habits or adhered poorly to all four habits. The results indicated potential covarying factors across 
different lifestyle behaviors, which was under-examined in prior literature. Importantly, we found convergent 
validity for these two clusters using psychosocial and cognitive variables independent from the input of the 
clustering analysis. These findings converge with prior research. For example, older adults with higher extraver-
sion and agreeableness were found to have both greater social networks and more moderate physical activity 
 engagement34,35, which is consistent with our finding of the AL group having higher extraversion scores. There 
might be also a bidirectional relationship between executive function and health behaviors, such as physical 
 activity36. Consistently, our results showed difference in language index changes between AL and NAL groups, 
and the semantic fluency subtest was driving this difference (t = − 3.14, p = 0.002; see Supplementary Fig. S(2)), 
which loads on executive control  components37. Therefore, the distinction we observed across two multidomain 
lifestyle profiles indicates a potential set of psychological and neurobiological factors shared by many health 
behaviors, and at the same time provides validation that the two phenotypes found in our data-driven approach 
reflect ecologically valid patterns in the data.

We identified the neural features that differentiated individuals with differences in multidomain lifestyles 
using a classification prediction model. Features with higher weight and consistency for the prediction model 
were all between-network functional connectivity features, some of which showed greater functional connectivity 
in NAL group, while others showed greater functional connectivity in AL group. Nodes in temporal regions and 
prefrontal regions belonging to the DMN and DAN were found most frequently in these discriminative features 
(Fig. 7c). Previous studies also found that functional connectivity in DMN and attentional networks predicted 
adherence to an exercise intervention and a mental training  programs38,39. Meanwhile, both DMN and DAN play 
an important role in supporting executive  function40,41, which were found to contribute to voluntary physical 
activity  engagement42. One potential psychological mechanism behind this relationship is that executive function 
facilitates initiating and adhering to health behaviors through “temporal self-regulation”36, with three important 
determinants for physical activity engagement: physical activity prepotency, intention, and executive  function43. 
Combining the neurobiological distinction in nodes involving DMN and DAN and behavioral difference in 

Figure 3.  The total within sum of squares (a) and Jaccard index across different k (b), measures of cluster 
variability and stability respectively.
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Figure 4.  Scatterplots for cluster = 2 among pairs of lifestyle variables (a). The location of black cross (X) 
indicates the centroid of each cluster. Mean of each lifestyle variable for the two groups derived from k-means 
clustering (b). Positive scores represent greater adherence to healthy lifestyle variable. Participants in Cluster 
2 showed higher levels of engagement across each health behaviour (AL group) compared to participants in 
Cluster 1 (NAL group).
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verbal fluency between AL and NAL in our findings, it suggests that this connection between executive control 
and physical activity may generalize to multidomain lifestyles, and it might be a promising attempt to examine 
this theoretical framework across multiple lifestyle behaviors in the future.

Most of the features with stably high importance represented enhanced between network connectivity. More 
between-network features showed increased functional connectivity values in the NAL group compared to 
the AL group (9 vs 5). Specifically, individuals from the NAL group showed greater positive correlation or less 
anti-correlation between DMN and other task-positive networks (e.g., DAN, SMN) than the AL group. Studies 
have found that higher cross-network connectivity and lower within-network connectivity are associated with 
cognitive decline in healthy older  adults44,45. A less segregated functional brain was also associated with AD 
 symptoms46,47. Previous studies also identified the decreased anti-correlated relationship between DMN and 
task-positive networks (e.g. DAN, FPN) in both normal aging population and AD  patients48–51. Regarding life-
style, older adults who engaged more in physical and cognitive activity, showed greater modularity, a measure 
of network  distinctiveness12. Therefore, in a summary, greater functional connectivity between task-negative 
and task-positive networks in the NAL group might suggest a more vulnerable connectivity status linked with 
lifestyle behaviors.

The final classification model included a majority of functional connectivity and only a few structural features 
after feature selection, and the most important and consistent features all consisted of functional connectivity 
variables. This indicates that the relationship between multidomain lifestyle habits and brain health might be 
primarily supported by cognitive reserve or functional plasticity (i.e., a more adaptable functional brain with 
higher efficiency and flexibility for cognitive processing) rather than brain reserve (i.e., the structural charac-
teristics of a brain that copes with pathology and function loss)52. Although this observation is not necessarily 
consistent with some previous multidomain lifestyle studies that identified associations between lifestyle and 
selective aspects of brain  structure19,20,53, the discrepancy may result from different methods and populations. 
The current study applied a data driven method by including all neural features in the same model, while other 
studies examined structural and functional features separately. Moreover, all of our participants were at high 

Figure 5.  Group differences in apathy (a), extraversion (b), and language (c) index change. Green represents 
the AL group, and red represents NAL group.

Figure 6.  ROC for linear SVM classification model.
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risk for AD. The structural characteristic in the current sample may already differ from other studies. Some high 
importance nodes in DMN in middle temporal gyrus (i.e., R DMN_Temp_1 and R DMN_Temp_2) and infe-
rior frontal (i.e., R DMN_PFCv_2)32 overlapped with the rich club hubs that showed different nodal efficiency 
between AD patients and healthy older adults from a previous  report54, indicating potential pre-symptomatic 
AD-related alternation in our current sample. Therefore, it is important to focus more attention on high AD-risk 
samples, and regions and networks that are vulnerable to AD pathology.

There are some limitations in the current study. First, we had a relatively small sample size, which may 
cause increased bias for the results  accuracy55 and low  stability56 for machine learning models. Accordingly, we 
interpret with caution individual features from the machine learning models. However, our study did show bio-
logical distinction among individuals with different lifestyle profiles, which provides insight into lifestyle-brain 
associations. Second, this was a cross-sectional design. We identified features linked to lifestyle behaviors, but 
we cannot establish any causal relationship between functional connectivity and lifestyles in the current study. 
Analyses using longitudinal or interventional study designs are needed in future research to further disentangle 
the bidirectional relationship between brain health and lifestyle habits. Third, the collection time of different 
variables did not always occur at the same time. The neuroimaging data were collected one or two years earlier 
than the lifestyle variables, and exercise variables were collected one year earlier than the other lifestyle vari-
ables. We hypothesize that lifestyle habits stay consistent across these years, particularly among older adults, but 
we cannot exclude the potential confounding of behavioral change. Lastly, the sample consists of a majority of 
females, which decreased the generalizability for the results. Nevertheless, we controlled the for sex by including 
it as a covariate in all models in the study.

Figure 7.  Important functional features. (a) Anatomical map of important features and their relative 
importance values. Greater node size indicates higher frequency of this node appearing in this list. Thicker edge 
indicates greater importance value of the connection. Red indicates greater connectivity values in AL group, 
and gray indicates greater connectivity values in NAL group. (b) Functional connectivity directionality in both 
groups. Red indicates positive mean connectivity across subgroups, and blue indicates negative connectivity 
across subgroups. (c) Frequency of nodes from each intrinsic resting-state network (i.e., Yeo 7 networks)33 in 
the list of important features. VN (Visual Network), SMN (Sensorimotor Network), DAN (Dorsal Attention 
Network), VAN (Ventral Attention Network), LN (Limbic Network), FPN (Frontoparietal Network), DMN 
(Default Mode Network).
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In conclusion, we identified two phenotypes of lifestyle participation and the neurobiological distinction 
between them. The prediction model suggested an association between multidomain lifestyles and functional 
connectivity features in older adults at high risk for AD. Studies with larger samples and more diverse popula-
tions are needed to further examine brain-lifestyle relationships. Future studies should allocate more attention to 
investigating the psychosocial and cognitive factors that promote protective lifestyles, from real-world adherence 
to response and behavioral change following interventions.

Data availability
This dataset belongs to the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer’s 
disease (PREVENT-AD) program data internal release 6.0. Part of the data from PREVENT-AD program is 
accessible to all public through openpreventad.loris.ca and more complete data are available to researchers/
physician through registeredpreventad.loris.ca. Information about data access is available at: https:// preve nt- 
alzhe imer. net/? page_ id= 1760& lang= en.
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